Effect of Different Anthelmintic Drugs on the Development and Efficacy of Duddingtonia flagrans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Material
2.2. Anthelmintics
2.3. In Vitro Effect of Anthelmintics on D. flagrans Predatory Capability in Faecal Media
2.4. In Vitro Effect of Anthelmintics on D. flagrans Growth
2.5. Effect of LEV on D. flagrans in Faeces under Environmental Conditions
2.6. Statistical Analysis
3. Results
3.1. In Vitro Effect of Anthelmintics on D. flagrans Predatory Capability in Faecal Media
3.2. In Vitro Effect of Anthelmintics on D. flagrans Growth
3.3. Effect of LEV on D. flagrans in Faeces under Environmental Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Araújo, J.V.; Braga, F.R.; Mendoza-de-Gives, P.; Paz-Silva, A.; Vilela, V.L.R. Recent advances in the control of helminths of domestic animals by helminthophagous fungi. Parasitologia 2021, 1, 168–176. [Google Scholar] [CrossRef]
- Szewc, M.; De Waal, T.; Zintl, A. Biological methods for the control of gastrointestinal nematodes. Vet. J. 2021, 268, 105602. [Google Scholar] [CrossRef]
- Vieira, J.N.; Maia Filho, F.S.; Ferreira, G.F.; Mendes, J.F.; Gonçalves, C.L.; Villela, M.M.; Pereira, D.I.B.; Nascente, P.S. In vitro susceptibility of nematophagous fungi to antiparasitic drugs: Interactions and implications for biological control. Brazilian J. Biol. 2016, 77, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, N.; Gong, P.; Li, J.; Wang, X.; Li, X.; Wang, F.; Cai, K.; Zhang, X. In vitro assays on the susceptibility of four species of nematophagous fungi to anthelmintics and chemical fungicides/antifungal drug. Lett. Appl. Microbiol. 2021, 73, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Saumell, C.A.; Fernández, A.S.; Fusé, L.A.; Rodríguez, M.; Sagüés, M.F.; Iglesias, L.E. Nematophagous fungi from decomposing cattle faeces in Argentina. Rev. Iberoam. Micol. 2015, 32, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Sagüés, M.F.; Fusé, L.A.; Iglesias, L.E.; Moreno, F.C.; Saumell, C.A. Optimization of production of chlamydospores of the nematode-trapping fungus Duddingtonia flagrans in solid culture media. Parasitol. Res. 2012, 112, 1047–1051. [Google Scholar] [CrossRef]
- Iglesias, L.E.; Saumell, C.A.; Fernández, A.S.; Fusé, L.A.; Lifschitz, A.L.; Rodríguez, E.M.; Steffan, P.E.; Fiel, C.A. Environmental impact of ivermectin excreted by cattle treated in autumn on dung fauna and degradation of faeces on pasture. Parasitol. Res. 2006, 100, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Sommer, C.; Steffansen, B. Changes with time after treatment in the concentrations of ivermectin in fresh cow dung and in cow pats aged in the field. Vet. Parasitol. 1993, 48, 67–73. [Google Scholar] [CrossRef]
- Prchal, L.; Podlipná, R.; Lamka, J.; Dědková, T.; Skálová, L.; Vokřál, I.; Lecová, L.; Vaněk, T.; Szotáková, B. Albendazole in environment: Faecal concentrations in lambs and impact on lower development stages of helminths and seed germination. Environ. Sci. Pollut. Res. 2016, 23, 13015–13022. [Google Scholar] [CrossRef]
- Baggot, J.D.; McKellar, Q.A. The absorption, distribution and elimination of anthelmintic drugs: The role of pharmacokinetics. J. Vet. Pharmacol. Ther. 1994, 17, 409–419. [Google Scholar] [CrossRef]
- Fiel, C.; Steffan, P.; Ferreyra, D. Diagnóstico de las Parasitosis más Frecuentes de los Rumiantes: Técnicas de Diagnóstico e Interpretación de los Resultados; Abad Benjamín: Tandil, Argentina, 2011; ISBN 9789873315022. [Google Scholar]
- Niec, R. Cultivo e identificación de larvas infectantes de nematodes gastrointestinales del bovino y ovino. Man. Técnico 1968, 3, 1–37. [Google Scholar]
- Fernández, A.S.; Larsen, M.; Wolstrup, J.; Grønvold, J.; Nansen, P.; Bjørn, H. Growth rate and trapping efficacy of nematode-trapping fungi under constant and fluctuating temperatures. Parasitol. Res. 1999, 85, 661–668. [Google Scholar] [CrossRef]
- Griffin, D.H. Fungal Physiology, 2nd ed.; Wiley-Liss: New York, NY, USA, 1994. [Google Scholar]
- Fernández, S.; Zegbi, S.; Sagües, F.; Iglesias, L.; Guerrero, I.; Saumell, C. Trapping behaviour of Duddingtonia flagrans against gastrointestinal nematodes of cattle under year-round grazing conditions. Pathogens 2023, 12, 401. [Google Scholar] [CrossRef] [PubMed]
- Grønvold, J. Rain splash dispersal of third-stage larvae of Cooperia spp. (trichostrongylidae). J. Parasitol. 1984, 70, 924–926. [Google Scholar] [CrossRef] [PubMed]
- Fernández, A.S.; Larsen, M.; Nansen, P.; Grønvold, J.; Henriksen, S.A.; Wolstrup, J. Effect of the nematode-trapping fungus Duddingtonia flagrans on the free-living stages of horse parasitic nematodes: A plot study. Vet. Parasitol. 1997, 73, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Zegbi, S.; Sagües, F.; Saumell, C.; Guerrero, I.; Iglesias, L.; Fernández, S. In vitro efficacy of different concentrations of Duddingtonia flagrans on varying egg densities of gastrointestinal nematodes of cattle. Exp. Parasitol. 2021, 230, 108156. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, R. In vitro and in vivo studies on the ovicidal activity of fenbendazole. Res. Vet. Sci. 1978, 25, 263–265. [Google Scholar] [CrossRef]
- Miller, J.E.; Morrison, D.G. Effect of fenbendazole and ivermectin on development of strongylate nematode eggs and larvae in calf feces. Vet. Parasitol. 1992, 43, 265–270. [Google Scholar] [CrossRef]
- Borgsteede, F.H.M.; Geerts, S.; de Deken, R.; Kumar, V.; Brandt, J. Studies on an Ostertagia ostertagi strain suspected to be resistant to benzimidazoles. Vet. Parasitol. 1992, 41, 85–92. [Google Scholar] [CrossRef]
- Paraud, C.; Pors, I.; Chartier, C. Activity of Duddingtonia flagrans on Trichostrongylus colubriformis larvae in goat feces and interaction with a benzimidazole treatment. Small Rumin. Res. 2004, 55, 199–207. [Google Scholar] [CrossRef]
- Grønvold, J.; Nansen, P.; Henriksen, S.A.; Larsen, M.; Wolstrup, J.; Bresciani, J.; Rawat, H.; Fribert, L. Induction of traps by Ostertagia ostertagi larvae, chlamydospore production and growth rate in the nematode-trapping fungus Duddingtonia flagrans. J. Helminthol. 1996, 70, 291–297. [Google Scholar] [CrossRef]
- Wang, B.B.; Zhang, N.; Gong, P.T.; Li, J.H.; Yang, J.; Zhang, H.B.; Zhang, X.C.; Cai, K.Z. Morphological variability, molecular phylogeny, and biological characteristics of the nematophagous fungus Duddingtonia flagrans. J. Basic Microbiol. 2019, 59, 645–657. [Google Scholar] [CrossRef]
- Araújo, J.V.; Santos, M.A.; Ferraz, S. Efeito de drogas anti-helmínticas sobre o crescimento de fungos nematófagos do gênero Arthrobotrys. Nat. São Paulo 1995, 20, 157–163. [Google Scholar]
- Townsend, L.B.; Wise, D.S. The synthesis and chemistry of certain anthelmintic benzimidazoles. Parasitol. Today 1990, 6, 107–112. [Google Scholar] [CrossRef]
- Sanyal, P.K.; Sumbria, D.; Pal, S.; Mandal, S.C. Factors affecting growth of a new isolate of egg parasitic fungus Pochonia suchlasporia on in vitro culture media. J. Vet. Parasitol. 2012, 26, 99–103. [Google Scholar]
- Wahane, N.; Sanyal, P.; Kumar, D.; Pal, S.; Bisen, S.; Baghel, K. In vitro screening of egg parasitic fungus Pochonia suchlasporia for its possible use as biocontrol agent against fasciolosis and amphistomosis in ruminants. Ind. J. Small Rum. 2014, 20, 66–68. [Google Scholar]
- Ferreira, G.F.; Freitas, T.M.; Gonçalves, C.L.; Mendes, J.F.; Vieira, J.N.; Villareal, J.P.; Nascente, P.S. Antiparasitic drugs: In vitro tests against nematophagous fungi. Braz. J. Biol. 2016, 76, 990–993. [Google Scholar] [CrossRef]
- Lubega, G.W.; Prichard, R.K. Interaction of benzimidazole anthelmintics with Haemonchus contortus tubulin: Binding affinity and anthelmintic efficacy. Exp. Parasitol. 1991, 73, 203–213. [Google Scholar] [CrossRef]
- An, J.X.; Ma, Y.; Zhao, W.B.; Hu, Y.M.; Wang, Y.R.; Zhang, Z.J.; Luo, X.F.; Zhang, B.Q.; Ding, Y.Y.; Liu, Y.Q. Drug Repurposing strategy ii: From approved drugs to agri-fungicide leads. J. Antibiot. 2023, 76, 131–182. [Google Scholar] [CrossRef]
- Cristel, S.; Fiel, C.; Anziani, O.; Descarga, C.; Cetrá, B.; Romero, J.; Fernández, S.; Entrocasso, C.; Lloberas, M.; Medus, D.; et al. Anthelmintic resistance in grazing beef cattle in central and northeastern areas of Argentina. Vet. Parasitol. Reg. Stud. Reports 2017, 9, 25–28. [Google Scholar] [CrossRef]
- Kaplan, R.M.; Vidyashankar, A.N. An Inconvenient truth: Global worming and anthelmintic resistance. Vet. Parasitol. 2012, 186, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Yeates, G.W.; Dimander, S.O.; Waller, P.J.; Höglund, J. Environmental impact on soil nematodes following the use of the ivermectin sustained-release bolus or the nematophagous fungus Duddingtonia flagrans to control nematode parasites of cattle in Sweden. Acta Agric. Scand. Sect. A Anim. Sci. 2002, 52, 233–242. [Google Scholar] [CrossRef]
- Moreno-Morales, J.C.; Andrade-Becerra, R.J.; Pulido-Medellín, M.O. Cuantificación de ivermectina eliminada en materia fecal de novillos tratados. Cienc. Agric. 2015, 12, 97. [Google Scholar] [CrossRef]
- Suarez, V.H.; Lifschitz, A.L.; Sallovitz, J.M.; Lanusse, C.E. Effects of ivermectin and doramectin faecal residues on the invertebrate colonization of cattle dung. J. Appl. Entomol. 2003, 127, 481–488. [Google Scholar] [CrossRef]
- Asi, M.R.; Bashir, M.H.; Afzal, M.; Ashfaq, M.; Sahi, S.T. Compatibility of entomopathogenic fungi, Metarhizium anisopliae and Paecilomyces fumosoroseus with selective insecticides. Pakistan J. Bot. 2010, 42, 4207–4214. [Google Scholar]
- Ferraz, C.M.; Sobral, S.A.; Senna, C.C.; Junior, O.F.; Moreira, T.F.; Tobias, F.L.; de Freitas Soares, F.E.; Geniêr, H.L.A.; Vilela, V.L.R.; Lima, J.A.C.; et al. Combined use of ivermectin, dimethyl sulfoxide, mineral oil and nematophagous fungi to control Rhabditis spp. Vet. Parasitol. 2019, 275, 108924. [Google Scholar] [CrossRef] [PubMed]
- Fiel, C.; Steffan, P.; Entrocasso, C. Epidemiología e impacto productivo de nematodos en la Pampa Húmeda. In Enfermedades Parasitarias de Importancia Clínica y Productiva en Rumiantes. Fundamentos Epidemiológicos Para su Diagnóstico y Control; Fiel, C., Nari, A., Eds.; Editorial Hemisferio Sur, SRL: Montevideo, Uruguay, 2013; pp. 29–58. [Google Scholar]
- Vilela, V.L.R.; Feitosa, T.F.; Braga, F.R.; Vieira, V.D.; de Lucena, S.C.; de Araújo, J.V. Control of sheep gastrointestinal nematodes using the combination of Duddingtonia flagrans and levamisole hydrochloride 5%. Rev. Bras. Parasitol. Vet. 2018, 27, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, P.K.; Chauhan, J.B.; Mukhopadhyaya, P.N. Implications of fungicidal effects of benzimidazole compounds on Duddingtonia flagrans in integrated nematode parasite management in livestock. Vet. Res. Commun. 2004, 28, 375–385. [Google Scholar] [CrossRef]
- Singh, R.K.; Sanyal, P.K.; Patel, N.K.; Sarkar, A.K.; Santra, A.K.; Pal, S.; Mandal, S.C. Fungus–benzimidazole interactions: A prerequisite to deploying egg-parasitic fungi Paecilomyces lilacinus and Verticillium chlamydosporium as biocontrol agents against fascioliasis and amphistomiasis in ruminant livestock. J. Helminthol. 2010, 84, 123–131. [Google Scholar] [CrossRef]
- Entrocasso, C.; Parra, D.; Vottero, D.; Farias, M.; Uribe, L.F.; Ryan, W.G. Comparison of the persistent activity of ivermectin, abamectin, doramectin and moxidectin in cattle. Vet. Rec. 1996, 138, 91–92. [Google Scholar] [CrossRef]
Faecal Pats | Herbage | |||
---|---|---|---|---|
L3/g Faeces | Red. % | L3/Kg DM | Red. % | |
Autumn | ||||
Control | 11.9 (11.19) | 99.80 (54.56) | ||
Df | 3.7 (1.829) | 68.04 | 15.10 (10.80) | 84.84 (p = 0.0032) |
Df+ DMSO | 2.9 (1.729) | 75.25 (p = 0.0394) | 24.50 (16.79) | 75.60 (p = 0.0444) |
Df+ LEV + DMSO | 1.0 (0.8165) | 91.77 (p < 0.0001) | 0 (0) | 100 (p < 0.0001) |
Winter | ||||
Control | 21.10 (12.40) | 40.30 (36.29) | ||
Df | 0.1 (0.3162) | 99.08 (p < 0.0001) | 1.90 (6.008) | 95.32 (p = 0.0002) |
Df+ DMSO | 0.2 (0.6325) | 98.65 (p < 0.0001) | 0 (0) | 100 (p < 0.0001) |
Df+ LEV + DMSO | 0 (0) | 100 (p < 0.0001) | 0 (0) | 100 (p < 0.0001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zegbi, S.; Sagües, F.; Saumell, C.; Ceballos, L.; Domínguez, P.; Guerrero, I.; Junco, M.; Iglesias, L.; Fernández, S. Effect of Different Anthelmintic Drugs on the Development and Efficacy of Duddingtonia flagrans. Ruminants 2024, 4, 10-21. https://doi.org/10.3390/ruminants4010002
Zegbi S, Sagües F, Saumell C, Ceballos L, Domínguez P, Guerrero I, Junco M, Iglesias L, Fernández S. Effect of Different Anthelmintic Drugs on the Development and Efficacy of Duddingtonia flagrans. Ruminants. 2024; 4(1):10-21. https://doi.org/10.3390/ruminants4010002
Chicago/Turabian StyleZegbi, Sara, Federica Sagües, Carlos Saumell, Laura Ceballos, Paula Domínguez, Inés Guerrero, Milagros Junco, Lucía Iglesias, and Silvina Fernández. 2024. "Effect of Different Anthelmintic Drugs on the Development and Efficacy of Duddingtonia flagrans" Ruminants 4, no. 1: 10-21. https://doi.org/10.3390/ruminants4010002