Recent Advances in Fish Nutrition: Insights on the Nutritional Implications of Modern Formulations

A topical collection in Animals (ISSN 2076-2615). This collection belongs to the section "Aquatic Animals".

Viewed by 52974

Editors


E-Mail Website
Collection Editor
Livestock and Aquaculture Program—Nutrition and Production system group, The Commonwealth Scientific and Industrial Research Organisation, Woorim, QLD 4507, Australia
Interests: fish nutrition; aquaculture nutrition; feed manufacturing technology; aquaculture; mariculture
Special Issues, Collections and Topics in MDPI journals

E-Mail
Collection Editor
Nucleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes, Mogi das Cruzes 08780-911, Brazil
Interests: fish nutrition; fish physiology; aquaculture nutrition; molecular nutrition; fatty acid metabolism

E-Mail Website
Collection Editor
School of Life Sciences, East China Normal University, Shanghai, China
Interests: aquaculture nutrition; sustainable feeds; stress physiology; shrimp; gut health; aquatic toxicology

Topical Collection Information

Dear Colleagues,

Fish nutrition has been one of the most relevant research areas in aquaculture. The key baseline literature was published about 15–20 years ago, and is still used in research and commercial applications. However, the need to re-assess certain nutritional demands and requirements based on modern formulations is becoming more evident. This Topical Collection will discuss up-to-date formulations used by the aquafeed industry to maximize production performance, satisfy the nutritional needs beyond the species requirements benefiting animal physiology and welfare, address sustainability standards, and improve the nutritional quality of the final product. Recently, a series of papers in this context have contributed to the advancement of high-quality industry compounded aquafeeds to continue supporting the expansion of aquaculture production.

The present Topical Collection aims to present the latest advances in fish nutrition based on modern formulations which remarkedly differ from traditional formulations, focusing on, but not limited to:

  1. The re-assessment of macronutrient (protein, lipid, and carbohydrate) demands;
  2. The re-assessment of essential nutrients (amino acids, fatty acids, vitamins, minerals, and others);
  3. The use of feed additives;
  4. Novel ingredients including alternative ingredients, complementary ingredients, and blends of ingredients;
  5. Organic feeds;
  6. Nutritional quality of the final product.

Dr. Artur Rombenso
Dr. Bruno Araújo
Prof. Dr. Erchao Li
Collection Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fish nutrition
  • modern aquafeeds
  • macronutrients
  • essential nutrients
  • feed additives
  • novel ingredients
  • organic feeds
  • nutritional quality

Published Papers (14 papers)

2023

Jump to: 2022, 2021, 2020

16 pages, 2624 KiB  
Article
Effects of Dietary β-Glucan Feeding Strategy on the Growth, Physiological Response, and Gut Microbiota of Pacific White Shrimp, Litopenaeus vannamei, under Low Salinity
by Yanbing Qiao, Fenglu Han, Kunyu Lu, Li Zhou, Artur Rombenso and Erchao Li
Animals 2023, 13(24), 3778; https://doi.org/10.3390/ani13243778 - 7 Dec 2023
Cited by 1 | Viewed by 1588
Abstract
An eight-week feeding trial was conducted to investigate the effects of a dietary β-glucan application strategy on the growth performance, physiological response, and gut microbiota of Pacific white shrimp (Litopenaeus vannamei) (0.49 ± 0.17 g) under low salinity. Six feeding strategies [...] Read more.
An eight-week feeding trial was conducted to investigate the effects of a dietary β-glucan application strategy on the growth performance, physiological response, and gut microbiota of Pacific white shrimp (Litopenaeus vannamei) (0.49 ± 0.17 g) under low salinity. Six feeding strategies were established, including a continuous β-glucan-free diet group (control), a continuously fed group with a 0.1% β-glucan diet (T1), and groups with the following intermittent feeding patterns: 1 day of β-glucan diet and 6 days of β-glucan-free diet (T2), 2 days of β-glucan diet and 5 days of β-glucan-free diet (T3), 3 days of β-glucan diet and 4 days of β-glucan-free diet (T4), and 4 days of β-glucan diet and 3 days of β-glucan-free diet (T5) each week. No significant differences in growth performance among all the groups were found, although the condition factor was significantly higher in the T3 group than in the T1 and T5 groups (p < 0.05). The T-AOC and GPX activities were significantly lower in the T3 group than in the control group (p < 0.05). The MDA content was also significantly lower in the T2 group than in the T3 and T4 groups (p < 0.05). Additionally, the mRNA expression of the Pen3a gene was significantly upregulated in the hepatopancreas of the T4 group compared to the control and T5 groups (p < 0.05), and the Toll gene was also significantly upregulated in the T3 group compared to the T1 and T2 groups (p < 0.05). Dietary β-glucan induced changes in the alpha diversity and composition of the gut microbiota in different feeding strategies. The beta diversity of the gut microbiota in the T2 group was significantly different from that in the control group. The results of a KEGG analysis showed that gut function in the carbohydrate metabolism, immune system, and environmental adaptation pathways was significantly enhanced in the T3 group. These findings provide evidence that the intermittent feeding strategy of β-glucan could alleviate immune fatigue, impact antioxidant ability, and change gut microbiota composition of L. vannamei under low salinity. Full article
Show Figures

Figure 1

18 pages, 2295 KiB  
Article
Effects of Bioactive Peptides from Atlantic Salmon Processing By-Products on Oxyntopeptic and Enteroendocrine Cells of the Gastric Mucosa of European Seabass and Gilthead Seabream
by Paolo Clavenzani, Giulia Lattanzio, Alessio Bonaldo, Luca Parma, Serena Busti, Åge Oterhals, Odd Helge Romarheim, Tone Aspevik, Pier Paolo Gatta and Maurizio Mazzoni
Animals 2023, 13(19), 3020; https://doi.org/10.3390/ani13193020 - 26 Sep 2023
Viewed by 1602
Abstract
The present study was designed to evaluate the effects of dietary levels of bioactive peptides (BPs) derived from salmon processing by-products on the presence and distribution of peptic cells (oxyntopeptic cells, OPs) and enteric endocrine cells (EECs) that contain GHR, NPY and SOM [...] Read more.
The present study was designed to evaluate the effects of dietary levels of bioactive peptides (BPs) derived from salmon processing by-products on the presence and distribution of peptic cells (oxyntopeptic cells, OPs) and enteric endocrine cells (EECs) that contain GHR, NPY and SOM in the gastric mucosa of European seabass and gilthead seabream. In this study, 27 seabass and 27 seabreams were divided into three experimental groups: a control group (CTR) fed a control diet and two groups fed different levels of BP to replace fishmeal: 5% BP (BP5%) and 10% BP (BP10%). The stomach of each fish was sampled and processed for immunohistochemistry. Some SOM, NPY and GHR-IR cells exhibited alternating “open type” and “closed type” EECs morphologies. The BP10% group (16.8 ± 7.5) showed an increase in the number of NPY-IR cells compared to CTR (CTR 8.5 ± 4.8) and BP5% (BP10% vs. CTR p ≤ 0.01; BP10% vs. BP5% p ≤ 0.05) in the seabream gastric mucosa. In addition, in seabream gastric tissue, SOM-IR cells in the BP 10% diet (16.8 ± 3.5) were different from those in CTR (12.5 ± 5) (CTR vs. BP 10% p ≤ 0.05) and BP 5% (12.9 ± 2.5) (BP 5% vs. BP 10% p ≤ 0.01). EEC SOM-IR cells increased at 10% BP (5.3 ± 0.7) compared to 5% BP (4.4 ± 0.8) (5% BP vs. 10% BP p ≤ 0.05) in seabass. The results obtained may provide a good basis for a better understanding of the potential of salmon BPs as feed ingredients for seabass and seabream. Full article
Show Figures

Figure 1

2022

Jump to: 2023, 2021, 2020

5 pages, 223 KiB  
Editorial
Recent Advances in Fish Nutrition: Insights on the Nutritional Implications of Modern Formulations
by Artur Rombenso, Bruno Araujo and Erchao Li
Animals 2022, 12(13), 1705; https://doi.org/10.3390/ani12131705 - 1 Jul 2022
Cited by 8 | Viewed by 2843
Abstract
Fish nutrition has driven advances in the efficiency, sustainability, and product quality of aquaculture production, facilitating its expansion of aquaculture production [...] Full article
18 pages, 1835 KiB  
Article
Long-Chain Polyunsaturated Fatty Acids n−3 (n−3 LC-PUFA) as Phospholipids or Triglycerides Influence on Epinephelus marginatus Juvenile Fatty Acid Profile and Liver Morphophysiology
by Paulo H. de Mello, Bruno C. Araujo, Victor H. Marques, Giovana S. Branco, Renato M. Honji, Renata G. Moreira, Artur N. Rombenso and Maria C. Portella
Animals 2022, 12(8), 951; https://doi.org/10.3390/ani12080951 - 7 Apr 2022
Cited by 11 | Viewed by 2220
Abstract
Phospholipids (PL) are membrane components composed of fatty acids (FA), while triglycerides (TG) are a main source of energy and essential FA. Polyunsaturated FA (PUFA), such as docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), are essential for marine carnivorous fish; thus, an 8-week [...] Read more.
Phospholipids (PL) are membrane components composed of fatty acids (FA), while triglycerides (TG) are a main source of energy and essential FA. Polyunsaturated FA (PUFA), such as docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), are essential for marine carnivorous fish; thus, an 8-week experiment was performed to evaluate the influence of DHA and EPA, provided as PL and TG, on the morphophysiology of Epinephelus marginatus juveniles. A basal diet was manufactured, and DHA and EPA in PL form (PL1—low amount PL2—high amount) and TG form (TG1—low amount; TG2—high amount) were added. Dusky grouper juveniles were equally distributed in 12 tanks of 20 animals each, and liver and muscle were sampled for metabolic analysis. The total hepatic lipids in PL1 and PL2 were higher when compared to the initial, TG1 and TG2 groups. Total lipids in muscle were higher in PL2 and TG1 than PL1 and TG2, respectively. Diets rich in DHA and EPA in PL and TG resulted in higher deposition of these FA in the muscle polar fraction. However, fish fed diets containing lower amounts of DHA and EPA in PL and TG stored those in the muscle neutral fraction and liver, centralizing the storage of DHA and EPA. Full article
Show Figures

Figure 1

2021

Jump to: 2023, 2022, 2020

22 pages, 2043 KiB  
Article
Growth Performance, Growth-Related Genes, Digestibility, Digestive Enzyme Activity, Immune and Stress Responses of de novo Camelina Meal in Diets of Red Seabream (Pagrus major)
by Kumbukani Mzengereza, Manabu Ishikawa, Shunsuke Koshio, Saichiro Yokoyama, Zhang Yukun, Ronick S. Shadrack, Seok Seo, Tomonari Kotani, Serge Dossou, Mohammed F. El Basuini and Mahmoud A. O. Dawood
Animals 2021, 11(11), 3118; https://doi.org/10.3390/ani11113118 - 31 Oct 2021
Cited by 20 | Viewed by 3293
Abstract
A 60-day experiment was designed to assess the effect of different ratios of fish meal (FM): camelina meal plant protein (CM) on growth response and relative gene expression of growth-promoting factors, feed utilization potency, digestive enzymes activities, apparent digestibility (ADC), stress response, non-specific [...] Read more.
A 60-day experiment was designed to assess the effect of different ratios of fish meal (FM): camelina meal plant protein (CM) on growth response and relative gene expression of growth-promoting factors, feed utilization potency, digestive enzymes activities, apparent digestibility (ADC), stress response, non-specific immunity of Pagrus major. Four isonitrogenous (490.7 g/kg of crude protein) and isolipidic (91.5 g/kg total lipid) experimental diets were formulated and designated as camelina meal (CM0), soyabean meal (SBM20.5), CM20.5, and CM33 based on protein contents. At the end of the feed trial, significantly higher (p < 0.05) weight gain, specific growth rate, and feed intake but lower feed conversion ratio were recorded in fish fed CM0, SBM20.5, and CM20.5 than fish fed CM33. The lowest growth, feed utilization, enzyme activity, and digestibility were recorded in fish fed CM33. Significantly higher pepsin, amylase, and protease activities were observed in fish fed CM0, SBM20.5, and CM20.5 diets than fish fed CM33. The highest ADC of protein was recorded in fish fed CM0, SBM20.5, and CM20.5 diets. Hematocrit levels were depressed CM33 while total serum protein, total cholesterol, triglyceride, blood urea nitrogen, total bilirubin, aspartate aminotransferase, and alanine aminotransferase were not significantly changed by the inclusion of CM. Non-specific immune variables (lysozyme activity, peroxidase activity in serum and nitro blue tetrazolium) in fish fed CM0, SBM20.5, and CM20.5 were significantly higher than in fish fed CM33 diet. The superoxide dismutase of fish fed CM20.5 was not significantly different from CM0 and SBM20.5 (p > 0.05). Catalase and low salinity stress test show that CM0, SBM20.5, and CM20.5 were not significantly (p > 0.05) different, while CM33 was significantly lower than the rest of the diets. TBARs show that CM20.5 and CM33 diets were significantly different (p < 0.05), but CM20.5 was not significantly different from SBM20.5. Significantly higher hepatic IGF-1 and IGF-2 mRNA expression was found in fish-fed diet groups CM0, SBM20.5, and CM20.5 than fish fed CM33. The present study indicated that the addition of CM up 205 kg/kg to diet maintains growth, digestive enzymes, nutrient digestibility, immunity, stress resistance, and feed utilization efficiency of red sea bream. Full article
Show Figures

Figure 1

14 pages, 1147 KiB  
Article
Estimation of Phosphorus and Nitrogen Waste in Rainbow Trout (Oncorhynchus mykiss, Walbaum, 1792) Diets Including Different Inorganic Phosphorus Sources
by Maria Consolación Milián-Sorribes, Ana Tomás-Vidal, David S. Peñaranda, Laura Carpintero, Juan S. Mesa, Javier Dupuy, Andrés Donadeu, Judit Macías-Vidal and Silvia Martínez-Llorens
Animals 2021, 11(6), 1700; https://doi.org/10.3390/ani11061700 - 7 Jun 2021
Cited by 10 | Viewed by 5825
Abstract
This study was conducted to evaluate the apparent availability and P and N excretion in rainbow trout (Oncorhynchus mykiss) using different inorganic phosphorus sources. With this goal, fish (153 ± 14.1 g) fed four inorganic P sources were assayed: monoammonium phosphate [...] Read more.
This study was conducted to evaluate the apparent availability and P and N excretion in rainbow trout (Oncorhynchus mykiss) using different inorganic phosphorus sources. With this goal, fish (153 ± 14.1 g) fed four inorganic P sources were assayed: monoammonium phosphate (MAP, NH4H2PO4), monosodium/monocalcium phosphate (SCP-2%, AQphos+, NaH2PO4/Ca(H2PO4)2·H2O in proportion 12/88), monosodium/monocalcium phosphate (SCP-5%, NaH2PO4/Ca(H2PO4)2·H2O in proportion 30/70) and monocalcium phosphate (MCP, Ca(H2PO4)2·H2O). Phosphorus (P) digestibility, in diets that included MAP and SCP-2% as inorganic phosphorus sources, were significantly higher than for SCP-5% and MCP sources. In relation to the P excretion pattern, independent of the diet, a peak at 6 h after feeding was registered, but at different levels depending on inorganic P sources. Fish fed an MAP diet excreted a higher amount of dissolved P in comparison with the rest of the inorganic P sources, although the total P losses were lower in MAP and SCP-2% (33.02% and 28.13, respectively) than in SCP-5% and MCP sources (43.35% and 47.83, respectively). Nitrogen (N) excretion was also studied, and the fish fed an SCP-5% diet provided lower values (15.8%) than MAP (28.0%). When N total wastes were calculated, SCP-2% and SCP-5% showed the lowest values (31.54 and 28.25%, respectively). In conclusion, based on P and N digestibility and excretion, the SCP-2% diet showed the best results from a nutritional and environmental point of view. Full article
Show Figures

Figure 1

30 pages, 2280 KiB  
Article
Schizochytrium sp. (T18) Oil as a Fish Oil Replacement in Diets for Juvenile Rainbow Trout (Oncorhynchus mykiss): Effects on Growth Performance, Tissue Fatty Acid Content, and Lipid-Related Transcript Expression
by Angelisa T. Y. Osmond, Michael T. Arts, Jennifer R. Hall, Matthew L. Rise, Richard P. Bazinet, Roberto E. Armenta and Stefanie M. Colombo
Animals 2021, 11(4), 1185; https://doi.org/10.3390/ani11041185 - 20 Apr 2021
Cited by 16 | Viewed by 5281
Abstract
In this study, we evaluated whether oil extracted from the marine microbe, Schizochytrium sp. (strain T18), with high levels of docosahexaenoic acid (DHA), could replace fish oil (FO) in diets for rainbow trout (Oncorhynchus mykiss). Three experimental diets were tested: (1) [...] Read more.
In this study, we evaluated whether oil extracted from the marine microbe, Schizochytrium sp. (strain T18), with high levels of docosahexaenoic acid (DHA), could replace fish oil (FO) in diets for rainbow trout (Oncorhynchus mykiss). Three experimental diets were tested: (1) a control diet with fish oil (FO diet), (2) a microbial oil (MO) diet with a blend of camelina oil (CO) referred to as MO/CO diet, and (3) a MO diet (at a higher inclusion level). Rainbow trout (18.8 ± 2.9 g fish−1 initial weight ± SD) were fed for 8 weeks and evaluated for growth performance, fatty acid content and transcript expression of lipid-related genes in liver and muscle. There were no differences in growth performance measurements among treatments. In liver and muscle, eicosapentaenoic acid (EPA) was highest in trout fed the FO diet compared to the MO/CO and MO diets. Liver DHA was highest in trout fed the MO/CO diet compared to the FO and MO diets. Muscle DHA was highest in trout fed the MO and MO/CO diets compared to the FO diet. In trout fed the MO/CO diet, compared to the MO diet, fadsd6b was higher in both liver and muscle. In trout fed the FO or MO/CO diets, compared to the MO diet, cox1a was higher in both liver and muscle, cpt1b1a was higher in liver and cpt1a1a, cpt1a1b and cpt1a2a were higher in muscle. Schizochytrium sp. (T18) oil was an effective source of DHA for rainbow trout. Full article
Show Figures

Figure 1

10 pages, 275 KiB  
Article
Apparent Digestibility of Macronutrients and Fatty Acids from Microalgae (Schizochytrium sp.) Fed to Rainbow Trout (Oncorhynchus mykiss): A Potential Candidate for Fish Oil Substitution
by Amélie Bélanger, Pallab K. Sarker, Dominique P. Bureau, Yvan Chouinard and Grant W. Vandenberg
Animals 2021, 11(2), 456; https://doi.org/10.3390/ani11020456 - 9 Feb 2021
Cited by 30 | Viewed by 5019
Abstract
Aquaculture feed formulation has recently turned its focus to reduce the reliance on marine-derived resources and utilise alternative feedstuffs, as an approach to improve the environmental sustainability of the aquaculture sector. The fish oil market is highly volatile, and availability of this commodity [...] Read more.
Aquaculture feed formulation has recently turned its focus to reduce the reliance on marine-derived resources and utilise alternative feedstuffs, as an approach to improve the environmental sustainability of the aquaculture sector. The fish oil market is highly volatile, and availability of this commodity is continuously decreasing for use in aquaculture. Currently, a growing number of commercial efforts producing microalgae are providing omega 3-rich oil for sustainable aquaculture feed. This study was focused to determine the nutrient digestibility of a marine microalga, Schizochytrium spp., which is rich in docosahexaenoic acid (DHA) and long-chain polyunsaturated fatty acids (LC-PUFA), as a novel dietary lipid source that could be utilized effectively by rainbow trout (Oncorhynchus mykiss). A whole-cell Schizochytrium spp. biomass was used in the digestibility experiment at two different temperatures, 8 °C and 15 °C. No significant differences were detected between the two temperatures for the apparent digestibility coefficients (ADCs) of the dry matter (94.3 ± 4.9%), total lipids (85.8 ± 0.0%), crude proteins (89.5 ± 1.8%), energy (83.1 ± 1.7%) and fatty acids (85.8 ± 7.5%). The ADCs of the nutrients, energy, DHA and other fatty acids showed that Schizochytrium spp. is a high-quality candidate for fish oil substitution and supplement of LC-PUFA in fish feed with vegetable oils. Full article

2020

Jump to: 2023, 2022, 2021

19 pages, 3357 KiB  
Article
Recovery from Hypersaline-Stress-Induced Immunity Damage and Intestinal-Microbiota Changes through Dietary β-glucan Supplementation in Nile tilapia (Oreochromis niloticus)
by Chang Xu, Yantong Suo, Xiaodan Wang, Jian G Qin, Liqiao Chen and Erchao Li
Animals 2020, 10(12), 2243; https://doi.org/10.3390/ani10122243 - 30 Nov 2020
Cited by 11 | Viewed by 3276
Abstract
Long-term exposure to hyperosmotic environments can induce severe immune damage and increase risk in tilapia breeding. As an effective immunoregulator, β-glucan has attracted extensive attention in nutritional research and given rise to high expectations of improving health status and alleviating organismal damage in [...] Read more.
Long-term exposure to hyperosmotic environments can induce severe immune damage and increase risk in tilapia breeding. As an effective immunoregulator, β-glucan has attracted extensive attention in nutritional research and given rise to high expectations of improving health status and alleviating organismal damage in tilapia, Oreochromis niloticus, in brackish water. In this study, an 8-week cultivation experiment was conducted on tilapia fed a basal diet or diets with β-glucan supplementation in freshwater (control) and brackish water. Growth performance, hematological aspects, immune cytokine expression, and the intestinal microbiota of tilapia were analyzed. The results indicated that supplementation with β-glucan significantly reduced the enlarged spleen of tilapia resulting from hypersaline stress. Tilapia fed β-glucan showed significantly-greater decreases in the red blood cell count, hematocrit, red cell distribution width, platelet count, and plateletcrit than those fed the basal diet. β-glucan significantly decreased the high expression of immune-related genes in the spleen induced by hyperosmotic stress. In the intestine, the high migration inhibitory factor-2 (MIF-2) and IL-1β gene expression induced by hypersaline stress was significantly reduced. β-glucan supplementation also significantly increased the abundance of beneficial microbiota such as Lactobacillus, Phycicoccus, and Rikenellaceae. Therefore, dietary β-glucan supplementation can significantly reduce spleen enlargement and improve immune function in tilapia in brackish water. β-glucan intake can also optimize the intestinal microbiota of tilapia in brackish water and improve fish health. Full article
Show Figures

Figure 1

18 pages, 2857 KiB  
Article
Alleviation of the Adverse Effect of Dietary Carbohydrate by Supplementation of Myo-Inositol to the Diet of Nile Tilapia (Oreochromis niloticus)
by Jiahua Zhu, Jingyu Pan, Xiaodan Wang, Yuxing Huang, Chuanjie Qin, Fang Qiao, Jianguang Qin and Liqiao Chen
Animals 2020, 10(11), 2190; https://doi.org/10.3390/ani10112190 - 23 Nov 2020
Cited by 20 | Viewed by 3177
Abstract
This study investigated the effect of dietary myo-inositol (MI) on alleviating the adverse effect of the high carbohydrate diet in Nile tilapia (Oreochromis niloticus). Six diets contained either low carbohydrate (LC 30%) or high carbohydrate (HC 45%) with three levels [...] Read more.
This study investigated the effect of dietary myo-inositol (MI) on alleviating the adverse effect of the high carbohydrate diet in Nile tilapia (Oreochromis niloticus). Six diets contained either low carbohydrate (LC 30%) or high carbohydrate (HC 45%) with three levels of MI supplementation (0, 400 and 1200 mg/kg diet) to each level of the carbohydrate diet. After an 8-week trial, the fish fed 400 mg/kg MI under HC levels had the highest weight gain and fatness, but the fish fed 1200 mg/kg MI had the lowest hepatosomatic index, visceral index and crude lipid in the HC group. The diet of 1200 mg/kg MI significantly decreased triglyceride content in the serum and liver compared with those fed the MI supplemented diets regardless of carbohydrate levels. Dietary MI decreased triglyceride accumulation in the liver irrespective of carbohydrate levels. The content of malondialdehyde decreased with increasing dietary MI at both carbohydrate levels. Fish fed 1200 mg/kg MI had the highest glutathione peroxidase, superoxide dismutase, aspartate aminotransferase and glutamic-pyruvic transaminase activities. The HC diet increased the mRNA expression of key genes involved in lipid synthesis (DGAT, SREBP, FAS) in the fish fed the diet without MI supplementation. Dietary MI significantly under expressed fatty acid synthetase in fish fed the HC diets. Moreover, the mRNA expression of genes related to lipid catabolism (CPT, ATGL, PPAR-α) was significantly up-regulated with the increase of dietary MI levels despite dietary carbohydrate levels. The gene expressions of gluconeogenesis, glycolysis and MI biosynthesis were significantly down-regulated, while the expression of the pentose phosphate pathway was up-regulated with the increase of MI levels. This study indicates that HC diets can interrupt normal lipid metabolism and tend to form a fatty liver in fish. Dietary MI supplement can alleviate lipid accumulation in the liver by diverging some glucose metabolism into the pentose phosphate pathway and enhance the antioxidant capacity in O. niloticus. Full article
Show Figures

Figure 1

12 pages, 1910 KiB  
Article
The Regulatory Role of Apelin on the Appetite and Growth of Common Carp (Cyprinus Carpio L.)
by Xiao Yan, Chaobin Qin, Guokun Yang, Dapeng Deng, Liping Yang, Junchang Feng, Jiali Mi and Guoxing Nie
Animals 2020, 10(11), 2163; https://doi.org/10.3390/ani10112163 - 20 Nov 2020
Cited by 7 | Viewed by 2627
Abstract
Apelin, a kind of active polypeptide, has many biological functions, such as promoting food intake, enhancing immunity, and regulating energy balance. In mammals, studies have indicated that apelin is involved in regulating food intake. However, there are relatively few studies about the regulatory [...] Read more.
Apelin, a kind of active polypeptide, has many biological functions, such as promoting food intake, enhancing immunity, and regulating energy balance. In mammals, studies have indicated that apelin is involved in regulating food intake. However, there are relatively few studies about the regulatory effect of apelin on fish feeding, and the specific mechanism is not clear. Therefore, the purpose of this study was to preliminarily investigate the regulatory effects of apelin on key genes of feeding and growth in common carp (Cyprinus Carpio L.) through in vitro and in vivo experiments. In the present study, after incubation with different concentrations of Pyr-apelin-13 (0, 10, 100, and 1000 nM) in hypothalamic fragments, the expressions of Neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA were significantly up-regulated at 12 and 3 h, respectively, and the significant down-regulation of Cocaine and amphetamine-related transcript (CART) mRNA expression was observed at 1 and 3 h. In vivo, after Pyr-apelin-13 oral administration (0, 1, 10, and 100 pmol/g), the orexin mRNA level in the hypothalamus of common carp was significantly increased at 1, 6, and 12 h, while CART/(Proopiomelanocortin) POMC mRNA levels in the hypothalamus of common carp were significantly down-regulated. Following incubation with different concentrations of Pyr-apelin-13 (0, 10, 100, and 1000 nM) in primary hepatocytes, GHR (Growth hormone receptor), IGF2 (Insulin-like growth factor 2), IGFBP2 (Insulin like growth factor binding protein 2), and IGFBP3 (Insulin like growth factor binding protein 3) mRNA levels were significantly increased at 3 h. In vivo, the levels of IGF1 (Insulin-like growth factor 1), IGF2, IGFBP2 (Insulin like growth factor binding protein 2), and IGFBP3 mRNA were significantly increased after the oral administration of Pyr-apelin-13 in the hepatopancreas, in a time and dose-dependent manner. These results support the hypothesis that Pyr-apelin-13 might regulate the feeding and growth of common carp through mediating the expressions of appetite- and growth-related genes. Overall, apelin, which is an orexigenic peptide, improves food intake and is involved in the growth of common carp. Full article
Show Figures

Figure 1

25 pages, 9382 KiB  
Article
Effects of Dietary Andrographolide Levels on Growth Performance, Antioxidant Capacity, Intestinal Immune Function and Microbioma of Rice Field Eel (Monopterus Albus)
by Yong Shi, Lei Zhong, Yanli Liu, Junzhi Zhang, Zhao Lv, Yao Li and Yi Hu
Animals 2020, 10(10), 1744; https://doi.org/10.3390/ani10101744 - 25 Sep 2020
Cited by 35 | Viewed by 4059
Abstract
An eight-week feeding trial was conducted to investigate the effects of dietary andrographolide on the growth performance, antioxidant capacity in the liver, intestinal inflammatory response and microbiota of Monopterus albus. A total of 900 health fish (25.00 ± 0.15 g) were randomly [...] Read more.
An eight-week feeding trial was conducted to investigate the effects of dietary andrographolide on the growth performance, antioxidant capacity in the liver, intestinal inflammatory response and microbiota of Monopterus albus. A total of 900 health fish (25.00 ± 0.15 g) were randomly divided into five groups: AD1 (the basal diet) as the control, and AD2, AD3, AD4 and AD5 groups, which were fed the basal diet supplemented with 75, 150, 225 and 300 mg/kg andrographolide, respectively. The results showed that compared with the control group, dietary andrographolide supplementation (1) significantly increased trypsin and lipase activities in the intestine, and increased the weight gain rate but not significantly; (2) significantly increased the levels of glutathione reductase (GR), glutathione (GSH) and glutathione peroxidase (GPx) and the content of in the liver; significantly decreased the contents of reactive oxygen species (ROS) and malondialdehyde (MDA); remarkably upregulated the Nrf2, SOD1, GSTK and GSTO mRNA levels in the liver; downregulated the Keap1 mRNA level; (3) significantly increased the villi length and goblet cell numbers in the intestine, remarkably upregulated the Occludin mRNA level in the intestine, downregulated the Claudin-15 mRNA level; (4) remarkably upregulated the IL-10, TGF-β1 and TGF-β3 mRNA levels in the intestine; downregulated the IL-12β and TLR-3 mRNA levels; (5) significantly decreased the richness and diversity of the intestinal microbioma, increased the percentages of Fusobacteria and Firmicutes and significantly decreased the percentages of Cyanobacteria and Proteobacteria. In conclusion, these results showed that dietary low-dose andrographolide (75 and 150 mg/kg) promoted growth and antioxidant capacity, regulated the intestinal microbioma, enhanced intestinal physical and immune barrier function in rice field eel. Full article
Show Figures

Figure 1

13 pages, 3209 KiB  
Article
Seawater Culture Increases Omega-3 Long-Chain Polyunsaturated Fatty Acids (N-3 LC-PUFA) Levels in Japanese Sea Bass (Lateolabrax japonicus), Probably by Upregulating Elovl5
by Xiaojing Dong, Jianqiao Wang, Peng Ji, Longsheng Sun, Shuyan Miao, Yanju Lei and Xuedi Du
Animals 2020, 10(9), 1681; https://doi.org/10.3390/ani10091681 - 17 Sep 2020
Cited by 8 | Viewed by 2897
Abstract
The fatty acid compositions of the fish muscle and liver are substantially affected by rearing environment. However, the mechanisms underlying this effect have not been thoroughly described. In this study, we investigated the effects of different culture patterns, i.e., marine cage culture and [...] Read more.
The fatty acid compositions of the fish muscle and liver are substantially affected by rearing environment. However, the mechanisms underlying this effect have not been thoroughly described. In this study, we investigated the effects of different culture patterns, i.e., marine cage culture and freshwater pond culture, on long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis in an aquaculturally important fish, the Japanese sea bass (Lateolabrax japonicus). Fish were obtained from two commercial farms in the Guangdong province, one of which raises Japanese sea bass in freshwater, while the other cultures sea bass in marine cages. Fish were fed the same commercial diet. We found that omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) levels in the livers and muscles of the marine cage cultured fish were significantly higher than those in the livers and muscles of the freshwater pond cultured fish. Quantitative real-time PCRs indicated that fatty acid desaturase 2 (FADS2) transcript abundance was significantly lower in the livers of the marine cage reared fish as compared to the freshwater pond reared fish, but that fatty acid elongase 5 (Elovl5) transcript abundance was significantly higher. Consistent with this, two of the 28 CpG loci in the FADS2 promoter region were heavily methylated in the marine cage cultured fish, but were only slightly methylated in freshwater pond cultured fish (n = 5 per group). Although the Elovl5 promoter was less methylated in the marine cage reared fish as compared to the freshwater pond reared fish, this difference was not significant. Thus, our results might indicate that Elovl5, not FADS2, plays an important role in the enhancing LC-PUFA synthesis in marine cage cultures. Full article
Show Figures

Figure 1

12 pages, 843 KiB  
Brief Report
Immune Responses of Asian Seabass Lates calcarifer to Dietary Glycyrrhiza uralensis
by Rui Yang, Mingyang Han, Zhengyi Fu, Yifu Wang, Wang Zhao, Gang Yu and Zhenhua Ma
Animals 2020, 10(9), 1629; https://doi.org/10.3390/ani10091629 - 11 Sep 2020
Cited by 21 | Viewed by 2742
Abstract
To understand the impacts of dietary Glycyrrhiza uralensis on the immune responses of Lates calcarifer, the expression of immune-related genes including crp, c-3, c-4, mtor, mlst-8, eif4e, hsp-70, hsp-90, il-8il-8, il-10, tgfβ1 [...] Read more.
To understand the impacts of dietary Glycyrrhiza uralensis on the immune responses of Lates calcarifer, the expression of immune-related genes including crp, c-3, c-4, mtor, mlst-8, eif4e, hsp-70, hsp-90, il-8il-8, il-10, tgfβ1, tnf, ifn-γ1, and mxf in L. calcarifer juveniles was evaluated in this study. Fish were fed experimental diets with G. uralensis levels of 0%, 1%, 3%, and 5% for 56 days. The results showed that dietary G. uralensis could improve the growth and survival of L. calcarifer and regulate the immune-related genes’ expression in L. calcarifer. Dietary G. uralensis significantly upregulated the expression level of crp, mtor, hsp-90, c-3, and c-4 genes in the liver of L. calcarifer, while hsp-70 gene expression was nearly downregulated. It did not upregulate the expression of elf4e and mlst-8 in the 1% and 3% inclusion groups, but it was the exact opposite in the 5% inclusion group. G. uralensis significantly affected the expression of il-8, il-10, tnf, ifn-γ1, mxf, and tgfβ1 in the head kidney of L. calcarifer. G. uralensis upregulated the expression of tnf and tgfβ1 consistently, but ifn-γ1 was at a low expression level. The expression of il-8 and il-10 was upregulated in the 1% group, while it was downregulated in the 5% group. The results from the present study indicate that dietary G. uralensis appeared to improve the immune function of L. calcarifer, and the optimum inclusion level should be between 1–3%. Full article
Show Figures

Figure 1

Back to TopTop