Trends and Prospects in Applied Electromagnetics

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Electrical, Electronics and Communications Engineering".

Deadline for manuscript submissions: 20 October 2024 | Viewed by 6783

Special Issue Editors

School of Mechanical and Electrical Engineering, University of Electronic Science and Technology, Chengdu 611731, China
Interests: eddy current technique; microwave nondestructive imaging; RFID sensing and monitoring; imaging processing; structural health monitoring; computational electromagnetics
School of Mechanical and Electrical Engineering, University of Electronic Science and Technology, Chengdu 611731, China
Interests: electromagnetic compatibility; computational electromagnetics; signal and power integrity; multiphysics; bioelectromagnetics

Special Issue Information

Dear Colleagues,

We are inviting submissions to the Special Issue on the “Trends and Prospects in Applied Electromagnetics”. Electromagnetics is widely applied in various fields, such as communication, navigation, radar, measurement and instrument, as well as in electric vehicles. This Special Issue is focued on, but not limited to: advanced electromagnetic materials, such as metamaterials; electromagnetic theories, including transmission, propogation, radiation and scattering theory; nondestructive testing and evaluation, including eddy current technique, magnetic flux linkage technique, Buckhausen noise method, alternative current field measurement, and so on; computational electromagnetics, including techniques in optimization and error minimization, innovations in solution technique, and applications for electromagnetics modeling techniques; electromgantic sensing and imaging, including microwave and millimeter-wave imaging, radar imaging, RF and wireless communication and sensing, as well as THz imaging; electromagnetic compatibility and interference, including EMC and EMI modeling; EMC standards, methods of EMC measurements and signal and power integrity; as well as electromagnetic application in IOTs.

In this Special Issue, we invite submissions exploring cutting-edge research and recent advances in the fields of applied electromagnetics. Theoretical, numerical and experimental studies are welcome, as well as comprehensive review and survey papers.

Dr. Yating Yu
Dr. Baolin Nie
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • simulation and modelling
  • nondestructive testing and evaluation
  • eletromanetic imaging
  • electromagnetic compatibility (EMC)
  • electromagnetic interference (EMI)
  • RF and wireless communication
  • electromagnetic signal processing
  • IOTs and AloTs

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4820 KiB  
Article
An S–K Band 6-Bit Digital Step Attenuator with Ultra Low Insertion Loss and RMS Amplitude Error in 0.25 μm GaAs p-HEMT Technology
by Quanzhen Liang, Kuisong Wang, Xiao Wang, Yuepeng Yan and Xiaoxin Liang
Appl. Sci. 2024, 14(9), 3887; https://doi.org/10.3390/app14093887 - 1 May 2024
Viewed by 350
Abstract
This paper presents an ultra-wideband, low insertion loss, and high accuracy 6-bit digital step attenuator (DSA). To improve the accuracy of amplitude and phase shift of the attenuator, two innovative compensation structures are proposed in this paper: a series inductive compensation structure (SICS) [...] Read more.
This paper presents an ultra-wideband, low insertion loss, and high accuracy 6-bit digital step attenuator (DSA). To improve the accuracy of amplitude and phase shift of the attenuator, two innovative compensation structures are proposed in this paper: a series inductive compensation structure (SICS) designed to compensate for high frequency attenuation values and a small bit compensation structure (SBCS) intended for large attenuation bits. Additionally, we propose insertion loss reduction techniques (ILRTs) to reduce insertion loss. The fabricated 6-bit DSA core area is only 0.51 mm2, and it exhibits an attenuation range of 31.5 dB in 0.5 dB steps. Measurements reveal that the root-mean-square (RMS) attenuation and phase errors for the 64 attenuation states are within 0.18 dB and 7°, respectively. The insertion loss is better than 2.54 dB; the return loss is better than −17 dB; and the input 1 dB compression point (IP1 dB) is 29 dBm at IF 12 GHz. To the best of our knowledge, this chip presents the highest attenuation accuracy, the lowest insertion loss, the best IP1dB, and a good matching performance in the range of 2–22 GHz using the 0.25 μm GaAs p-HEMT process. Full article
(This article belongs to the Special Issue Trends and Prospects in Applied Electromagnetics)
Show Figures

Figure 1

19 pages, 4632 KiB  
Article
Compliance Assessment of the Spatial Averaging Method for Magnetic Field Leakage from a Wireless Power Transfer System in Electric Vehicles
by Masanori Okada, Keishi Miwa, Sachiko Kodera and Akimasa Hirata
Appl. Sci. 2024, 14(7), 2672; https://doi.org/10.3390/app14072672 - 22 Mar 2024
Viewed by 537
Abstract
Wireless power transfer (WPT) via magnetic resonance offers efficient electrical power transfer, making it an increasingly attractive option for charging electric vehicles (EVs) without conventional plugs. However, EV charging requires a transfer power in order of kW or higher, resulting in a higher-leaked [...] Read more.
Wireless power transfer (WPT) via magnetic resonance offers efficient electrical power transfer, making it an increasingly attractive option for charging electric vehicles (EVs) without conventional plugs. However, EV charging requires a transfer power in order of kW or higher, resulting in a higher-leaked magnetic field than conventional wireless systems. The leaked magnetic field is nonuniform, and the assessment in terms of the limit prescribed in the guideline is highly conservative because it assumes that a person standing in free space is exposed to a uniform field. In such cases, an assessment should be performed using the limits of the internal electric field, as it is more relevant to the adverse health effects, whereas its evaluation is time-consuming. To mitigate this over-conservativeness, international product standards introduce a spatial averaging method for nonuniform exposure assessment. In this study, we investigate assessment methods, especially for measurement points of nonuniform magnetic field strength leaked from the WPT system. Various spatial averaging methods are correlated with the internal electric field derived from electromagnetic field analysis using an anatomically based human body model. Our computational results confirm a good correlation between the spatially averaged magnetic and internal electric fields. Additionally, these methods provide an appropriate compliance assessment with the exposure guidelines. This study advances our understanding of the suitability of spatial averaging methods for nonuniform exposure and contributes to the smooth assessment in WPT systems. Full article
(This article belongs to the Special Issue Trends and Prospects in Applied Electromagnetics)
Show Figures

Figure 1

10 pages, 890 KiB  
Communication
A Filtering Switch Made by an Improved Coupled Microstrip Line
by Xiangsuo Fan, Xiaokang Chen, Wenhao Xu, Lingping Feng, Ling Yu and Haohao Yuan
Appl. Sci. 2023, 13(13), 7886; https://doi.org/10.3390/app13137886 - 5 Jul 2023
Viewed by 828
Abstract
In this paper, we propose a new filtering switch with excellent working performance made using an optimized coupled microstrip line. Upon analyzing the RF (radio frequency) front-end’s system structure, the switching device was simplified to a diode, which was connected to the microstrip [...] Read more.
In this paper, we propose a new filtering switch with excellent working performance made using an optimized coupled microstrip line. Upon analyzing the RF (radio frequency) front-end’s system structure, the switching device was simplified to a diode, which was connected to the microstrip circuit we designed to become a filter switch with both filtering and shutdown functions. First, we obtained an equivalent schematic of this filtering switch based on the relevant microstrip line theory. This switch consists of two coupled microstrip circuits, parallel-coupled feed lines and coupled-line stub-load resonators (CLSs), and a PIN diode. Second, the operating principle is described by the switching of the operating states, with ideal shutdown performance in the off state and considerable selectivity and excellent out-of-band rejection performance in the filtered state. Finally, a prototype filtering switch with a center frequency of 0.8 GHz was designed and tested. After subsequent optimization and improvement, the simulation and test performance results were noticeably consistent, consequently verifying the performance requirements of this filtering switch in two operating states in the center frequency band. Full article
(This article belongs to the Special Issue Trends and Prospects in Applied Electromagnetics)
Show Figures

Figure 1

17 pages, 6645 KiB  
Article
Design of a Novel Ultra-Wideband Common-Mode Filter Using a Magnified Coupled Defected Ground Structure
by Ding-Bing Lin, Mei-Hui Wang, Aloysius Adya Pramudita and Tjahjo Adiprabowo
Appl. Sci. 2023, 13(13), 7404; https://doi.org/10.3390/app13137404 - 22 Jun 2023
Cited by 2 | Viewed by 1087
Abstract
An ultra-wideband common-mode (CM) filter for a gigahertz (GHz) data rate signal is proposed in this paper. The proposed filter was designed only on the printed circuit board (PCB) ground plane; no additional components wererequired. We took advantage of producing second-order transmission zero [...] Read more.
An ultra-wideband common-mode (CM) filter for a gigahertz (GHz) data rate signal is proposed in this paper. The proposed filter was designed only on the printed circuit board (PCB) ground plane; no additional components wererequired. We took advantage of producing second-order transmission zero by an asymmetrical magnified coupled DGS to extend the suppression bandwidth. Full-wave simulations and equivalent circuit models of the DGS resonator were established to predict the suppression performance. The measured differential-mode insertion loss (Sdd21) from direct current (DC) to 12.35 GHz was obtained within the −3 dB definitionin the frequency domain. The CM noise was suppressed by more than10 dB in the frequency range from 2.9 GHz to 16.2 GHz. The fractional bandwidth (FBW) reached 139.3%. The proposed filter blocked 62.3% of the CM noise magnitude in the time domain measurement. In addition, the eye diagram measurement proved that good transmission quality was maintained. The proposed filter can be widely implemented to reduce electromagnetic interference (EMI) in radio frequency (RF) andWi-Fi (wireless fidelitystandard) 5 and 6E wireless communication applications. Full article
(This article belongs to the Special Issue Trends and Prospects in Applied Electromagnetics)
Show Figures

Figure 1

21 pages, 12662 KiB  
Article
Design of N-Way Wilkinson Power Dividers with New Input/Output Arrangements for Power-Halving Operations
by Ceyhun Karpuz, Mehmet Cakir, Ali Kursad Gorur and Adnan Gorur
Appl. Sci. 2023, 13(11), 6852; https://doi.org/10.3390/app13116852 - 5 Jun 2023
Cited by 1 | Viewed by 2199
Abstract
In this paper, new single/double-layer N-way Wilkinson power dividers (WPDs) were designed by using slow-wave structures such as narrow-slit-loaded and meandered transmission lines. For size reduction, the slit-loaded and meandered lines were used instead of the quarter-wavelength transmission lines of a conventional WPD. [...] Read more.
In this paper, new single/double-layer N-way Wilkinson power dividers (WPDs) were designed by using slow-wave structures such as narrow-slit-loaded and meandered transmission lines. For size reduction, the slit-loaded and meandered lines were used instead of the quarter-wavelength transmission lines of a conventional WPD. Based on the proposed approaches, two-, four-, and eight-way power dividers were designed, simulated, and fabricated. The fabricated 2-, 4-, and 8-way circuits were measured at the center frequencies of 2.03, 1.77, and 1.73 GHz, which are in excellent agreement with the predicted ones. The meandered transmission lines were also used to design WPD types with novel input/output port arrangements. For this purpose, two three-way WPDs were located on both sides of the same board to have different power-splitting ratios at different inputs and outputs in order to provide alternative solutions for antenna arrays. Furthermore, a five-way dual-layer WPD was introduced by locating the meandered transmission lines into two layers. The most important advantage of the proposed 3- and 5-way WPDs is that they allowed the input power at the next output port to be halved, in the order of P/2, P/4, P/8, P/16, and P/16. All the designed power-halving WPDs were simulated, fabricated, and successfully tested. Full article
(This article belongs to the Special Issue Trends and Prospects in Applied Electromagnetics)
Show Figures

Figure 1

14 pages, 3994 KiB  
Article
Discrete Wavelet Transform—Based Metal Material Analysis Model by Constant Phase Angle Pulse Eddy Current Method
by Yong Xie, Yating Yu and Liangting Li
Appl. Sci. 2023, 13(5), 3207; https://doi.org/10.3390/app13053207 - 2 Mar 2023
Cited by 1 | Viewed by 1055
Abstract
Traditional eddy current technology identifies metal information with information of single frequency of limited frequency spectrum. To solve existing problems, this paper proposes a discrete wavelet transform-based metal material analysis model by using a constant phase angle pulse eddy current (CPA-PEC) sensor which [...] Read more.
Traditional eddy current technology identifies metal information with information of single frequency of limited frequency spectrum. To solve existing problems, this paper proposes a discrete wavelet transform-based metal material analysis model by using a constant phase angle pulse eddy current (CPA-PEC) sensor which collects and depicts metal feature information from multiple dimensions; then, the quantification calculation model of metal material by CPA-PEC feature is presented; finally, an experimental platform is built to collect the CPA-PEC features of various metal samples and verify recognition accuracy of the proposed metal material analysis model. In the investigation, 1000 eddy current signals from four standard metals (Cu, Fe, Al, St) and three types of metallic irons (Fe-K162, Fe-K163, Fe-K240) are measured and the features are identified by discrete wavelet transform. The feature correlation and significance are determined by regression analysis. Finally, the calculation model of feature evaluation index is present. The experimental analysis indicates that the stability of the quantitative evaluation index of eddy current features reaches 97.1%, the comprehensive accuracy error is less than 0.32% and the average measurement speed is about 50 ms for 1000 random sampling tests on standard metals. Full article
(This article belongs to the Special Issue Trends and Prospects in Applied Electromagnetics)
Show Figures

Figure 1

Back to TopTop