Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1327 KiB  
Article
Nexus between Social Vulnerability and Resilience to Agricultural Drought amongst South African Smallholder Livestock Households
by Yonas T. Bahta and Willem A. Lombard
Atmosphere 2023, 14(5), 900; https://doi.org/10.3390/atmos14050900 - 21 May 2023
Cited by 3 | Viewed by 1356
Abstract
Livestock farmers in Sub-Saharan Africa rely on rain-fed agriculture, which exposes them to the risks of agricultural drought. Agricultural drought has become a significant threat to the extreme mortality of livestock, thus negatively impacting social vulnerability and household resilience to agricultural drought and [...] Read more.
Livestock farmers in Sub-Saharan Africa rely on rain-fed agriculture, which exposes them to the risks of agricultural drought. Agricultural drought has become a significant threat to the extreme mortality of livestock, thus negatively impacting social vulnerability and household resilience to agricultural drought and extreme events. Researchers rarely empirically assess the connection between vulnerability and resilience, which are highly related concepts. By measuring and connecting vulnerability and resilience concepts closely related to disasters such as agricultural drought, this article makes a contribution to the body of disaster literature. The study aimed to empirically examine the relationship between smallholder livestock farming households’ social vulnerability and their resilience to agricultural drought. A survey of 217 smallholder livestock farmers was conducted. The Social Vulnerability Index (SVI), the Agricultural Drought Resilience Index (ADRI), and Pearson’s correlation coefficient were used for data analysis. A correlation was identified between resilience to agricultural drought and social vulnerability, indicating that smallholder livestock farmers are more susceptible to harm and lack the means to rebound effectively. Unsurprisingly, the majority of resource-poor smallholder livestock farmers (79%) lack safety nets during agricultural droughts. They are less resilient and more vulnerable households, leading them to social vulnerability. This study provides input/guidance to identify farming households with high social vulnerability and less resilience to threats and their capabilities of recouping and adopting after experiencing an agricultural drought. Additionally, looking at household resilience and social vulnerability to agricultural droughts could provide a way to pinpoint at-risk areas, assisting emergency planners in directing resources and intervention programs to those areas where assistance is most likely to be needed during disasters such as agricultural droughts. This implies that thorough policy intervention programs need to be tailored toward reducing damage or finding the path to recovery. Full article
Show Figures

Figure 1

13 pages, 929 KiB  
Article
Investigation of Dynamical Complexity in Swarm-Derived Geomagnetic Activity Indices Using Information Theory
by Georgios Balasis, Adamantia Zoe Boutsi, Constantinos Papadimitriou, Stelios M. Potirakis, Vasilis Pitsis, Ioannis A. Daglis, Anastasios Anastasiadis and Omiros Giannakis
Atmosphere 2023, 14(5), 890; https://doi.org/10.3390/atmos14050890 - 19 May 2023
Cited by 1 | Viewed by 1569
Abstract
In 2023, the ESA’s Swarm constellation mission celebrates 10 years in orbit, offering one of the best ever surveys of the topside ionosphere. Among its achievements, it has been recently demonstrated that Swarm data can be used to derive space-based geomagnetic activity indices, [...] Read more.
In 2023, the ESA’s Swarm constellation mission celebrates 10 years in orbit, offering one of the best ever surveys of the topside ionosphere. Among its achievements, it has been recently demonstrated that Swarm data can be used to derive space-based geomagnetic activity indices, similar to the standard ground-based geomagnetic indices monitoring magnetic storm and magnetospheric substorm activity. Recently, many novel concepts originating in time series analysis based on information theory have been developed, partly motivated by specific research questions linked to various domains of geosciences, including space physics. Here, we apply information theory approaches (i.e., Hurst exponent and a variety of entropy measures) to analyze the Swarm-derived magnetic indices from 2015, a year that included three out of the four most intense magnetic storm events of the previous solar cycle, including the strongest storm of solar cycle 24. We show the applicability of information theory to study the dynamical complexity of the upper atmosphere, through highlighting the temporal transition from the quiet-time to the storm-time magnetosphere, which may prove significant for space weather studies. Our results suggest that the spaceborne indices have the capacity to capture the same dynamics and behaviors, with regards to their informational content, as traditionally used ground-based ones. Full article
Show Figures

Figure 1

16 pages, 2051 KiB  
Article
Future Ship Emission Scenarios with a Focus on Ammonia Fuel
by Daniel A. Schwarzkopf, Ronny Petrik, Josefine Hahn, Leonidas Ntziachristos, Volker Matthias and Markus Quante
Atmosphere 2023, 14(5), 879; https://doi.org/10.3390/atmos14050879 - 17 May 2023
Cited by 2 | Viewed by 2392
Abstract
Current efforts by the International Maritime Organization (IMO) to decarbonize the shipping sector have gained momentum, although the exact path to achieve this goal is currently unclear. However, it can be safely assumed that alternative cleaner and zero-carbon fuels will be key components [...] Read more.
Current efforts by the International Maritime Organization (IMO) to decarbonize the shipping sector have gained momentum, although the exact path to achieve this goal is currently unclear. However, it can be safely assumed that alternative cleaner and zero-carbon fuels will be key components in the strategy. In this work, three ship emission scenarios for 2025, 2040, and 2050 were developed that cover the area of the North and Baltic Seas. They aim at a fundamental transition in the usage of marine fuels towards ammonia as the mainly used fuel in 2050, via an intermediate step in 2040 with liquefied natural gas as the main fuel. Additionally, expected trends and developments for the shipping sector were implemented, i.e., a fleet growth by vessel size and number. Efficiency improvements were included that are in accordance with the Energy Efficiency Design Index of the IMO. The scenarios were created using a novel method based on modifications to a virtual shipping fleet. The vessels in this fleet were subject to decommission and renewal cycles that adapt them to the scenario’s target year. Emissions for this renewed shipping fleet were calculated with the Modular Ship Emission Modeling System (MoSES). With respect to ammonia engine technology, two cases were considered. The first case deals with compression ignition engines and marine gas oil as pilot fuel, while the second case treats spark ignition engines and hydrogen as the pilot fuel. The first case is considered more feasible until 2050. Reductions with the first case in 2050 compared to 2015 were 40% for CO2 emissions. However, CO2 equivalents were only reduced by 22%, with the difference mainly resulting from increased N2O emissions. NOX emissions were reduced by 39%, and different PM components and SO2 were between 73% and 84% for the same target year. The estimated NH3 slip from ammonia-fueled ships in the North and Baltic Seas was calculated to be 930 Gg in 2050. For the second ammonia engine technology that is considered more advanced, emission reductions were generally stronger and ammonia emissions smaller. Full article
(This article belongs to the Special Issue Atmospheric Shipping Emissions and Their Environmental Impacts)
Show Figures

Figure 1

17 pages, 3948 KiB  
Article
Modeling of Organic Aerosol in Seoul Using CMAQ with AERO7
by Hyeon-Yeong Park, Sung-Chul Hong, Jae-Bum Lee and Seog-Yeon Cho
Atmosphere 2023, 14(5), 874; https://doi.org/10.3390/atmos14050874 - 16 May 2023
Cited by 1 | Viewed by 1427
Abstract
The Community Multiscale Air Quality (CMAQ) model with the 7th generation aerosol module (AERO7) was employed to simulate organic aerosol (OA) in Seoul, Korea, for the year 2016. The goal of the present study includes the 1-year simulation of OA using WRF-CMAQ with [...] Read more.
The Community Multiscale Air Quality (CMAQ) model with the 7th generation aerosol module (AERO7) was employed to simulate organic aerosol (OA) in Seoul, Korea, for the year 2016. The goal of the present study includes the 1-year simulation of OA using WRF-CMAQ with recently EPA-developed AERO7 with pcVOC (potential VOC from combustion) scale factor revision and analysis of the seasonal behavior of OA surrogate species in Seoul. The AERO7, the most recent version of the aerosol module of the CMAQ model, includes a new secondary organic aerosol (SOA) species, pcSOA (potential SOA from combustion), to resolve the inherent under-prediction problem of OA. The AERO7 classified OA into three groups: primary organic aerosol (POA), anthropogenic SOA (ASOA), and biogenic SOA (BSOA). Each OA group was further classified into 6~15 individual OA surrogate species according to volatility and oxygen content to model the aging of OA and the formation of SOA. The hourly emissions of POA and SOA precursors were compiled and fed into the CMAQ to successfully simulate seasonal variations of OA compositions and ambient organic-matter to organic-carbon ratios (OM/OC). The model simulation showed that the POA and ASOA were major organic groups in the cool months (from November to March) while BSOA was a major organic group in the warm months (from April to October) in Seoul. The simulated OM/OCs ranged from 1.5~2.1 in Seoul, which agreed well with AMS measurements in Seoul in May 2016. Full article
(This article belongs to the Special Issue Air Quality Prediction and Modeling)
Show Figures

Figure 1

22 pages, 4036 KiB  
Article
Physicochemical Assessment of the Road Vehicle Traffic Pollution Impact on the Urban Environment
by Marcel Rusca, Tiberiu Rusu, Simona Elena Avram, Doina Prodan, Gertrud Alexandra Paltinean, Miuta Rafila Filip, Irina Ciotlaus, Petru Pascuta, Tudor Andrei Rusu and Ioan Petean
Atmosphere 2023, 14(5), 862; https://doi.org/10.3390/atmos14050862 - 11 May 2023
Cited by 5 | Viewed by 1900
Abstract
Vehicle traffic pollution requires complex physicochemical analysis besides emission level measuring. The current study is focused on two campaigns of emissions measurements held in May and September 2019 in Alba Iulia City, Romania. There was found a significant excess of PM2.5 for [...] Read more.
Vehicle traffic pollution requires complex physicochemical analysis besides emission level measuring. The current study is focused on two campaigns of emissions measurements held in May and September 2019 in Alba Iulia City, Romania. There was found a significant excess of PM2.5 for all measuring points and PM10 for the most circulated points during May, along with significant VOC and CO2 emissions. September measurements reveal threshold excess for all PM along with increased values for VOC and CO2 emissions. These are the consequences of the complex environmental interaction of the traffic. Street dust and air-suspended particle samples were collected and analyzed to evidence the PM2.5 and PM10 sources. Physicochemical investigation reveals highly mineralized particulate matter: PM2.5 fractions within air-suspended particle samples predominantly contain Muscovite, Kaolinite, and traces of Quartz and Calcite, while PM10 fractions within air-suspended particle samples predominantly contain Quartz and Calcite. These mineral fractions originate in street dust and are suspended in the atmosphere due to the vehicles’ circulation. A significant amount of soot was found as small micro-sized clusters in PM2.5 and fine micro-spots attached over PM10 particles, as observed by Mineralogical Optical Microscopy (MOM) and Fourier Transformed Infrared Spectroscopy (FTIR). GC-MS analysis found over 53 volatile compounds on the investigated floating particles that are related to the combustion gases, such as saturated alkanes, cycloalkanes, esters, and aromatic hydrocarbons. It proves a VOC contamination of the measured particulate matters that make them more hazardous for the health. Viable strategies for vehicle traffic-related pollutants mitigation would be reducing the street dust occurrence and usage of modern catalyst filters of the combustion gas exhausting system. Full article
(This article belongs to the Special Issue Road Emission: Recent Trends, Current Progress and Future Direction)
Show Figures

Figure 1

29 pages, 9932 KiB  
Article
Projecting Bioclimatic Change over the South-Eastern European Agricultural and Natural Areas via Ultrahigh-Resolution Analysis of the de Martonne Index
by Ioannis Charalampopoulos, Fotoula Droulia and Ioannis X. Tsiros
Atmosphere 2023, 14(5), 858; https://doi.org/10.3390/atmos14050858 - 11 May 2023
Cited by 5 | Viewed by 2460
Abstract
The changing climate is closely related to changes in the bioclimate. This research deals with the present bioclimate and its projected evolution over the entirety of the natural and agricultural lands of south-eastern Europe and individual countries (Bulgaria, Greece, Kosovo, N. Macedonia, Romania, [...] Read more.
The changing climate is closely related to changes in the bioclimate. This research deals with the present bioclimate and its projected evolution over the entirety of the natural and agricultural lands of south-eastern Europe and individual countries (Bulgaria, Greece, Kosovo, N. Macedonia, Romania, and Serbia). For this purpose, an ultrahigh spatial resolution of the de Martonne bioclimatic index pattern was elaborated and analysed for the first time. The survey is performed over the reference period (1981–2010) and future time frames (2011–2040; 2041–2070; 2071–2100) under SSP370 and SSP585 emission scenarios. On a territorial level, both natural and agricultural areas appear as highly impacted by the future changes of bioclimate; the highest xerothermic trend is expected to influence the latter areas, mostly in 2071–2100 and under the higher emission scenario. The natural areas will face an expansion in the semidry class from 0.9% (of the total area) during the reference period to 5.6% during 2071–2100 under the RCP8.5 scenario as the dominant extremely humid class falls from 53.5% to 32.9% for the same periods and scenario. On the other hand, agricultural areas will face a more intense xerothermic alteration going from 4.9% to 17.7% for the semidry class and from 41.1% to 23.5% for the dominant very humid class for the same periods and scenario. This study presents the spatial statistics per country for the selected scenarios and periods to provide information for stakeholders. This study’s results highlight the necessity for intensifying adaptation plans and actions aiming at the feasibility of agricultural practices and the conservation of natural areas. Full article
(This article belongs to the Section Biometeorology)
Show Figures

Figure 1

17 pages, 3329 KiB  
Article
Artificial Periodic Irregularities and Temperature of the Lower Thermosphere
by Nataliya V. Bakhmetieva, Gennadiy I. Grigoriev, Ilia N. Zhemyakov and Elena E. Kalinina
Atmosphere 2023, 14(5), 846; https://doi.org/10.3390/atmos14050846 - 09 May 2023
Cited by 1 | Viewed by 1179
Abstract
The results of temperature measurements in the lower thermosphere at altitudes of 90–130 km by the method of resonant scattering of radio waves on artificial periodic inhomogeneities (APIs) of the ionospheric plasma are presented. These inhomogeneities are created when the ionosphere is exposed [...] Read more.
The results of temperature measurements in the lower thermosphere at altitudes of 90–130 km by the method of resonant scattering of radio waves on artificial periodic inhomogeneities (APIs) of the ionospheric plasma are presented. These inhomogeneities are created when the ionosphere is exposed to powerful HF radio emission. The temperature profile was obtained from measurements of the relaxation time of the API scattered signal. The data processes and the method of the temperature determination are given in detail. The height and temporal resolutions of the API technique are of the order of 1 km and 15 s, respectively, making it possible to study both fast and slow processes in the lower thermosphere. Large temperature variability at altitudes of 90–130 km during the day and from day to day, due to the propagation of atmospheric waves, has been confirmed. The temporal variations of the atmospheric parameters take place with periods from 15 min to some hours. There are often height profiles of the temperature with the wave-like variations and with the vertical scale of about 4–10 km. The irregular temperature profiles were observed above 100 km. Full article
(This article belongs to the Special Issue Mesosphere and Lower Thermosphere)
Show Figures

Figure 1

28 pages, 3072 KiB  
Article
HF-Induced Artificial Injection of Energetic Electrons from the Earth’s Radiation Belt as a Powerful Source for Modification of Ionized and Neutral Components of the Earth’s Atmosphere
by Vladimir L. Frolov and Arkady V. Troitsky
Atmosphere 2023, 14(5), 843; https://doi.org/10.3390/atmos14050843 - 09 May 2023
Cited by 1 | Viewed by 1429
Abstract
It has been found in experiments at the SURA mid-latitude heating facility that the modification of the ionospheric F2 layer by powerful HF radio waves gives rise to artificial injection of energetic electrons from the Earth’s radiation belt into the atmosphere. The [...] Read more.
It has been found in experiments at the SURA mid-latitude heating facility that the modification of the ionospheric F2 layer by powerful HF radio waves gives rise to artificial injection of energetic electrons from the Earth’s radiation belt into the atmosphere. The spectral, energy, and spatial characteristics of such an injection are presented in the paper. It is significant that the energetic electrons excite the atoms and molecules of the atmosphere to Rydberg energy levels, followed by the transition of the excited atoms and molecules to lower energy states, accompanied by the radiation of the microwave electromagnetic emissions. It has been shown that the artificial injection of energetic electrons can be considered as an independent powerful source of generation of secondary artificial turbulence, the effect of which manifests itself at ionospheric and mesospheric heights both near the heating facility and at a large distance from it up to a thousand or more kilometers. Examples of such generation are given. Full article
Show Figures

Figure 1

15 pages, 4530 KiB  
Review
Microplastic Pollution Research Based on the VOS Viewer Software: Research Trends, Ecological Effects, and Testing Methods
by Yange Wang, Bowen Zhang, Rongshuo Zhang, Yangbing Wei, Yunjing Wang and Rencheng Zhu
Atmosphere 2023, 14(5), 838; https://doi.org/10.3390/atmos14050838 - 08 May 2023
Cited by 1 | Viewed by 1735
Abstract
Microplastics (MPs) are receiving increasing attention because of their potential harm to the environment and human health. This research aims to summarize the abundance, toxicological effects, and analysis methods of MPs, as well as present their current status and trends in scientific research. [...] Read more.
Microplastics (MPs) are receiving increasing attention because of their potential harm to the environment and human health. This research aims to summarize the abundance, toxicological effects, and analysis methods of MPs, as well as present their current status and trends in scientific research. Bibliometric analysis confirmed a substantial rise in annual research papers on MPs, predominantly over the previous nine years. The central research areas relating to MPs include distribution, sources, toxic effects, analytical approaches, and adsorption of MPs with other pollutants. Airborne MPs are a primary source of microplastic pollution in remote areas. Humans may inhale and ingest MPs, leading to the accumulation of these particles in their bodies. Additionally, microplastics can have biological toxicity that poses a potential threat to human health. Standard procedures for sampling and both qualitative and quantitative analysis of microplastics in various environmental media must be established urgently to enable effective comparison of experimental conclusions. Full article
(This article belongs to the Special Issue Atmospheric Pollutants: Characteristics, Sources and Transport)
Show Figures

Figure 1

15 pages, 6799 KiB  
Article
Energetic Particle Precipitation Influence on Tidal Variations of Thermosphere Parameters in September 2017
by Fedor S. Bessarab, Olga P. Borchevkina, Ivan V. Karpov, Vladimir V. Klimenko, Maxim V. Klimenko, Olesya S. Yakovchuk, Jan Maik Wissing and Eugene V. Rozanov
Atmosphere 2023, 14(5), 829; https://doi.org/10.3390/atmos14050829 - 05 May 2023
Viewed by 1065
Abstract
The role of energetic particle precipitation in the formation of thermospheric tides is investigated. Using the Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) and two models of energetic particle precipitation, APM (Auroral Precipitation Model) and AIMOS 2.0.-AISstorm (Atmospheric Ionization [...] Read more.
The role of energetic particle precipitation in the formation of thermospheric tides is investigated. Using the Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) and two models of energetic particle precipitation, APM (Auroral Precipitation Model) and AIMOS 2.0.-AISstorm (Atmospheric Ionization Module Osnabrück 2.0—Atmospheric Ionization during Substorms), we performed simulations for the period 3–12 September 2017. This period covers both geomagnetically quiet days and the storm of 7–8 September. The analysis shows that migrating tides diurnal wave (DW) and semidiurnal wave (SW) prevail on quiet days for both versions of the simulations. On the day of maximum storm development on 8 September and the day after—9 September, the nonmigrating components of tidal waves, mainly DW0 and SW0, are intensified. There are also increasing differences in the spatial structure of tides between the two versions of simulations, especially between diurnal and semidiurnal tides at 154 km. On the disturbance days, the amplitudes of diurnal and semidiurnal tides at 154 km in the APM version are markedly greater than the corresponding values in the AIMOS version. Thus, it should be noted that the integral characteristics of the ionization function from precipitations are more important for the formation of DW and SW than its spatial structure or the features of temporal variations. A comparison of the total electron content (TEC) maps for the two versions of the simulation showed that the AIMOS version nicely reproduces the experimental data for a quiet time. The APM version is less accurate for quiet time but simulates the quantitative increase to disturbed conditions at high and middle latitudes better. For model reproduction of observed TEC variations at low and equatorial latitudes, it is not enough to consider the thermospheric source of thermospheric tides. In this case, the role of atmosphere–ionosphere coupling is very important. Full article
Show Figures

Figure 1

30 pages, 10761 KiB  
Article
Evaluating the Role of Land Surface Moisture in Generating Asymmetrical Precipitation during the Landfall of Hurricane Florence (2018)
by Lindsey Rosenthal and Stephanie E. Zick
Atmosphere 2023, 14(5), 814; https://doi.org/10.3390/atmos14050814 - 30 Apr 2023
Viewed by 986
Abstract
This study focuses on the role of land surface moisture in generating asymmetrical precipitation surrounding a nearly stationary Hurricane Florence (2018) during landfall. Previous idealized modeling studies have suggested that atmospheric stability varies surrounding a tropical cyclone (TC) during landfall, with the atmosphere [...] Read more.
This study focuses on the role of land surface moisture in generating asymmetrical precipitation surrounding a nearly stationary Hurricane Florence (2018) during landfall. Previous idealized modeling studies have suggested that atmospheric stability varies surrounding a tropical cyclone (TC) during landfall, with the atmosphere destabilizing off-shore and stabilizing on-shore. However, this finding has not been studied using a real modeling framework. Here, we produce high-resolution numerical simulations to examine the variations in precipitation and atmospheric stability surrounding Hurricane Florence. In addition to a control simulation (CTRL), two additional simulations are performed by altering the land surface cover to be moister (WETX) or drier (DRYX) compared with the CTRL. In the experiment, the altered land surface affects the equivalent potential temperature within the boundary layer. Due to changes in moisture, there are consistent but minor impacts on the spatial patterns of moist static instability. This study found that rainbands in the inner core and distant rainband regions responded differently to changes in land surface moisture. Within the inner core region of the TC, WETX produced more precipitation that was more symmetrical compared with DRYX. In DRYX, there was increased moist static instability in the outer rainband region over water and decreased moist static instability in the outer rainband region over land, which may have contributed to the enhanced precipitation asymmetries. Still, both experiments produced asymmetrical precipitation distributions, suggesting that alterations to land surface moisture had a minor impact on the precipitation asymmetries in Hurricane Florence. We conclude that precipitation asymmetries are primarily dynamically driven by weak to moderate vertical wind shear and asymmetries in moisture flux convergence. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

26 pages, 10597 KiB  
Article
NAO Seasonal Forecast Using a Multivariate Air–Sea Coupled Deep Learning Model Combined with Causal Discovery
by Bin Mu, Xin Jiang, Shijin Yuan, Yuehan Cui and Bo Qin
Atmosphere 2023, 14(5), 792; https://doi.org/10.3390/atmos14050792 - 26 Apr 2023
Cited by 2 | Viewed by 1812
Abstract
The North Atlantic Oscillation (NAO) is a major climatic phenomenon in the Northern Hemisphere, but the underlying air–sea interaction and physical mechanisms remain elusive. Despite successful short-term forecasts using physics-based numerical models, longer-term forecasts of NAO continue to pose a challenge. In this [...] Read more.
The North Atlantic Oscillation (NAO) is a major climatic phenomenon in the Northern Hemisphere, but the underlying air–sea interaction and physical mechanisms remain elusive. Despite successful short-term forecasts using physics-based numerical models, longer-term forecasts of NAO continue to pose a challenge. In this study, we employ advanced data-driven causal discovery techniques to explore the causality between multiple ocean–atmosphere processes and NAO. We identify the best NAO predictors based on this causality analysis and develop NAO-MCD, a multivariate air–sea coupled model that incorporates causal discovery to provide 1–6 month lead seasonal forecasts of NAO. Our results demonstrate that the selected predictors are strongly associated with NAO development, enabling accurate forecasts of NAO. NAO-MCD significantly outperforms conventional numerical models and provides reliable seasonal forecasts of NAO, particularly for winter events. Moreover, our model extends the range of accurate forecasts, surpassing state-of-the-art performance at 2- to 6-month lead-time NAO forecasts, substantially outperforming conventional numerical models. Full article
Show Figures

Figure 1

16 pages, 3428 KiB  
Article
Climate Indices and Their Impact on Maize Yield in Veracruz, Mexico
by Citlali Villa-Falfán, Ofelia Andrea Valdés-Rodríguez, Jorge Luis Vázquez-Aguirre and Fernando Salas-Martínez
Atmosphere 2023, 14(5), 778; https://doi.org/10.3390/atmos14050778 - 25 Apr 2023
Cited by 1 | Viewed by 1525
Abstract
The State of Veracruz (Mexico) is highly vulnerable to climate change. Therefore, it is necessary to identify and analyze local climate extreme trends and explore potential relationships between climate indices and maize. The objectives of this research were (1) to describe recent trends [...] Read more.
The State of Veracruz (Mexico) is highly vulnerable to climate change. Therefore, it is necessary to identify and analyze local climate extreme trends and explore potential relationships between climate indices and maize. The objectives of this research were (1) to describe recent trends of climate indices (1979–2018) and (2) to compare these climate indices with maize yields produced in Veracruz, Mexico, under rainfed conditions. The methodology calculated and analyzed the sector-specific climate indices (Rx5day, PRCPTOT, SPI6, R20mm, TXx, TNn, TXgt50p, and TXge35) in 18 observation sites using Climpact. Climate indices were calculated over the spring-summer agricultural cycle and correlated with rainfed maize yields. Results show increasing trends for Rx5day, TXx, TXgt50p, and TXge35 indices in 65%, 56%, 89%, and 67% of the analyzed sites, respectively, whereas decreasing trends in PRCPTOT and R20mm indices were detected in 59% and 47% of the sites. Significant correlations (p < 0.05) between climate indices and maize yield were found in eight municipalities, of which 62% were positive. In conclusion, extreme temperature and precipitation local events are increasing in frequency, duration, and intensity, and depending on the site’s local climate, these might positively or negatively impact maize yields. Full article
Show Figures

Figure 1

30 pages, 3704 KiB  
Review
Deactivation Mechanism and Anti-Deactivation Measures of Metal Catalyst in the Dry Reforming of Methane: A Review
by Bo Yuan, Tao Zhu, Yiwei Han, Xueli Zhang, Meidan Wang and Chen Li
Atmosphere 2023, 14(5), 770; https://doi.org/10.3390/atmos14050770 - 23 Apr 2023
Cited by 6 | Viewed by 2692
Abstract
In recent decades, the massive emission of greenhouse gases, such as carbon dioxide and methane, into the atmosphere has had a serious impact on the ecological environment. The dry reforming of carbon dioxide and methane to syngas cannot only realize the resource utilization [...] Read more.
In recent decades, the massive emission of greenhouse gases, such as carbon dioxide and methane, into the atmosphere has had a serious impact on the ecological environment. The dry reforming of carbon dioxide and methane to syngas cannot only realize the resource utilization of methane and carbon dioxide but also reduce global climate change. It is of great significance in carbon emission reduction. Owing to the dry reforming of methane (DRM) being a strongly endothermic reaction, it needs to be carried out under high-temperature conditions. It makes the catalyst have problems of the sintering of metal, carbon deposition, and poisoning. This article revolves around the problem of catalyst deactivation during the DRM reaction. It expands upon the thermodynamics and mechanisms of the DRM reaction, analyzes the causes of metal catalyst deactivation due to carbon deposition, sintering, and poisoning, and summarizes how the active components, supports, and additives of metal catalysts restrain the DRM catalyst deactivation during the reaction. The analysis revealed that changing the type and size of the active metal, adjusting the properties of the support, and adding additives can further regulate the dispersion of the active component, the interaction between the active component and the support, the oxygen vacancies of the support, and the acidity and basicity of the catalyst surface, ultimately achieving control over the metal catalyst’s resistance to sintering, carbon deposition, and sulfur poisoning. In addition, it discusses the application of metal catalysts in photothermal and plasma-catalyzed DRM. Finally, it outlines the prospects for research on metal catalysts for the DRM. Full article
Show Figures

Figure 1

20 pages, 2085 KiB  
Article
Comparisons of Spatial and Temporal Variations in PM2.5-Bound Trace Elements in Urban and Rural Areas of South Korea, and Associated Potential Health Risks
by Jayant Nirmalkar, Kwangyul Lee, Junyoung Ahn, Jiyi Lee and Mijung Song
Atmosphere 2023, 14(4), 753; https://doi.org/10.3390/atmos14040753 - 21 Apr 2023
Cited by 5 | Viewed by 1807
Abstract
PM2.5-bound trace elements were chosen for health risk assessment because they have been linked to an increased risk of respiratory and cardiovascular illness. Since the Korean national air quality standard for ambient particulate matter is based on PM2.5 mass concentration, [...] Read more.
PM2.5-bound trace elements were chosen for health risk assessment because they have been linked to an increased risk of respiratory and cardiovascular illness. Since the Korean national air quality standard for ambient particulate matter is based on PM2.5 mass concentration, there have only been a few measurements of PM2.5 particles together with trace elements that can be utilized to evaluate their effects on air quality and human health. Thus, this study describes the trace elements bound to PM2.5 in Seoul (urban area) and Seosan (rural area) using online nondestructive energy-dispersive X-ray fluorescence analysis from December 2020 to January 2021. At both the Seoul and Seosan sites, S, K, Si, Ca, and Fe constituted most of the PM2.5-bound trace elements (~95%); major components such as S, K, and soil (estimatedcalculatedcalculated based on oxides of Si, Fe, Ca, and Ti) were presumably from anthropogenic and crustal sources, as well as favorable meteorological conditions. During winter, synoptic meteorology favored the transport of particles from severely contaminated regions, such as the East Asian outflow and local emissions. The total dry deposition flux for crustal elements was 894.5 ± 320.8 µg m−2 d−1 in Seoul and 1088.8 ± 302.4 µg m−2 d−1 in Seosan. Moreover, potential health risks from the trace elements were estimated. Cancer risk values for carcinogenic trace elements (Cr, As, Ni, and Pb) were within the tolerable limit (1 × 10−6), suggesting that adults and children were not at risk of cancer throughout the study period in Seoul and Seosan. Furthermore, a potential risk assessment of human exposure to remaining carcinogens (Cr, As, Ni, and Pb) and non-carcinogens (Cu, Fe, Zn, V, Mn, and Se) indicated that these trace elements posed no health risks. Nevertheless, trace element monitoring, risk assessment, and mitigation must be strengthened throughout the study area to confirm that trace-element-related health effects remain harmless. Researchers and policymakers can use the database from this study on spatial and temporal variation to establish actions and plans in the future. Full article
Show Figures

Figure 1

14 pages, 3205 KiB  
Article
A Study of Elemental Composition and Risk Assessment Due to Exposure to Indoor PM10 in Two Residences in Mexico City
by Salvador Reynoso-Cruces, Javier Miranda-Martín-del-Campo and Juan Carlos Pineda-Santamaría
Atmosphere 2023, 14(4), 734; https://doi.org/10.3390/atmos14040734 - 19 Apr 2023
Cited by 2 | Viewed by 1733
Abstract
Samples of airborne particles with aerodynamic diameters smaller than 10 µm (PM10) were collected in 2021 at two households in the Metropolitan Area of Mexico City. Both sites are in areas with different characteristics (residential or industrial zones). Simultaneous sampling indoors [...] Read more.
Samples of airborne particles with aerodynamic diameters smaller than 10 µm (PM10) were collected in 2021 at two households in the Metropolitan Area of Mexico City. Both sites are in areas with different characteristics (residential or industrial zones). Simultaneous sampling indoors and outdoors was carried out at the two locations, using low-volume samplers. The study aimed to determine the indoor and outdoor gravimetric mass and elemental concentrations, identify emitting sources and possible penetration towards the households enhanced by natural ventilation, and assess risks to human health due to inhalation, ingestion, and dermal absorption, through hazard quotients. Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Se, and Pb concentrations were measured with X-ray fluorescence. Mass concentrations were higher indoors than outdoors, and most elemental concentrations had similar values in both environments. Cluster analysis was applied to identify possible emitting sources. The results showed a strong penetration of geogenic and industrial emissions at the Iztapalapa site, while only particles of industrial origin entered the interior of the Tlalnepantla dwelling, in both cases caused by the natural ventilation of the households. Health risks due to exposure to particles containing Fe, Ni, Cu, Zn, and Mn are not significant, and Pb and Cr only pose a risk via ingestion for men and women, although for children, there is a risk due to ingestion of all these elements. Full article
(This article belongs to the Special Issue Indoor Air Quality and Health Risk)
Show Figures

Figure 1

14 pages, 3484 KiB  
Article
Study on the Hemispheric Asymmetry of Thermospheric Density Based on In-Situ Measurements from APOD Satellite
by Jiangzhao Ai, Yongping Li, Xianguo Zhang, Chao Xiao, Guangming Chen, Xiaoliang Zheng and Zhiliang Zhang
Atmosphere 2023, 14(4), 714; https://doi.org/10.3390/atmos14040714 - 14 Apr 2023
Cited by 1 | Viewed by 1330
Abstract
In this article, high spatiotemporal resolution data obtained by the atmospheric density detector carried by China’s APOD satellite are used to study the hemispheric asymmetry of thermospheric density. A detailed analysis is first performed on the dual magnetic storm event that occurred near [...] Read more.
In this article, high spatiotemporal resolution data obtained by the atmospheric density detector carried by China’s APOD satellite are used to study the hemispheric asymmetry of thermospheric density. A detailed analysis is first performed on the dual magnetic storm event that occurred near the autumnal equinox on 8 September 2017. The results show that the enhancement ratio of atmospheric density in the southern polar region (SPR) on the duskside was approximately 1.33–1.65 times that of the northern polar region (NPR), demonstrating a strong hemispheric asymmetry of thermospheric atmospheric density response during the magnetic storm. However, the asymmetry response was smaller on the dawnside, suggesting that the hemispheric density response asymmetry is related to local time (LT). The energy injection in high-latitude regions increases local atmospheric density and forms traveling atmospheric disturbances (TADs). TADs can propagate to low-latitude regions over several hours and affect the global distribution of thermospheric atmospheric density. Similarly, the geomagnetic index fitting slope of SPR relative density difference is greater than that of NPR. The SuperDARN convection pattern indicates that the plasma convection velocity of SPR is significantly greater than that of NPR, indicating that joule heating caused by neutral friction of ions in the Southern Hemisphere may be stronger. Subsequently, an analysis of annual solar activity and seasons was carried out on the thermospheric NPR, SPR atmospheric density, and their differences from December 2015 to December 2020. The results show that thermospheric atmospheric density decreases overall as the number of sunspots decreases. The differences between the NPR and SPR atmospheric densities in the thermosphere exhibits a noticeable annual periodicity. The NPR and SPR atmospheric densities appear to have different distribution characteristics in different seasons. The NPR density peak is mainly in March or April. In particular, the “double-peak” phenomenon occurred in 2017, with peaks in March and September, while the most obvious feature of SPR atmospheric density is that its minimum value occurs in the summer months of June and July. This paper reveals the annual, seasonal, and magnetic storm response characteristics of the hemispheric asymmetry of thermospheric atmospheric density, which has significant implications for the study of multilayer energy coupling of the magnetosphere–ionosphere–thermosphere. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

17 pages, 15655 KiB  
Article
A Statistical Analysis of Tropical Cyclone-Induced Low-Level Winds near Taiwan Island
by Lin Xue, Ying Li and Sen Yao
Atmosphere 2023, 14(4), 715; https://doi.org/10.3390/atmos14040715 - 14 Apr 2023
Cited by 1 | Viewed by 1355
Abstract
Using ERA5 reanalysis data and the tropical cyclone (TC) best track datasets from the China Meteorological Administration and Joint Typhoon Warning Center (from 1979 to 2021), TC-induced low-level winds near Taiwan Island are statistically analyzed. This study mainly concerns TC activity, low-level wind [...] Read more.
Using ERA5 reanalysis data and the tropical cyclone (TC) best track datasets from the China Meteorological Administration and Joint Typhoon Warning Center (from 1979 to 2021), TC-induced low-level winds near Taiwan Island are statistically analyzed. This study mainly concerns TC activity, low-level wind fields around Taiwan Island under TCs, and the detailed characteristics of TC wind structure. Results show that on average, 8.3 TCs enter the study region near Taiwan Island every year mainly from May to November, with more frequent and stronger TCs on the eastern and southern sides of Taiwan Island. For TC centers located at different positions around Taiwan Island, positive and negative vertical vorticity belts alternate between Taiwan Island and the TC center. Moreover, stronger and more frequent TC-induced winds mainly occur on the eastern side of Taiwan Island and the north of Taiwan Strait. TCs to the east of Taiwan Island have stronger maximum sustained wind than those on the western side of the island. Radii of the maximum wind (RMW) for TCs around Taiwan Island range from 5 to 90 nautical mile (nm, 9.3 to 116.7 km) with a mean value of 24.7 nm (44.4 km). Moreover, the RMWs of TCs are the largest (smallest) when the TC centers are located to the southwest (east) of the island. In addition, the outer sizes of TC winds vary from 52 to 360 nm (17.2 to 666.7 km) in the study region, with 187.4 nm (347.1 km) on average, and smaller values for TCs on the western side of the island. The average radii of severe winds, including R34, R50, and R64, are largest in the northeast quadrant and smallest in the southwest quadrant of the TC. The higher the specific wind speed is, the smaller the TC radius and the more symmetric its wind circle. These statistical results may provide references for TC gale forecasting and wind-resistant design for offshore engineering to mitigate TC-induced wind hazards. Full article
(This article belongs to the Special Issue Feature Papers in Meteorological Science)
Show Figures

Figure 1

14 pages, 3728 KiB  
Article
On the Radon-Related Mechanism of the Seismo- and Volcanogenic Geomagnetic Anomalies: Experiments in Tlamacas Mountain (Volcano Popocatepetl Area) and Electrode Effect Model
by Vsevolod Yutsis, Anatolyi Kotsarenko, Vladimir Grimalsky and Sergey Pulinets
Atmosphere 2023, 14(4), 705; https://doi.org/10.3390/atmos14040705 - 12 Apr 2023
Cited by 1 | Viewed by 1286
Abstract
The noise-like behavior of the geomagnetic anomalies observed in Tlamacas station (volcano Popocatepetl, Mexico), linked to the ionization produced by intensive radon release, are presented in the experimental part of this study. The magnetic field perturbations produced by charge spreading currents within the [...] Read more.
The noise-like behavior of the geomagnetic anomalies observed in Tlamacas station (volcano Popocatepetl, Mexico), linked to the ionization produced by intensive radon release, are presented in the experimental part of this study. The magnetic field perturbations produced by charge spreading currents within the fair-weather electric field are considered in the theoretical model based on the electrode. The electric charges are generated by the air ionization due to radon emanation. The simulations demonstrated that the ionization of the air leads to magnetic field perturbations of about 0.001–0.1 nT in the ULF (ultra low frequency) range 10−3–10−1 Hz. Magnetic field perturbations can be higher when the radon emanation occurs in a region with terrain irregularities. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere)
Show Figures

Figure 1

13 pages, 21301 KiB  
Technical Note
On Saharan Air Layer Stability and Suppression of Convection over the Northern Tropical Atlantic: Case Study Analysis of a 2007 Dust Outflow Event
by Adrian Flores, Ricardo K. Sakai, Everette Joseph, Nicholas R. Nalli, Alexander Smirnov, Belay Demoz, Vernon R. Morris, Daniel Wolfe and Sen Chiao
Atmosphere 2023, 14(4), 707; https://doi.org/10.3390/atmos14040707 - 12 Apr 2023
Cited by 2 | Viewed by 1588
Abstract
A prominent Saharan Air Layer (SAL) was detected over the Northern Atlantic from the West African Coast to the Caribbean Sea in 2007. Data was collected from the Aerosols and Ocean Science Expedition (AEROSE), which encountered a major dust outflow on 13 and [...] Read more.
A prominent Saharan Air Layer (SAL) was detected over the Northern Atlantic from the West African Coast to the Caribbean Sea in 2007. Data was collected from the Aerosols and Ocean Science Expedition (AEROSE), which encountered a major dust outflow on 13 and 14 May 2007. These observational measurements came from onboard instrumentation and radiosondes that captured the dust-front event from 13 to 14 May 2007. Aerosol backscatter was confined within the Marine Boundary Layer (MBL), with layers detected up to 3 km. Aerosol Optical Depth (AOD) increased by one order of magnitude during the dust front, from 0.1 to 1. Downward solar radiation was also attenuated by 200 W/m2 and 100 W/m2 on the first and second days, respectively. A weaker gradient at and above 500 m from potential temperature profiles indicates a less-defined MBL, and an ambient air temperature of 26 °C on 14 May and 28 °C on 15 May were observed above 500 m, reinforcing the temperature inversion and static stability of the SAL. Subsequent days, clear and boundary-layer cloudy days were observed after the dust front. From 14 to 18 May, a Convective Inhibition (CIN) layer started to form at the top of the MBL, developing into a negative buoyancy from 17 to 23 May, and reinforcing the large-scale anticyclonic atmospheric conditions. These results show that the SAL acts as positive feedback on suppressing deep convection over the tropical Atlantic during this dust outflow and several days after its passage. Full article
Show Figures

Figure 1

18 pages, 2004 KiB  
Article
Analysis of Size Distribution, Chemical Composition, and Optical Properties of Mineral Dust Particles from Dry Deposition Measurement in Tenerife: Determined by Single-Particle Characterization
by Andebo Waza, Kilian Schneiders, Johannes Heuser and Konrad Kandler
Atmosphere 2023, 14(4), 700; https://doi.org/10.3390/atmos14040700 - 10 Apr 2023
Viewed by 2515
Abstract
In this paper, individual particle analysis by automated scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX) was used to assess the size-resolved information of composition, size distribution, complex refractive index, and mixing state of mineral dust aerosol particles collected using different passive [...] Read more.
In this paper, individual particle analysis by automated scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX) was used to assess the size-resolved information of composition, size distribution, complex refractive index, and mixing state of mineral dust aerosol particles collected using different passive and active samplers. In the study, over 120,000 particles from 53 samples were analyzed. Results show that dust particles are the dominating mineral particle type during this campaign, comprising different classes of silicates, Si-rich (quartz-like), Ca-rich (calcite-like), CaMg-rich (dolomite-like), and CaS-rich (gypsum-like). The results also show that there is no significant difference in composition between suspended and deposited dust particles. By using the particle composition, the size-resolved complex refractive index of dust particles was calculated. The real part of the refractive index varied between 1.71 and 1.53 for wavelengths in the range of 370 to 950 nm. The imaginary part of the refractive index, determined mostly by iron oxide, varied between 3.28×104 and 7.11×105 for wavelengths ranging from 250 nm to 1640 nm. In addition, the refractive index values showed a slight decrease with increasing particle size. We also analyzed the potential for buffering of the acid mobilization of iron by other dust compounds. For particles which contain both iron (Fe) and (unprocessed) calcium (Ca), acids that are able to dissolve insoluble Fe particles can react with the Ca particles before reacting with Fe, but eventually, with longer processing time, the Fe particles could be processed. By analyzing the ratio of sulfate mass to the total aerosol mass of individual particles, the mixing state of sulfate particles to the total dust particles was investigated. The analysis showed that the finer dust particles were associated with higher content of sulfate, while the coarse dust particles correspond to lower sulfate contents, revealing that only fine mode sulfate is more internally mixed with mineral dust aerosol particles. Full article
(This article belongs to the Special Issue Chemical Composition and Sources of Particles in the Atmosphere)
Show Figures

Figure 1

11 pages, 3223 KiB  
Article
Assessment of Mobile Air Cleaners to Reduce the Concentration of Infectious Aerosol Particles Indoors
by Christian J. Kähler, Rainer Hain and Thomas Fuchs
Atmosphere 2023, 14(4), 698; https://doi.org/10.3390/atmos14040698 - 08 Apr 2023
Cited by 3 | Viewed by 1590
Abstract
Airborne transmission via aerosol particles without close human contact is a possible source of infection with airborne viruses such as SARS-CoV-2 or influenza. Reducing this indirect infection risk, which is mostly present indoors, requires wearing adequate respiratory masks, the inactivation of the viruses [...] Read more.
Airborne transmission via aerosol particles without close human contact is a possible source of infection with airborne viruses such as SARS-CoV-2 or influenza. Reducing this indirect infection risk, which is mostly present indoors, requires wearing adequate respiratory masks, the inactivation of the viruses with radiation or electric charges, filtering of the room air, or supplying ambient air by means of ventilation systems or open windows. For rooms without heating, ventilation, and air conditioning (HVAC) systems, mobile air cleaners are a possibility for filtering out aerosol particles and therefore lowering the probability of indirect infections. The main questions are as follows: (1) How effectively do mobile air cleaners filter the air in a room? (2) What are the parameters that influence this efficiency? (3) Are there room situations that completely prevent the air cleaner from filtering the air? (4) Does the air cleaner flow make the stay in the room uncomfortable? To answer these questions, particle imaging methods were employed. Particle image velocimetry (PIV) was used to determine the flow field in the proximity of the air cleaner inlet and outlet to assess regions of unpleasant air movements. The filtering efficiency was quantified by means of particle image counting as a measure for the particle concentration at multiple locations in the room simultaneously. Moreover, different room occupancies and room geometries were investigated. Our results confirm that mobile air cleaners are suitable devices for reducing the viral load indoors. Elongated room geometries, e.g., hallways, lead to a reduced filtering efficiency, which needs to be compensated by increasing the volume flow rate of the device or by deploying multiple smaller devices. As compared to an empty room, a room occupied with desks, desk separation walls, and people does not change the filtering efficiency significantly, i.e., the change was less than 10%. Finally, the flow induced by the investigated mobile air cleaner does not reach uncomfortable levels, as by defined room comfort standards under these conditions, while at the same time reaching air exchange rates above 6, a value which is recommended for potentially infectious environments. Full article
Show Figures

Figure 1

18 pages, 3649 KiB  
Article
Frost Risk Assessment in Slovenia in the Period of 1981–2020
by Zala Žnidaršič, Gregor Gregorič, Andreja Sušnik and Tjaša Pogačar
Atmosphere 2023, 14(4), 683; https://doi.org/10.3390/atmos14040683 - 05 Apr 2023
Cited by 2 | Viewed by 1013
Abstract
As spring frost proves to be an increasing risk throughout Slovenia and Europe, a better assessment of frost risk is needed. The statistical approach presented in this article consists of the conditional probability that the last spring frost occurs before budburst or flowering. [...] Read more.
As spring frost proves to be an increasing risk throughout Slovenia and Europe, a better assessment of frost risk is needed. The statistical approach presented in this article consists of the conditional probability that the last spring frost occurs before budburst or flowering. The analysis was conducted using two separate phenological models and phenological data of various grapevine (Vitis vinifera L.), apple (Malus domestica), and sweet cherry (Prunus avium L.) varieties in locations across Slovenia. The increase in risk of spring frost for grapevine ranged from 1 to 1980, from 0.06 to 12 for apple, and from 1 to 180 for sweet cherry. Overall, the varieties most prone to frost proved to be Refošk (Teran) and Merlot grapevine varieties as well as the Germersdorf sweet cherry variety. We have identified the location in the hilly region with moderate climate where the Bobovec apple variety is grown as the least exposed to frost. Although counterintuitive, the GDD generally proved somewhat more efficient than the two-phase phenological model BRIN, although not in all cases. For the purpose of the study, the phenological models were calibrated, and the model parameters can serve as invaluable information for further research of this topic. Full article
(This article belongs to the Special Issue Vegetation and Climate Relationships (2nd Edition))
Show Figures

Figure 1

19 pages, 7929 KiB  
Article
Impacts of Urban Development between 2002 and 2022 on the Effects of Sea Breezes in Sendai, Japan—Analyzing Heat Balance Mechanism in Urban Space
by Yonghang Xie, Yasuyuki Ishida, Hironori Watanabe and Akashi Mochida
Atmosphere 2023, 14(4), 677; https://doi.org/10.3390/atmos14040677 - 03 Apr 2023
Cited by 4 | Viewed by 1625
Abstract
Sea breezes are important in a coastal urban climate; however, the impact of urban development on the effects of sea breezes, which decrease air temperature and increase humidity, has not been understood quantitatively. To quantitatively evaluate this impact in Sendai, Japan over the [...] Read more.
Sea breezes are important in a coastal urban climate; however, the impact of urban development on the effects of sea breezes, which decrease air temperature and increase humidity, has not been understood quantitatively. To quantitatively evaluate this impact in Sendai, Japan over the past twenty years, this study analyzed the heat balance mechanisms in urban spaces based on the simulation results of the Weather Research and Forecasting (WRF) model coupled with Local Climate Zone (LCZ) maps. Compared to the observation data on air temperature, specific humidity, and wind in August 2002, results of the numerical simulation, using the 2002 LCZ map and the meteorological conditions of August 2002, confirmed that the WRF model could reproduce meteorological factors well. Thereafter, two numerical simulations using the LCZ maps from 2002 and 2022 were conducted based on the same meteorological condition, from 25 July to 1 September 2008, to extract the impact of urban development on the effects of sea breeze. Consequently, when land use changed from urban built-up land to natural land cover, both the effects of sea breeze—decreasing air temperature and increasing humidity—decreased. Additionally, increases in LCZ 3 (compact low rise), mainly from LCZ 6 (open low rise) and LCZ 9 (sparsely built), decreased the effects of sea breeze (decreasing air temperature and increasing humidity) by 5% and 10%, respectively, in areas around Sendai Station. This was because the consumption of the sea breeze’s potential to decrease air temperature and increase humidity increased and the wind speed of sea breezes decreased in the windward areas of Sendai Station. These results provide new insights into the impact of urban development on the effects of sea breeze and quantitatively reveal changes in the effects of sea breeze. Full article
(This article belongs to the Special Issue Strategies for Mitigation and Adaptation to Urban Heat)
Show Figures

Figure 1

19 pages, 12702 KiB  
Article
Trends and Features of Thunderstorms and Lightning Activity in the Upper Volga Region
by Svetlana Dementyeva, Maria Shatalina, Alena Popykina, Fedor Sarafanov, Mikhail Kulikov and Evgeny Mareev
Atmosphere 2023, 14(4), 674; https://doi.org/10.3390/atmos14040674 - 02 Apr 2023
Cited by 4 | Viewed by 1543
Abstract
An increase in the frequency of atmospheric hazards in a changing climate has attracted interest in the study of regional features of mesoscale convective systems and trends of lightning activity. Severe convective storms are the most destructive weather events causing substantial damage and [...] Read more.
An increase in the frequency of atmospheric hazards in a changing climate has attracted interest in the study of regional features of mesoscale convective systems and trends of lightning activity. Severe convective storms are the most destructive weather events causing substantial damage and fatalities. In this paper, we analyze general trends in the lightning activity in the Upper Volga region and identify the particular features of a severe thunderstorm on 13–14 July 2020. The analysis of the annual variability of the lightning activity in the Upper Volga region, carried out according to the World-Wide Lightning Location Network (WWLLN) data, has shown that the total number of discharges during the convective seasons of 2016–2021 increased. For the convective season of 2020, the daily number of discharges in the neighborhood of Nizhny Novgorod (the center of the region) is calculated according to the WWLLN data and the electric field mill (EFM) measurements. It is revealed that the most powerful (per convective season) thunderstorms have a number of similarities both according to observations and numerical simulation. The thunderstorm on 13–14 July was numerically simulated using the Weather Research and Forecasting (WRF) model in combination with calculations of the electric parameters (such as electric potential and intracloud electric field). The simulations were carried out using two parametrizations of microphysical processes to reveal the features associated with allowance for aerosol particles. The data from the meteorological radar and WWLLN were used to validate the radar reflectivity simulation results of the WRF model. Some features of the thunderstorm evolution characteristic for each of the microphysical parametrizations were identified. In general, the non-aerosol parametrization gives a more correct description of the development of severe thunderstorms in the Upper Volga region (with the exception of the final stage of the convective system development). For a convective event to have the required duration (more than 6 h), aerosol particles should be taken into account. Full article
(This article belongs to the Special Issue Future Trends of Our Atmospheric Electric Environments)
Show Figures

Figure 1

19 pages, 10168 KiB  
Article
Decomposing Fast and Slow Responses of Global Cloud Cover to Quadrupled CO2 Forcing in CMIP6 Models
by Xixun Zhou, Hua Zhang, Qiuyan Wang and Bing Xie
Atmosphere 2023, 14(4), 653; https://doi.org/10.3390/atmos14040653 - 30 Mar 2023
Viewed by 1484
Abstract
Cloud changes and their attribution under global warming still remains a challenge in climatic change studies, especially in decomposing the fast and slow cloud responses to anthropogenic forcing. In this study, the responses of global cloud cover to the quadrupled CO2 forcing [...] Read more.
Cloud changes and their attribution under global warming still remains a challenge in climatic change studies, especially in decomposing the fast and slow cloud responses to anthropogenic forcing. In this study, the responses of global cloud cover to the quadrupled CO2 forcing are investigated quantitatively by decomposing the total response into fast and slow ones using the multi-model data from the Coupled Model Intercomparison Project Phase 6 (CMIP6). During the quasi-equilibrium period after the quadrupling of CO2 forcing, the global mean changes of simulated total cloud cover (TCC) in the total, fast, and slow responses are −2.42%, −0.64%, and −1.78%, respectively. Overall, the slow response dominates the total response in most regions over the globe with similar spatial patterns. TCC decreases at middle and low latitudes but increases at high latitudes in the total and slow responses. Whereas, it mainly decreases in the middle and low latitudes of the southern hemisphere as well as in the middle and high latitudes of the northern hemisphere in the fast response. A change in vertical motion is the major contributor to the cloud cover change at middle and low latitudes, while the decrease in upper atmospheric temperature leads to an increase in high cloud cover at high latitudes. In addition, the anomaly in water vapor convergence/diffusion also contributes to the cloud cover increase/decrease at low latitudes. Full article
Show Figures

Figure 1

25 pages, 7705 KiB  
Article
Diurnal Outdoor Thermal Comfort Mapping through Envi-Met Simulations, Remotely Sensed and In Situ Measurements
by Edoardo Fiorillo, Lorenzo Brilli, Federico Carotenuto, Letizia Cremonini, Beniamino Gioli, Tommaso Giordano and Marianna Nardino
Atmosphere 2023, 14(4), 641; https://doi.org/10.3390/atmos14040641 - 29 Mar 2023
Cited by 7 | Viewed by 2525
Abstract
Physiological equivalent temperature (PET) is one of most used indices for outdoor human well-being evaluation; its determination is particularly helpful for adaptation strategies in built-up areas affected by the urban heat island (UHI) phenomenon. In this work, we presented a methodology to compute [...] Read more.
Physiological equivalent temperature (PET) is one of most used indices for outdoor human well-being evaluation; its determination is particularly helpful for adaptation strategies in built-up areas affected by the urban heat island (UHI) phenomenon. In this work, we presented a methodology to compute spatially and temporally resolved PET values during a heatwave at the city level, based on a combination of satellite products, in situ measurements and Envi-met model runs upscaled from specific test areas to the broader city. The method exploits the ECOSTRESS sensor to detect surface thermal patterns at different diurnal times by developing an hourly based index called hUHTI (hourly urban heatwave thermal index) that serves as a proxy. A case study on Prato (Italy) municipality during the 2021 summer heatwave events is presented. Based on the available satellite products, a set of six hourly diurnal PET maps at 10 m spatial resolution were derived and daytime outdoor thermal patterns and trends were investigated according to land cover. hUHTI index resulted a more suitable tool as PET proxy compared to the sole ECOSTRESS land surface temperature (LST) product, especially for morning and evening times. Hourly PET maps were summarized by the use of an average exceedance map providing public administrations and stakeholders a synthetic tool for urban regeneration purposes at city scale. Full article
(This article belongs to the Special Issue Feature Papers in Biometeorology)
Show Figures

Figure 1

20 pages, 8927 KiB  
Article
Urban Heat Mitigation towards Climate Change Adaptation: An Eco-Sustainable Design Strategy to Improve Environmental Performance under Rapid Urbanization
by Mehdi Makvandi, Wenjing Li, Xiongquan Ou, Hua Chai, Zeinab Khodabakhshi, Jiayan Fu, Philip F. Yuan and Elyse de la Joie Horimbere
Atmosphere 2023, 14(4), 638; https://doi.org/10.3390/atmos14040638 - 28 Mar 2023
Cited by 8 | Viewed by 2356
Abstract
Rapid urbanization has led to drastic land-use/cover changes (LUCCs) and urban heat islands (UHIs), negatively altering the urban climate and air quality. LUCC’s significant impacts on human health and energy consumption have inspired researchers to develop nature-based solutions to mitigate UHIs and improve [...] Read more.
Rapid urbanization has led to drastic land-use/cover changes (LUCCs) and urban heat islands (UHIs), negatively altering the urban climate and air quality. LUCC’s significant impacts on human health and energy consumption have inspired researchers to develop nature-based solutions to mitigate UHIs and improve air quality. However, integrating GIS-CFD modeling for urban heat mitigation towards climate change adaptation was largely neglected for eco-sustainable urban design in rapidly urbanizing areas. In this study, (1) long-term LUCC and meteorological analysis were conducted in the Wuhan metropolitan area from 1980 to 2016; (2) to mitigate the adverse effects of LUCC under a speedy development process, the role and relevance of optimizing building morphology and urban block configuration were discussed; (3) and particular design attention in strategy towards climate change adaptation for environmental performance improvement was paid in Wuhan’s fast-growing zones. The results show that UHII in 1980 was less severe than in 2016. Air temperature (Ta) increased by 0.4 °C on average per decade in developing areas. This increases the severity of UHII in urban fringes. It is found obligatory for a nature-based design to adopt urban morphology indicators (UMIs) such as average building height (μBH), sky view factors (ψSVF), and building density (BD/λp = % of built area) towards these changes. Further, on-site measurement revealed that λp is the most effective indicator for increasing urban heat around the buildings and boosting UHII. Using UMIs and a combined three-in-one regulation strategy based on μBH of common building types of high-rise (BHA), mid-rise (BHB), and low-rise (BHC) buildings can effectively contribute to regulating Ta and air movement within block configuration. As a result of this study’s strategy, urban heat is mitigated via reinforcing wind in order to adapt to climate change, which impacts the quality of life directly in developing areas. Full article
(This article belongs to the Special Issue Strategies for Mitigation and Adaptation to Urban Heat)
Show Figures

Figure 1

11 pages, 2213 KiB  
Article
TEC and ROTI Measurements from a New GPS Receiver at BOWEN University, Nigeria
by Olawale S. Bolaji, Rafiat O. Kaka, Wayne A. Scales, Joshua B. Fashae, Yuxiang Peng, A. Babatunde Rabiu, Joshua O. Fadiji and Aanuoluwapo Ojelade
Atmosphere 2023, 14(4), 636; https://doi.org/10.3390/atmos14040636 - 28 Mar 2023
Cited by 2 | Viewed by 1886
Abstract
Scintillation and total electron content (TEC) are the two major examples of the top-side ionospheric parameters that are recorded differently by most Global Positioning System (GPS) receivers. The new GPS sensor created by the Atmospheric and Space Technology Research Associates (ASTRA), Cornell University, [...] Read more.
Scintillation and total electron content (TEC) are the two major examples of the top-side ionospheric parameters that are recorded differently by most Global Positioning System (GPS) receivers. The new GPS sensor created by the Atmospheric and Space Technology Research Associates (ASTRA), Cornell University, and the University of Texas, Austin have capability to record scintillation and TEC fluctuations simultaneously. Hence, the Connected Autonomous Space Environment Sensor (CASES) from ASTRA is a software-defined GPS receiver with the dual frequency of L1 C/A and L2C codes for space-weather monitoring and can be remotely programmed via an internet source. The receiver employs numerous novel techniques that make it suitable for space-weather studies compared to other nearby GPS receivers, such as different methods for eliminating local clock effects, an advanced triggering mechanism for determining scintillation onset, data buffering to permit observation of the prelude to scintillation, and data-bit prediction and wipe-off for robust tracking. Moreover, the CASES hardware is made up of a custom-built dual frequency, a digital signal processor board, and a “single board computer” with an ARM microcontroller. We have used the CASES GPS receiver newly installed at Bowen University, Iwo, Nigeria, to investigate the TEC and the rate of the TEC index (ROTI) around the equatorial region. Measurements of the TEC and ROTI showed similar variation trends in monthly, seasonal, and annual periods when compared to TEC and ROTI measurements from a nearby station, BJCO at Cotonou, Benin Republic. The newly installed GPS receiver looks promising for scientific use as it is the only one operational in Nigeria at the moment. Full article
Show Figures

Figure 1

12 pages, 6027 KiB  
Article
Teleconnection between the Surface Wind of Western Patagonia and the SAM, ENSO, and PDO Modes of Variability
by Carolina Gómez-Fontealba, Valentina Flores-Aqueveque and Stephane Christophe Alfaro
Atmosphere 2023, 14(4), 608; https://doi.org/10.3390/atmos14040608 - 23 Mar 2023
Cited by 1 | Viewed by 1435
Abstract
The Southern Westerly Wind (SWW) belt is one of the most important atmospheric features of the Southern Hemisphere (SH). In Patagonia, these winds control the precipitation rates at the windward side of the southern Andes, and rainfall is very sensitive to any change [...] Read more.
The Southern Westerly Wind (SWW) belt is one of the most important atmospheric features of the Southern Hemisphere (SH). In Patagonia, these winds control the precipitation rates at the windward side of the southern Andes, and rainfall is very sensitive to any change (strength and/or latitudinal position) in the wind belt. The present-day behavior of the SWW, also known as westerlies, is characterized by remarkable seasonality. This wind belt also varies at interannual-to-decadal time scales, associated with the influence of atmospheric phenomena such as the El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), respectively. Moreover, during the past few decades, the westerlies have shown an increase in their core strength influenced by changes in the Southern Annular Mode (SAM). However, what controls the long-term variability of the SWW at the high latitudes of the SH is still a matter of debate. This work statistically analyzes the influence of large-scale modes of variability, such as ENSO and PDO on the SAM and the frequency of the strong SWW from ERA5 reanalysis data of southwestern Patagonia (~51°S), where the current core of this belt is located. Our results confirm the relation between strong wind anomalies and the SAM. In addition, the temporal variations of strong winds are also significantly affected by the PDO, but there is no detectable influence of the ENSO on their frequency. This shows that future studies focused on reconstructing wind history from aeolian particles of lake sediments from southwestern Patagonia could also provide information about the modes of variability that influence strong wind frequency. Full article
(This article belongs to the Special Issue Paleoclimate Reconstruction)
Show Figures

Figure 1

26 pages, 19193 KiB  
Article
Evaluating CMIP6 Historical Mean Precipitation over Africa and the Arabian Peninsula against Satellite-Based Observation
by Isaac Kwesi Nooni, Faustin Katchele Ogou, Abdoul Aziz Saidou Chaibou, Francis Mawuli Nakoty, Gnim Tchalim Gnitou and Jiao Lu
Atmosphere 2023, 14(3), 607; https://doi.org/10.3390/atmos14030607 - 22 Mar 2023
Cited by 8 | Viewed by 2624
Abstract
This study evaluated the historical precipitation simulations of 49 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) in reproducing annual and seasonal precipitation climatology, linear trends, and their spatial correlation with global SST across Africa and the Arabian [...] Read more.
This study evaluated the historical precipitation simulations of 49 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) in reproducing annual and seasonal precipitation climatology, linear trends, and their spatial correlation with global SST across Africa and the Arabian Peninsula during the period of 1980–2014, using Global Precipitation Climatology Centre (GPCP) data as a reference. Taylor’s diagram was used to quantify the strengths and weaknesses of the models in simulating precipitation. The CMIP6 multi-mean ensemble (MME) and the majority of the GCMs replicated the dominant features of the spatial and temporal variations reasonably well. The CMIP6 MME outperformed the majority of the individual models. The spatial variation of the CMIP6 MME closely matched the observation. The results showed that at annual and seasonal scales, the GPCP and CMIP6 MME reproduced a coherent spatial pattern in terms of the magnitude of precipitation. The humid region received >300 mm and the arid region received <50 mm across Africa and the Arabian Peninsula. The models from the same modeling centers replicated the precipitation levels across different seasons and regions. The CMIP6 MME and the majority of the individual models overestimate (underestimate) in humid (arid and semi-arid)-climate zones. The annual and pre-monsoon seasons (i.e., DJFMA) were better replicated in the CMIP6 GCMs than in the monsoon-precipitation model (MJJASON). The CMIP6 MME (GPCP) showed stronger wetting (drying) trends in the northern hemisphere. In contrast, a strong drying trend in the CMIP6 MME and a weak wetting trend in the GPCP were shown in the Southern Hemisphere. The CMIP6 MME captures the spatial pattern of linear trends better than individual models across different climate zones and regions. The relationship between precipitation and sea-surface temperature (SST) exhibited a high spatial correlation (−0.80 and 0.80) with large variability across different regions and climate zones. The GPCP (CMIP6 MME) exhibited a heterogenous (homogeneous) spatial pattern, with higher correlation coefficients recorded in the CMIP6 MME than in the GPCP in all cases. Individual models from the same modeling centers showed spatial homogeneity in correlation values. The differences exhibited by the individual GCMs highlight the significance of each model’s unique dynamics and physics; however, model selection should be considered for specific applications. Full article
(This article belongs to the Special Issue Precipitation in Africa)
Show Figures

Figure 1

18 pages, 5519 KiB  
Article
Simulation and Analysis of the Influence of Sounding Rocket Outgassing on In-Situ Atmospheric Detection
by Zhiliang Zhang, Yueqiang Sun, Yongping Li, Jiangzhao Ai, Xiaoliang Zheng and Wei Wang
Atmosphere 2023, 14(3), 603; https://doi.org/10.3390/atmos14030603 - 22 Mar 2023
Viewed by 1254
Abstract
The Meridian Project’s sounding rocket mission uses a mass spectrometer to conduct in-situ atmospheric detection. In order to assess the influence of surface material outgassing and the attitude control jet on the spectrometer’s detection, a sounding rocket platform was modeled and simulated. Using [...] Read more.
The Meridian Project’s sounding rocket mission uses a mass spectrometer to conduct in-situ atmospheric detection. In order to assess the influence of surface material outgassing and the attitude control jet on the spectrometer’s detection, a sounding rocket platform was modeled and simulated. Using the physical field simulation software COMSOL and the Monte Carlo method, this study investigated whether the gas molecules from the two cases could enter the in-situ atmospheric mass spectrometer’s sensor sampling port after colliding with the background atmosphere. The simulation results show that the influence of surface material outgassing on the in-situ atmospheric detection is very small, even under the conditions of medium solar activity and medium geomagnetic activity, while the influence of the attitude control jet on the in-situ atmospheric detection is large but can be reduced by reducing the low-altitude attitude control operation and decreasing the transmission probability. Through simulation optimization and according to engineering needs, increasing the nozzle outlet cross-sectional area, increasing the temperature of the gas used for attitude control, increasing the nozzle rotation angle, increasing the nozzle outlet angle, or increasing the nozzle center height can reduce the transmission probability. This model can simulate and analyze the influence of both surface material outgassing and attitude control jets on in-situ atmospheric detection, optimize relevant parameters, and provide new ideas for relevant work. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

19 pages, 2649 KiB  
Article
Tree Traits and Microclimatic Conditions Determine Cooling Benefits of Urban Trees
by Mahmuda Sharmin, Mark G. Tjoelker, Sebastian Pfautsch, Manuel Esperón-Rodriguez, Paul D. Rymer and Sally A. Power
Atmosphere 2023, 14(3), 606; https://doi.org/10.3390/atmos14030606 - 22 Mar 2023
Cited by 6 | Viewed by 2898
Abstract
Trees play a key role in mitigating urban heat by cooling the local environment. This study evaluated the extent to which street trees can reduce sub-canopy air temperature relative to ambient conditions (ΔT), and how ΔT relates to tree traits and microclimatic variables. [...] Read more.
Trees play a key role in mitigating urban heat by cooling the local environment. This study evaluated the extent to which street trees can reduce sub-canopy air temperature relative to ambient conditions (ΔT), and how ΔT relates to tree traits and microclimatic variables. Air temperature under the canopies of 10 species was recorded within residential areas in Western Sydney, Australia, during summer 2019–2020. Tree and canopy traits, namely tree height, specific leaf area, leaf dry matter content, leaf area index, crown width and the Huber value (the ratio of sapwood area to leaf area) were then measured for all species. Species differed significantly in their ΔT values, with peak cooling (maximum ΔT −3.9 °C) observed between 9–10 am and sub-canopy warming (i.e., positive ΔT values) typically occurring during afternoon and overnight. Trees with high LAI and wider canopies were associated with the greatest daytime cooling benefits and lower levels of nighttime warming. ΔT was also negatively related to windspeed and vapor pressure deficit, and positively to solar irradiance. This study provides valuable information on how tree characteristics and microclimate influence potential cooling benefits that may aid planning decisions on the use of trees to mitigate heat in urban landscapes. Full article
(This article belongs to the Special Issue Strategies for Mitigation and Adaptation to Urban Heat)
Show Figures

Figure 1

13 pages, 4586 KiB  
Article
Thermospheric NO Cooling during an Unusual Geomagnetic Storm of 21–22 January 2005: A Comparative Study between TIMED/SABER Measurements and TIEGCM Simulations
by Tikemani Bag, Diptiranjan Rout, Yasunobu Ogawa and Vir Singh
Atmosphere 2023, 14(3), 556; https://doi.org/10.3390/atmos14030556 - 14 Mar 2023
Cited by 4 | Viewed by 1267
Abstract
The geomagnetic storm is the manifestation of the solar wind–magnetosphere interaction. It deposits huge amount of the solar energy into the magnetosphere–ionosphere–thermosphere (MIT) system. This energy creates global perturbations in the chemistry, dynamics, and energetics of the MIT system. The high latitude energy [...] Read more.
The geomagnetic storm is the manifestation of the solar wind–magnetosphere interaction. It deposits huge amount of the solar energy into the magnetosphere–ionosphere–thermosphere (MIT) system. This energy creates global perturbations in the chemistry, dynamics, and energetics of the MIT system. The high latitude energy deposition results in the Joule and particle heating that subsequently increases the thermospheric temperature. The thermospheric temperature is effectively regulated by the process of thermospheric cooling emission by nitric oxide via 5.3 µm. A peculiar, intense geomagnetic storm (Dst = −105 nT) occurred during 21–22 January 2005, where the main phase developed during the northward orientation of the z-component of interplanetary magnetic field. We utilized the nitric oxide 5.3 µm infrared emission from the NCAR’s Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIEGCM) simulation and the Sounding of Atmosphere using Broadband Emission Radiometry (SABER) onboard the thermosphere–ionosphere–mesosphere energetic and dynamics satellite to investigate its response to this anomalous geomagnetic storm. We compared the model results with the observations on both the local and global scales. It is observed that the model results agree very well with the observations during quiet times. However, the model severely underestimates the cooling emission by one-fourth of the observations, although it predicts an enhancement in the thermospheric temperature and densities of atomic oxygen and nitric oxide during the geomagnetic storm. Full article
(This article belongs to the Special Issue Structure and Dynamics of Mesosphere and Lower Thermosphere)
Show Figures

Figure 1

24 pages, 15320 KiB  
Article
Daily Precipitation and Temperature Extremes in Southern Italy (Calabria Region)
by Giuseppe Prete, Elenio Avolio, Vincenzo Capparelli, Fabio Lepreti and Vincenzo Carbone
Atmosphere 2023, 14(3), 553; https://doi.org/10.3390/atmos14030553 - 14 Mar 2023
Viewed by 1583
Abstract
We apply extreme value theory (EVT) to study the daily precipitation and temperature extremes in the Calabria region (southern Italy) mainly considering a long-term observational dataset (1990–2020) and also investigating the possible use of the ERA5 (ECMWF Reanalysis v5) fields. The efficiency of [...] Read more.
We apply extreme value theory (EVT) to study the daily precipitation and temperature extremes in the Calabria region (southern Italy) mainly considering a long-term observational dataset (1990–2020) and also investigating the possible use of the ERA5 (ECMWF Reanalysis v5) fields. The efficiency of the EVT applied on the available observational dataset is first assessed—both through a punctual statistical analysis and return-level maps. Two different EVT methods are adopted, namely the peak-over-threshold (POT) approach for the precipitation and the block-maxima (BM) approach for the temperature. The proposed methodologies appear to be suitable for describing daily extremes both in quantitative terms, considering the punctual analysis in specific points, and in terms of the most affected areas by extreme values, considering the return-level maps. Conversely, the analysis conducted using the reanalysis fields for the same time period highlights the limitations of using these fields for a correct quantitative reconstruction of the extremes while showing a certain consistency regarding the areas most affected by extreme events. By applying the methodology on the observed dataset but focusing on return periods of 50 and 100 years, an increasing trend of daily extreme rainfall and temperature over the whole region emerges, with specific areas more affected by these events; in particular, rainfall values up to 500 mm/day are predicted in the southeastern part of Calabria for the 50-year-return period, and maximum daily temperatures up to 40 °C are expected in the next 100 years, mainly in the western and southern parts of the region. These results offer a useful perspective for evaluating the exacerbation of future extreme weather events possibly linked to climate change effects. Full article
(This article belongs to the Special Issue Climate Extremes and Their Impacts)
Show Figures

Figure 1

18 pages, 9367 KiB  
Article
Characteristics of Heat Waves in Mainland China since 1961 Based on Absolute and Relative Methods
by Honghua Ji, Aiqing Feng, Yufei Zhao, Jie Liao, Zhisen Zhang, Changgui Gu and Aixia Feng
Atmosphere 2023, 14(3), 544; https://doi.org/10.3390/atmos14030544 - 12 Mar 2023
Cited by 1 | Viewed by 1899
Abstract
Based on gridded temperature data from the China Meteorological Administration (CMA), two types of methods, i.e., absolute methods and relative methods, respectively, were used to identify heat waves in Mainland China. Four statistical indicators, including the occurrence frequency, duration days, earliest occurrence date, [...] Read more.
Based on gridded temperature data from the China Meteorological Administration (CMA), two types of methods, i.e., absolute methods and relative methods, respectively, were used to identify heat waves in Mainland China. Four statistical indicators, including the occurrence frequency, duration days, earliest occurrence date, and latest extinction date, were constructed to analyze the spatial-temporal characteristics of heat waves, especially on the annual and decadal change trends. Firstly, we found that both the frequency and the duration of heat waves decreased in the period from 1960 to 1989 but increased in the 1990s and increased significantly from the early 2000s to the 2010s. Spatially, the frequency and the duration obtained by each type of method are significantly different among different regions when considering different facts, such as different regions that have different degrees of tolerance to heat waves. Secondly, the decadal distribution characteristics of the earliest occurrence date and the latest extinction date of heat waves well capture the hot summer, the stronger sensitivity of winter to warming than other seasons, and the gradually increasing intensity of heat waves. It provides a multidimensional reference for the cause analysis and prediction of extreme heat waves in China. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

21 pages, 4573 KiB  
Article
Integrated Assessment Modelling of Future Air Quality in the UK to 2050 and Synergies with Net-Zero Strategies
by Helen ApSimon, Tim Oxley, Huw Woodward, Daniel Mehlig, Mike Holland and Sarah Reeves
Atmosphere 2023, 14(3), 525; https://doi.org/10.3390/atmos14030525 - 09 Mar 2023
Cited by 4 | Viewed by 1876
Abstract
Integrated assessment modelling (IAM) has been successfully used in the development of international agreements to reduce transboundary pollution in Europe, based on the GAINS model of IIASA. At a national level in the UK, a similar approach has been taken with the UK [...] Read more.
Integrated assessment modelling (IAM) has been successfully used in the development of international agreements to reduce transboundary pollution in Europe, based on the GAINS model of IIASA. At a national level in the UK, a similar approach has been taken with the UK Integrated Assessment Model, UKIAM, superimposing pollution abatement measures and behavioural change on energy projections designed to meet targets set for the reduction of greenhouse gas emissions and allowing for natural and imported contributions from other countries and shipping. This paper describes how the UKIAM was used in the development of proposed targets for the reduction of fine particulate PM2.5 in the UK Environment Act, exploring scenarios encompassing different levels of ambition in reducing the emissions of air pollutants up to 2050, with associated health and other environmental benefits. There are two PM2.5 targets, an annual mean concentration target setting a maximum concentration to be reached by a future year, and a population exposure reduction target with benefits for health across the whole population. The work goes further, also demonstrating links to social deprivation. There is a strong connection between climate measures aimed at reducing net GHG emissions to zero by 2050 and future air quality, which may be positive or negative, as illustrated by sectoral studies for road transport where electrification of the fleet needs to match the evolution of energy production, and for domestic heating, where the use of wood for heating is an air quality issue. The UKIAM has been validated against air pollution measurements and other types of modelling, but there are many uncertainties, including future energy projections. Full article
Show Figures

Figure 1

21 pages, 3615 KiB  
Article
A Study of Two High Intensity Fires across Corsican Shrubland
by Jacky Fayad, Frédéric Morandini, Gilbert Accary, François-Joseph Chatelon, Clément Wandon, Antoine Burglin, Lucile Rossi, Thierry Marcelli, Dominique Cancellieri, Valérie Cancellieri, Dominique Morvan, Sofiane Meradji, Antoine Pieri, Gilles Planelles, René Costantini, Patrice Briot and Jean-Louis Rossi
Atmosphere 2023, 14(3), 473; https://doi.org/10.3390/atmos14030473 - 27 Feb 2023
Cited by 5 | Viewed by 1492
Abstract
This paper reports two experimental fires conducted at field-scale in Corsica, across a particular mountain shrubland. The orientation of the experimental plots was chosen in such a way that the wind was aligned along the main slope direction in order to obtain a [...] Read more.
This paper reports two experimental fires conducted at field-scale in Corsica, across a particular mountain shrubland. The orientation of the experimental plots was chosen in such a way that the wind was aligned along the main slope direction in order to obtain a high intensity fire. The first objective was to study the high intensity fire behavior by evaluating the propagation conditions related to its speed and intensity, as well as the geometry of the fire front and its impact on different targets. Therefore, an experimental protocol was designed to determine the properties of the fire spread using UAV cameras and its impact using heat flux gauges. Another objective was to study these experiments numerically using a fully physical fire model, namely FireStar3D. Numerical results concerning the fire dynamics, particularly the ROS, were also compared to other predictions of the FireStar2D model. The comparison with experimental measurements showed the robustness of the 3D approach with a maximum difference of 5.2% for the head fire ROS. The fire intensities obtained revealed that these experiments are representative of high intensity fires, which are very difficult to control in the case of real wildfires. Other parameters investigated numerically (flame geometry and heat fluxes) were also in fairly good agreement with the experimental measurements and confirm the capacity of FireStar3D to predict surface fires of high intensity. Full article
Show Figures

Figure 1

14 pages, 6817 KiB  
Article
Particle Size Matters: Distribution, Source, and Seasonality Characteristics of Airborne and Pathogenic Bacteria in Wastewater Treatment Plants
by Jianan Wan, Zhiruo Zhang, Yang Huo, Xianze Wang, Yifan Wang, Jinghui Wu and Mingxin Huo
Atmosphere 2023, 14(3), 465; https://doi.org/10.3390/atmos14030465 - 26 Feb 2023
Cited by 1 | Viewed by 1591
Abstract
Wastewater treatment plants (WWTPs) are a crucial source of bioaerosols, which account for both environmental and health hazards. Although various culture-based studies on bioaerosols have been reported, little knowledge remains about distribution and potential risks for more omnipresent non-culturable bacterial aerosols. Here, in [...] Read more.
Wastewater treatment plants (WWTPs) are a crucial source of bioaerosols, which account for both environmental and health hazards. Although various culture-based studies on bioaerosols have been reported, little knowledge remains about distribution and potential risks for more omnipresent non-culturable bacterial aerosols. Here, in summer, an eight-stage Andersen air sampler was applied to capture particles of various sizes from the atmospheric environment of eight treatment units from two WWTPs in northeastern China. Particles of various sizes in aeration tank (AT) were sampled in autumn and winter. The abundance and community composition of the bacterial aerosols were investigated using 16S rRNA gene sequencing. In order to explore the importance of particle size on community composition of bacterial aerosols, this study investigated the particle size distribution of bacterial aerosols in different treatment units. The results indicated that the sludge dewatering room was the major source of bacterial aerosols in both WWTPs, with the abundance of stage VII (0.65–1.1 μm) demonstrating a 4-fold to 9-fold increase when compared to any other treatment unit. The highest relative abundance of bacterial aerosols was in autumn, while the lowest was found in winter. However, most particles detected in autumn were larger than 4.7 µm in diameter, while submicron particles (less than 1.1 µm, over 40%) were detected primarily in winter. The most 15 dominant bacterial aerosol genera in were observed at submicron level, and about half of the genera (6 and 8) were detected as human pathogens, suggesting their easier penetration to human respiratory tracts. This study demonstrates that size distribution characteristics should be crucial information for the comprehensive assessment of the potential health risks of bacterial aerosols from WWTPs. Full article
(This article belongs to the Special Issue Contributions of Emission Inventory to Air Quality)
Show Figures

Figure 1

16 pages, 4980 KiB  
Article
A Comparison of the Tourist Potential of the Climates of the Coastal Resort at Odesa and the Inland Resort by Lake Svityaz
by Olga Shevchenko, Sergiy Snizhko, Oleg Gryniuk and Andreas Matzarakis
Atmosphere 2023, 14(3), 460; https://doi.org/10.3390/atmos14030460 - 25 Feb 2023
Viewed by 1316
Abstract
The aim of this study is to evaluate and compare the human-biometeorological conditions at two resorts in Ukraine: a coastal resort located at Odesa in southern Ukraine and an inland resort situated by the lake at Svityaz situated in northwest Ukraine. The results [...] Read more.
The aim of this study is to evaluate and compare the human-biometeorological conditions at two resorts in Ukraine: a coastal resort located at Odesa in southern Ukraine and an inland resort situated by the lake at Svityaz situated in northwest Ukraine. The results of this study can facilitate the assessment of the tourist potentials of both locations by the tourism industry, tour operators, and tourists. The evaluation is based on an analysis of the Physiologically Equivalent Temperature (PET) and parameters presented through the Climate–Tourism/Transfer–Information Scheme (CTIS) for the period 1991–2020. The CTIS data reveal that better conditions in terms of thermal comfort can be found during the warm period from May to September at both sites. The results show that the highest frequency of all grades of heat stress are observed in the last 10-day period of July and in the first 10-day period of August at both stations, but at Odesa, the frequency of heat stress of any grade is approximately 10% higher than at Svityaz. The frequency of moderate, strong and extreme heat stress during the daytime in July and in the first two 10-day periods of August at Odesa ranged from 51.3% to 66.5%, and at Svityaz it ranged between 40.2 and 54.6%. Human-biometeorological conditions during heat waves are more strenuous at Odesa. The frequency of days with extreme heat stress at 12 UTC during summer heat waves is 48.4% at Odesa and 35.6% at Svityaz. The results show a higher frequency of thermal stress at Odesa, which makes this resort less comfortable for people vulnerable to heat stress. Full article
(This article belongs to the Section Biometeorology)
Show Figures

Figure 1

17 pages, 18311 KiB  
Article
Quantifying the Impact of Canopy Structural Characteristics on Soil Temperature Variations in Different Bamboo Communities
by Tingting Ma, Xinge Nan, Renwu Wu, Hai Yan, Na Wu, Juan She and Zhiyi Bao
Atmosphere 2023, 14(3), 445; https://doi.org/10.3390/atmos14030445 - 23 Feb 2023
Cited by 3 | Viewed by 2107
Abstract
Soil temperature plays an important role in soil respiration, which is related to the atmospheric carbon cycle. In addition to its own physical and chemical properties, soil temperature is also influenced by external environmental factors, including plants. Therefore, it is relevant to explore [...] Read more.
Soil temperature plays an important role in soil respiration, which is related to the atmospheric carbon cycle. In addition to its own physical and chemical properties, soil temperature is also influenced by external environmental factors, including plants. Therefore, it is relevant to explore the relationship between plant characteristics and soil temperature. This study was conducted in Hangzhou, China. The influence of canopy structural characteristics of bamboo communities on soil temperature was investigated in detail by means of field measurements. In summer, the canopy structure of bamboo communities reduced the soil temperature by up to 3.0–3.8 °C, 2.4–3.4 °C, and 2.3–3.0 °C at 5 cm, 10 cm, and 20 cm, respectively. In winter, the canopy structure of bamboo communities increased soil temperature by up to 0.1–0.4 °C, 0.1–0.6 °C, and 0.2–0.7 °C at 5 cm, 10 cm, and 20 cm, respectively. The leaf area index and canopy cover significantly affected the soil temperature, while the effect of the sky view factor was minimal compared to other factors. We also discovered that soil temperatures at different depths interact and are influenced by the air temperature. These findings provide a more reasonable bamboo canopy plan to improve the urban environment effectively. Full article
(This article belongs to the Special Issue Urban Green and Blue Infrastructures for Heat Mitigation)
Show Figures

Figure 1

26 pages, 17840 KiB  
Article
Performance of the WRF Model for the Forecasting of the V-Shaped Storm Recorded on 11–12 November 2019 in the Eastern Sicily
by Giuseppe Castorina, Agostino Semprebello, Vincenzo Insinga, Francesco Italiano, Maria Teresa Caccamo, Salvatore Magazù, Mauro Morichetti and Umberto Rizza
Atmosphere 2023, 14(2), 390; https://doi.org/10.3390/atmos14020390 - 16 Feb 2023
Cited by 2 | Viewed by 1855
Abstract
During the autumn season, Sicily is often affected by severe weather events, such as self-healing storms called V-shaped storms. These phenomena cause significant total rainfall quantities in short time intervals in localized spatial areas. In this framework, this study analyzes the meteorological event [...] Read more.
During the autumn season, Sicily is often affected by severe weather events, such as self-healing storms called V-shaped storms. These phenomena cause significant total rainfall quantities in short time intervals in localized spatial areas. In this framework, this study analyzes the meteorological event recorded on 11–12 November 2019 in Sicily (southern Italy), using the Weather Research and Forecasting (WRF) model with a horizontal spatial grid resolution of 3 km. It is important to note that, in this event, the most significant rainfall accumulations were recorded in eastern Sicily. In particular, the weather station of Linguaglossa North Etna (Catania) recorded a total rainfall of 293.6 mm. The precipitation forecasting provided by the WRF model simulation has been compared with the data recorded by the meteorological stations located in Sicily. In addition, a further simulation was carried out using the Four-Dimensional Data Assimilation (FDDA) technique to improve the model capability in the event reproduction. In this regard, in order to evaluate which approach provides the best performance (with or without FDDA), the Root Mean Square Error (RMSE) and dichotomous indexes (Accuracy, Threat Score, BIAS, Probability of Detection, and False Alarm Rate) were calculated. Full article
(This article belongs to the Special Issue The Impact of Data Assimilation on Severe Weather Forecast)
Show Figures

Figure 1

15 pages, 6585 KiB  
Article
Impact Analysis of Super Typhoon 2114 ‘Chanthu’ on the Air Quality of Coastal Cities in Southeast China Based on Multi-Source Measurements
by Fei Li, Qiuping Zheng, Yongcheng Jiang, Aiping Xun, Jieru Zhang, Hui Zheng and Hong Wang
Atmosphere 2023, 14(2), 380; https://doi.org/10.3390/atmos14020380 - 15 Feb 2023
Viewed by 1347
Abstract
The northward typhoon configuration along the southeast coast of China (TCN-SEC) is one of the key circulation patterns influencing the coastal cities in southeast China (CCSE). Here, we analyzed the air quality in CCSE during the high-incidence typhoon period from 2019 [...] Read more.
The northward typhoon configuration along the southeast coast of China (TCN-SEC) is one of the key circulation patterns influencing the coastal cities in southeast China (CCSE). Here, we analyzed the air quality in CCSE during the high-incidence typhoon period from 2019 to 2021. Multi-source measurements were carried out to explore the impact of super typhoon 2114 ‘Chanthu’ on the air quality in CCSE. The results showed that the TCN-SEC and its surrounding weather situation had a favorable impact on the increase in pollutant concentration in CCSE, especially on the increase in O3 concentration. From 13 September to 17 September 2021, affected by the cyclonic shear in the south of super typhoon 2114 ‘Chanthu,’ the strong wind near the ground, stable relative humidity, strong precipitation, and the significantly reduced wind speed had a substantial effect on PM10, PM2.5, SO2, and NO2 concentrations. Calm and light air near the ground, weak precipitation, high daily maximum temperatures, and minimum relative humidity may provide favorable meteorological conditions for the accumulation of O3 precursors and photochemical reactions during the day, resulting in the daily peak values of O3 exceeding 160 μg/m3. The evolution of wind, relative humidity, and boundary layer height could play an important role in the variations in PM10 and PM2.5 concentrations by influencing pollutant accumulation or diffusion. It was suggested that the atmospheric structure of horizontal stability and vertical mixing below 1500 m could play a significant role in the accumulation and vertical distribution of ozone. The results highlight the important role of typhoons in the regional environment and provide a scientific basis for further application of multi-source observation data, as well as air pollution control. Full article
(This article belongs to the Special Issue Air Pollution and Climate Issues in the Coastal Atmosphere of China)
Show Figures

Figure 1

18 pages, 2590 KiB  
Article
Continuous Measurements and Source Apportionment of Ambient PM2.5-Bound Elements in Windsor, Canada
by Tianchu Zhang, Yushan Su, Jerzy Debosz, Michael Noble, Anthony Munoz and Xiaohong Xu
Atmosphere 2023, 14(2), 374; https://doi.org/10.3390/atmos14020374 - 14 Feb 2023
Cited by 6 | Viewed by 1670
Abstract
Ambient fine particulate matter (PM2.5) levels in Windsor, Ontario, Canada, are impacted by local emissions and regional/transboundary transport input and also attributable to secondary formation. PM2.5-bound elements were monitored hourly in Windsor from April to October 2021. Observed concentrations [...] Read more.
Ambient fine particulate matter (PM2.5) levels in Windsor, Ontario, Canada, are impacted by local emissions and regional/transboundary transport input and also attributable to secondary formation. PM2.5-bound elements were monitored hourly in Windsor from April to October 2021. Observed concentrations of the elements were generally comparable to historical measurements at urban sites in Ontario. A clear diurnal pattern was observed for most of the elements, i.e., high in the morning and low in the afternoon, mostly related to evolution of atmospheric mixing heights and local anthropogenic activities. Conversely, sulfur showed elevated levels in the afternoon, suggesting conversion of gaseous sulfur dioxide to particulate sulphate was enhanced by increased ambient temperatures. Five source factors were resolved using the US EPA positive matrix factorization model, including three traffic-related sources (i.e., vehicular exhaust, crustal dust, and vehicle tire and brake wear factors) and two industrial sources (i.e., coal/heavy oil burning and metal processing factors). Overall, the three traffic-related sources were mostly local and contributed to 47% of the total elemental concentrations, while the two industrial sources may originate from regional/transboundary sources and contributed to 53%. Measures to control both local traffic emissions and regional/transboundary industrial sources would help reduce levels of PM2.5-bound elements in Windsor. Full article
(This article belongs to the Special Issue The Michigan-Ontario Ozone Source Experiment (MOOSE))
Show Figures

Figure 1

15 pages, 5880 KiB  
Article
Identification of Patterns and Relationships of Jet Stream Position with Flood-Prone Precipitation in Iran during 2006–2019
by Iman Rousta, Abazar Esmaeili Mahmoudabadi, Parisa Amini, Armin Nikkhah, Haraldur Olafsson, Jaromir Krzyszczak and Piotr Baranowski
Atmosphere 2023, 14(2), 351; https://doi.org/10.3390/atmos14020351 - 10 Feb 2023
Viewed by 1810
Abstract
Jet streams are atmospheric phenomena that operate on a synoptic scale and can intensify the descending/ascending conditions of the air at the lower levels of the atmosphere. This study aimed to identify the patterns and location of the jet stream in southwest Asia [...] Read more.
Jet streams are atmospheric phenomena that operate on a synoptic scale and can intensify the descending/ascending conditions of the air at the lower levels of the atmosphere. This study aimed to identify the patterns and location of the jet stream in southwest Asia during the days of widespread rainfall in Iran based on two criteria: “highest frequency of stations involved” and “maximum cumulative amount on the day of peak rainfall”. For this purpose, the daily precipitation data for 42 synoptic stations in Iran during the period 2006–2019 from the Meteorological Organization of Iran, the daily data at 500 hPa Geopotential Height (HGT), and U and V wind components at 500 and 300 hPa from NCEP/NCAR were gathered. Synoptic patterns were obtained based on daily precipitation data, daily maps at HGT 500 hPa, and U and V wind components at 500 and 300 hPa. The analysis of patterns showed that the position of precipitation cores is associated with the position and extension of jet stream centers at 300 hPa in winter, spring, and autumn. The main position of jet stream cores during flood-causing rainfall at 300 hPa was over the northern part of Saudi Arabia, the Mesopotamia basin, and southern Iran. This position seems to have provided the conditions for the convergence of the earth’s surface and the divergence of the atmosphere for the easy passage of moisture from the Red Sea, Aden Sea, and the Persian Gulf, and in the second rank, the Mediterranean Sea and the Arabian Sea. Full article
(This article belongs to the Special Issue Improving Extreme Precipitation Simulation)
Show Figures

Figure 1

35 pages, 50487 KiB  
Article
Urban Heat Risk: Protocols for Mapping and Implications for Colombo, Sri Lanka
by Rohinton Emmanuel, Mushfik Jalal, Samson Ogunfuyi, Nusrath Maharoof, Megi Zala, Narein Perera and Rangajeewa Ratnayake
Atmosphere 2023, 14(2), 343; https://doi.org/10.3390/atmos14020343 - 08 Feb 2023
Viewed by 2553
Abstract
Global and urban-induced local warming lead to increasing heat risk in cities. The rapid increase in urban population, weak infrastructure, poverty, as well as an ageing population, make the risk more acute in developing cities. However, heat risk is not uniformly distributed and [...] Read more.
Global and urban-induced local warming lead to increasing heat risk in cities. The rapid increase in urban population, weak infrastructure, poverty, as well as an ageing population, make the risk more acute in developing cities. However, heat risk is not uniformly distributed and a detailed exploration of the link between urban characteristics and local variations in heat risk is needed to aid targeted mitigation. In this paper, we demonstrate a fine-grained heat risk map using existing data combined with expert opinion in a humid tropical city (Colombo, Sri Lanka) with the objective of highlighting the relative heat risk as a function of physical and socioeconomic conditions across the city. We then simulate the effects of shading and greening on the ‘high’ heat risk areas, and greening on the ‘low’ heat risk areas, to show that a combined approach will be needed to reduce risk at ‘high’ risk areas. In ‘low’ risk areas, maintaining the green cover is crucial to heat risk reduction. The paper, thus, establishes a protocol for detailed heat risk mapping with existing data and points to the differing importance of shading and greening in different parts of the city, thus, showing where, and to what extent, mitigation actions could be beneficial. Full article
(This article belongs to the Section Biometeorology)
Show Figures

Figure 1

13 pages, 3256 KiB  
Article
Airglow Observation and Statistical Analysis of Plasma Bubbles over China
by Xin Ma, Mengjie Wu, Peng Guo and Jing Xu
Atmosphere 2023, 14(2), 341; https://doi.org/10.3390/atmos14020341 - 08 Feb 2023
Viewed by 1312
Abstract
Airglow observation is a very effective method to investigate plasma bubbles, and can obtain their horizontal structure. In this study, the image processing method was used to process airglow data, including image enhancement, azimuth correction, and image projection, and the clear image products [...] Read more.
Airglow observation is a very effective method to investigate plasma bubbles, and can obtain their horizontal structure. In this study, the image processing method was used to process airglow data, including image enhancement, azimuth correction, and image projection, and the clear image products of equatorial plasma bubbles (EPBs) were obtained. Based on the optical data of the airglow imager in Hainan, we investigated the main optical features of EPBs, and statistically analyzed the occurrence of EPBs from September 2014 to August 2015. The observation results show that EPB exhibits plume-shaped structures, usually tilting westward, and EPB extends to a long distance along the geomagnetic field lines. It is found that the west wall of EPB is relatively stable, while there are some bifurcations on the east wall of EPB, and the bifurcation of EPB becomes more pronounced with time. Moreover, the spatial scale of EPB gradually increases with time, which is about several hundred kilometers, and the drift velocity of EPB is in the range of 40–130 m/s (+/−20 m/s). The statistical results show that EPBs mainly occur in the months of September to November and February to April, with a higher occurrence rate. In terms of seasonal occurrence, EPBs tend to appear more frequently in spring and autumn, and the occurrence rate of EPBs is relatively low in winter and summer. Full article
(This article belongs to the Special Issue Ionospheric Science and Ionosonde Applications)
Show Figures

Figure 1

28 pages, 11346 KiB  
Article
Identification of Large-Scale Travelling Ionospheric Disturbances (LSTIDs) Based on Digisonde Observations
by Ioanna Tsagouri, Anna Belehaki, Konstantinos Koutroumbas, Konstantinos Tziotziou and Themistocles Herekakis
Atmosphere 2023, 14(2), 331; https://doi.org/10.3390/atmos14020331 - 07 Feb 2023
Cited by 3 | Viewed by 2231
Abstract
In this paper we analyze Digisonde observations obtained in the European region to specify the effects of large-scale travelling ionospheric disturbances (LSTIDs) on the ionospheric characteristics that define the conditions in the bottomside ionosphere. While this type of disturbances affects all frequency ranges [...] Read more.
In this paper we analyze Digisonde observations obtained in the European region to specify the effects of large-scale travelling ionospheric disturbances (LSTIDs) on the ionospheric characteristics that define the conditions in the bottomside ionosphere. While this type of disturbances affects all frequency ranges in the F region, the most pronounced effect is detected in the foF2 critical frequency, where the density is the highest. During LSTID activity, a significant uplifting of the F2 layer is observed to accompany an oscillation pattern in the foF2. Concurrent variations in the height of the peak electron density hmF2 and the corresponding scale height, Hm are also observed. These findings are used to propose a new methodology for the identification of LSTIDs, comprising a combination of different criteria. The efficiency of the proposed methodology is tested at middle latitudes during geomagnetically quiet and disturbed intervals as well as during time periods of lower atmosphere forcing affecting the ionosphere. Full article
(This article belongs to the Special Issue Ionospheric Science and Ionosonde Applications)
Show Figures

Figure 1

28 pages, 15502 KiB  
Review
Thunderstorm Ground Enhancements Measured on Aragats and Progress of High-Energy Physics in the Atmosphere
by Ashot Chilingarian
Atmosphere 2023, 14(2), 300; https://doi.org/10.3390/atmos14020300 - 02 Feb 2023
Cited by 3 | Viewed by 1362
Abstract
High-energy physics in the atmosphere (HEPA) has undergone an intense reformation in the last decade. Correlated measurements of particle fluxes modulated by strong atmospheric electric fields, simultaneous measurements of the disturbances of the near-surface electric fields and lightning location, and registration of various [...] Read more.
High-energy physics in the atmosphere (HEPA) has undergone an intense reformation in the last decade. Correlated measurements of particle fluxes modulated by strong atmospheric electric fields, simultaneous measurements of the disturbances of the near-surface electric fields and lightning location, and registration of various meteorological parameters on the Earth have led to a better understanding of the complex processes in the terrestrial atmosphere. The cooperation of cosmic rays and atmospheric physics has led to the development of models for the origin of particle bursts recorded on the Earth’s surface, estimation of vertical and horizontal profiles of electric fields in the lower atmosphere, recovery of electron and gamma ray energy spectra, the muon deceleration effect, etc. The main goal of this review is to demonstrate how the measurements performed at the Aragats cosmic ray observatory led to new results in atmospheric physics. We monitored particle fluxes around the clock using synchronized networks of advanced sensors that recorded and stored multidimensional data in databases with open, fast, and reliable access. Visualization and statistical analysis of particle data from hundreds of measurement channels disclosed the structure and strength of the atmospheric electric fields and explained observed particle bursts. Consequent solving of direct and inverse problems of cosmic rays revealed the modulation effects that the atmospheric electric field has on cosmic ray fluxes. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

23 pages, 9668 KiB  
Article
Hydrometeorological Hazards on Crop Production in the State of Veracruz, Mexico
by Ofelia Andrea Valdés-Rodríguez, Fernando Salas-Martínez and Olivia Margarita Palacios-Wassenaar
Atmosphere 2023, 14(2), 287; https://doi.org/10.3390/atmos14020287 - 31 Jan 2023
Cited by 1 | Viewed by 2226
Abstract
Hydrometeorological hazards are considered the most important phenomena affecting crop production in the Eastern regions of Mexico, where the State of Veracruz is located. However, more information about their consequences on these sites needs to be studied. This research aims to determine the [...] Read more.
Hydrometeorological hazards are considered the most important phenomena affecting crop production in the Eastern regions of Mexico, where the State of Veracruz is located. However, more information about their consequences on these sites needs to be studied. This research aims to determine the effects of hydrometeorological phenomena on the most important crops cultivated in the State of Veracruz. The methodology involved analyzing the State’s crop production database from 2001 to 2020 and comparing this data with the National Hydrometeorological Disaster Declarations database. Multivariable correlation analysis and geographic information systems were applied to geographically analyze 42 rainfed crops plus the five most valuable ones in the State to determine their production related to climatic phenomena. The results found that the most affected crops are corn, soy, sorghum, beans, and rice, with more than 10,000 lost hectares. Droughts caused total damage to corn, soy, and beans and decreased productivity in corn, orange, lemon, wheat, coffee, and sesame. For the most valuable crops, tropical cyclones caused the highest production decrements in corn, sugar cane, and pineapple, while droughts caused the same effects in lemon and orange. We conclude that tropical cyclones are the most critical phenomena negatively impacting Veracruz, with high implications on the agrifood system. Full article
Show Figures

Figure 1

Back to TopTop