Atmospheric Black Carbon: Monitoring and Assessment

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Air Quality".

Deadline for manuscript submissions: closed (30 October 2024) | Viewed by 824

Special Issue Editor


E-Mail Website
Guest Editor
School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
Interests: atmospheric physics and atmospheric environment; atmospheric remote sensing and atmospheric sounding
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Atmospheric black carbon (BC) absorbs radiation in the ultraviolet and visible spectra. BC, emitted from the incomplete combustion of fossil fuel, biofuel, and biomass, is one of the strongest absorptive aerosols for solar radiation, representing one of the main research fields in atmospheric studies at present. Once being emitted into the atmosphere, BC particles quickly become inhomogeneous during the aging processes. BC and its mixtures influence local and global climate directly by strongly absorbing solar radiation. Due to their complex geometry and mixing structure, our understanding of the optical properties of carbonaceous aerosols is still limited, which makes carbonaceous aerosols one of the largest uncertainties in the estimation of aerosol radiative forcing.

This Special Issue focuses on the monitoring and assessment of BC aerosols, including chemical composition, size distribution, mixing state, optical properties, spatial and temporal distributions, and source apportionment. Moreover, novel methods and techniques for the remote sensing of carbonaceous aerosol properties and other topics related to the climate effects of carbonaceous aerosols are also welcome.

Prof. Dr. Xiaolin Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • black carbon
  • monitoring
  • assessment
  • climate effect
  • mixing state

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 2132 KiB  
Article
The Single-Scattering Albedo of Black Carbon Aerosols in China
by Xiaolin Zhang and Yuanyuan Wu
Atmosphere 2024, 15(10), 1238; https://doi.org/10.3390/atmos15101238 - 16 Oct 2024
Viewed by 430
Abstract
Black carbon (BC) aerosols have attracted wide attention over the world due to their significant climate effects on local and global scales. BC extinction aerosol optical thickness (AOT), scattering AOT, and single scattering albedo (SSA) over China are systematically studied based on the [...] Read more.
Black carbon (BC) aerosols have attracted wide attention over the world due to their significant climate effects on local and global scales. BC extinction aerosol optical thickness (AOT), scattering AOT, and single scattering albedo (SSA) over China are systematically studied based on the MERRA-2 satellite reanalysis data from 1983 to 2022 in terms of the spatial, yearly, seasonal, and monthly variations. The extinction and scattering AOTs of BC show similar spatial distribution, with high values in eastern and southern China, generally as opposed to BC SSA. A decrease in BC extinction and scattering AOTs has been documented over the last decade. The mean BC extinction AOT, scattering AOT, and SSA over China are 0.0054, 0.0014, and 0.26, respectively. The BC SSA showed small variations during 1983–2022, although a high BC extinction AOT and scattering AOT have been seen in the last two decades. During different decades, the seasonal patterns of BC extinction and scattering AOTs may differ, whereas the BC SSA shows seasonal consistency. Significant monthly variations in the BC SSA are seen over four decades, which are in agreement with their seasonal patterns. The mean BC extinction AOTs are 0.037, 0.033, 0.023, and 0.0054, whereas the average BC scattering AOTs are 0.0088, 0.0082, 0.0060, and 0.0014 in the Pearl River Delta (PRD), Yangtze River Delta (YRD), Beijing–Tianjin–Hebei (BTH) region, and Tarim Basin (TB), respectively. It is interesting to see that BC SSA values in the TB region are generally higher than those over the PRD, YRD and BTH areas, whereas the reverse is true for BC extinction and scattering AOTs. This study provides references for further research on black carbon aerosols and air pollution in China. Full article
(This article belongs to the Special Issue Atmospheric Black Carbon: Monitoring and Assessment)
Show Figures

Figure 1

Back to TopTop