Advances in Fatty Acid Metabolism as the Markers of Civilization Diseases 2.0

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Endocrinology and Metabolism Research".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 3242

Special Issue Editor


E-Mail Website
Guest Editor
Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
Interests: fatty acids metabolism; inflammatory process; eicosanoids; SCFA; PUFA; MUFA; nutriepigenomics; chromatography; ischemic stroke; NAFLD; NASH
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fatty acids (FA), as the basic component of cell membranes, participate in maintaining the homeostasis of cellular metabolism, cell signaling and gene expression. Fatty acids are a biochemically diverse group of organic compounds in terms of their structure and origin. Regulatory functions in humans body are performed by both SCFA short-chain fatty acids, produced by the bacteria from gut microbiome, and dietary fatty acids, mainly PUFA n3 and n6. The FA are very important factors modifying a number of metabolic pathways in our body, and at the same time being their components. Eicosanoids, EPA and DHA derivatives, such as prostaglandins, leukotrienes, resolvins, protectins and maresins, are anti-inflammatory or pro-inflammatory mediators. Low-intensity inflammation may be associated with susceptibility to developing non-communicable chronic diseases (NCCD), such as obesity, lipid disorders and NAFLD, cardiovascular diseases (CVD), type 2 diabetes (T2D), insulin resistance , or some types of cancers. It is also believed that disturbance of lipid homeostasis is also associated with neurological disorders as well as neurodegenerative diseases such as Alzheimer's disease (AD).

I have hope that the recent advances in lipidometabolomics help a better understanding of the role of some nutritional factors, including fatty acids, in the development of civilization diseases. It is possible that understanding the fatty acid profile in these diseases will allow for the development of new diagnostic, therapeutic, and prophylactic strategies. I invite scientists to share their experiences in this area in the form of original research and review articles.

Dr. Arleta Drozd
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fatty acids
  • lipidomics
  • biochemistry
  • infalmmation
  • pathophysiological mechanisms
  • lipid mediators
  • gut microbiota
  • NAFLD/NASH
  • insulin resistance
  • type 2 diabetes
  • endocine diseases
  • cardiovascular diseases

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 780 KiB  
Article
No Impact of Enteral Nutrition on Fecal Short-Chain Fatty Acids in Children with Cerebral Palsy
by Dorota Mickiewicz-Góra, Katarzyna Sznurkowska, Arleta Drozd, Anna Borkowska, Maciej Zagierski, Joanna Troch, Karolina Skonieczna-Żydecka and Agnieszka Szlagatys-Sidorkiewicz
Biomedicines 2024, 12(4), 897; https://doi.org/10.3390/biomedicines12040897 - 18 Apr 2024
Viewed by 438
Abstract
Bacteria can impact the host organism through their metabolites, with short-chain fatty acids (SCFAs) being the most important, including acetate (C2), propionate (C3), butyrate (C4), valerate (C5n), and isovalerate (C5i). This study aimed to identify the impact of enteral nutrition on SCFAs in [...] Read more.
Bacteria can impact the host organism through their metabolites, with short-chain fatty acids (SCFAs) being the most important, including acetate (C2), propionate (C3), butyrate (C4), valerate (C5n), and isovalerate (C5i). This study aimed to identify the impact of enteral nutrition on SCFAs in children with cerebral palsy and to test the hypothesis that the type of nutrition in cerebral palsy affects gut SCFA levels. Cerebral palsy is a heterogeneous syndrome resulting from non-progressive damage to the central nervous system. The study group included 30 children diagnosed with cerebral palsy, receiving enteral nutrition (Cerebral Palsy Enteral Nutrition (CPEN)) via gastrostomy. The first reference group (Cerebral Palsy Controls (CPCs)) consisted of 24 children diagnosed with cerebral palsy and fed orally on a regular diet. The second reference group (Healthy Controls (HCs)) consisted of 24 healthy children with no chronic disease and fed on a regular diet. Isolation and measurement of SCFAs were conducted using gas chromatography. Differences were observed in the median contents of isobutyric acid, valeric acid, and isovaleric acid between the CPC group, which had significantly higher levels of those acids than the HC group. No differences were found between the CPEN and CPC groups nor between the CPEN and HC groups. We conclude that enteral nutrition in cerebral palsy has no influence on the levels of SCFAs. Full article
Show Figures

Figure 1

11 pages, 264 KiB  
Article
Circulating Fatty Acids Associate with Metabolic Changes in Adolescents Living with Obesity
by Branko Subošić, Jelena Kotur-Stevuljević, Nataša Bogavac-Stanojević, Vera Zdravković, Maja Ješić, Smiljka Kovačević and Ivana Đuričić
Biomedicines 2024, 12(4), 883; https://doi.org/10.3390/biomedicines12040883 - 17 Apr 2024
Viewed by 442
Abstract
Fatty acids play a crucial role in obesity development and in the comorbidities of obesity in both adults and children. This study aimed to assess the impact of circulating fatty acids on biomarkers of metabolic health of adolescents living with obesity. Parameters such [...] Read more.
Fatty acids play a crucial role in obesity development and in the comorbidities of obesity in both adults and children. This study aimed to assess the impact of circulating fatty acids on biomarkers of metabolic health of adolescents living with obesity. Parameters such as blood lipids, redox status, and leukocyte telomere length (rLTL) were measured alongside the proportions of individual fatty acids. The Mann–Whitney U test revealed that individuals with obesity exhibited an unfavorable lipid and redox status compared to the control normal weight group. The group with obesity also had lower plasma n-3 polyunsaturated fatty acids (PUFAs) and a higher ratio of n-6 to n-3 PUFAs than the control group. They also had a shorter rLTL, indicating accelerated biological aging. There was an inverse association of rLTL and plasma n-6-to-n-3 PUFA ratio. Future studies should explore the impact of recommended nutrition plans and increased physical activity on these parameters to determine if these interventions can enhance the health and well-being of adolescents with obesity, knowing that early obesity can track into adulthood. Full article
13 pages, 2007 KiB  
Article
The Imitation of the Ovarian Fatty Acid Profile of Superfertile Dummerstorf Mouse Lines during IVM of Control Line Oocytes Could Influence Their Maturation Rates
by Michela Calanni-Pileri, Marten Michaelis, Martina Langhammer, Paolo Rosellini Tognetti and Joachim M. Weitzel
Biomedicines 2023, 11(5), 1439; https://doi.org/10.3390/biomedicines11051439 - 13 May 2023
Cited by 1 | Viewed by 1078
Abstract
Declining human fertility worldwide is an attractive research target for the search for “high fertility” genes and pathways to counteract this problem. To study these genes and pathways for high fertility, the superfertile Dummerstorf mouse lines FL1 and FL2 are two unique model [...] Read more.
Declining human fertility worldwide is an attractive research target for the search for “high fertility” genes and pathways to counteract this problem. To study these genes and pathways for high fertility, the superfertile Dummerstorf mouse lines FL1 and FL2 are two unique model organisms representing an improved fertility phenotype. A direct reason for this remarkable characteristic of increased litter size, which reaches >20 pups/litter in both FLs, is the raised ovulation rate by approximately 100%, representing an impressive record in this field. Dummerstorf high-fertility lines incarnate extraordinary and singular models of high-fertility for other species, mostly farm animals, with the aim of improving production and reducing costs. Our main goal is to describe the genetic and molecular pathways to reach their phenotypical excellence, and to reproduce them using the control population. The large litter size and ovulation rate in Dummerstorf lines are mostly due to an increase in the quality of their oocytes, which receive a different intake of fat and are composed of different types and concentrations of fatty acids. As the follicular microenvironment plays a fundamental role during the oocytes development, in the present manuscript, we tried to improve the in vitro maturation technique by mimicking the fatty acid profile of FLs oocytes during the IVM of control oocytes. Currently, the optimization of the IVM system is fundamental mostly for prepubertal girls and oncological patients whose main source of gametes to restore fertility may be their maturation in vitro. Our data suggest that the specific fatty acid composition of FLs COCs can contribute to their high-fertility phenotype. Indeed, COCs from the control line matured in IVM-medium supplemented with C14:0 (high in FL2 COCs) or with C20:0, C21:0, C22:0, and C23:0 (high in FL1 COCs), but also control oocytes without cumulus, whose concentration in long-chain FAs are “naturally” higher, showing a slightly higher maturation rate. These findings represent an important starting point for the optimization of the IVM system using FA supplementation. Full article
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 1817 KiB  
Review
Hacking the Lipidome: New Ferroptosis Strategies in Cancer Therapy
by Borys Varynskyi and Joel A. Schick
Biomedicines 2024, 12(3), 541; https://doi.org/10.3390/biomedicines12030541 - 28 Feb 2024
Viewed by 844
Abstract
The concept of redirecting metabolic pathways in cancer cells for therapeutic purposes has become a prominent theme in recent research. Now, with the advent of ferroptosis, a new chink in the armor has evolved that allows for repurposing of ferroptosis-sensitive lipids in order [...] Read more.
The concept of redirecting metabolic pathways in cancer cells for therapeutic purposes has become a prominent theme in recent research. Now, with the advent of ferroptosis, a new chink in the armor has evolved that allows for repurposing of ferroptosis-sensitive lipids in order to trigger cell death. This review presents the historical context of lipidomic and metabolic alterations in cancer cells associated with ferroptosis sensitization. The main proferroptotic genes and pathways are identified as therapeutic targets for increasing susceptibility to ferroptosis. In this review, a particular emphasis is given to pathways in cancer cells such as de novo lipogenesis, which has been described as a potential target for ferroptosis sensitization. Additionally, we propose a connection between ketolysis inhibition and sensitivity to ferroptosis as a new vulnerability in cancer cells. The main proferroptotic genes and pathways have been identified as therapeutic targets for increasing susceptibility to ferroptosis. Proferroptotic metabolic pathways and vulnerable points, along with suggested agonists or antagonists, are also discussed. Finally, general therapeutic strategies for ferroptosis sensitization based on the manipulation of the lipidome in ferroptosis-resistant cancer cell lines are proposed. Full article
Show Figures

Figure 1

Back to TopTop