Novel Cleaner Materials for Pavements

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Environmental Aspects in Colloid and Interface Science".

Deadline for manuscript submissions: 20 April 2025 | Viewed by 11225

Special Issue Editors


E-Mail Website
Guest Editor
College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
Interests: materials and structure for pavement; asphalt pavement; coarse and fine aggregate; alternative materials for road engineering; construction and demolition waste; functional pavement materials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
Interests: recycled waste materials in pavements; functional materials; anti-icing materials; pavement preventive maintenance; asphalt aging and anti-aging

E-Mail Website
Guest Editor
College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
Interests: pavement engineering; discrete element modelling (DEM); multiscale modelling; pavement compaction; pavement functional behavior
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor Assistant
Department of Civil and Architectural Engineering, KTH-Royal Institute of Technology, Brinellvägen 23, 10044 Stockholm, Sweden
Interests: sustainable and functional pavement materials; disease detection and maintenance technology; tire-road contact behavior

Special Issue Information

Dear Colleagues,

We are pleased to invite you to contribute your research to our Special Issue “Novel Cleaner Materials for Pavements”.

Due to the escalating demands for pavement service levels, the requirements of eco-friendly and low-carbon development, and the advances in materials science and cross-discipline research, the pursuit of cleaner and more sustainable materials has witnessed significant growth in recent years. Meanwhile, it is widely recognized that pavement materials are pivotal in shaping the construction and maintenance of road engineering. Thus, in order to promote the pioneering of cleaner materials for pavements, we are thrilled to launch this new Special Issue in Coatings, dedicated to collating original research articles as well as comprehensive review articles.

This Special Issue focuses on the newest research in cleaner and more sustainable materials in the fields of pavement engineering. We place a strong emphasis on interdisciplinary research and practical application. Potential topics include, but are not limited to, the following:

  • Recycled waste materials in pavements;
  • Bio-based materials;
  • Chemistry of alternative binders;
  • Low-emission materials;
  • Low-noise materials;
  • Functional pavement materials.

Dr. Junfeng Gao
Prof. Dr. Peng Guo
Dr. Jue Li
Dr. Chonghui Wang
Guest Editors

Dr. Ziye Ma
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • pavement
  • cleaner materials
  • recycled waste materials
  • bio-based materials
  • alternative binders
  • low-emission
  • low-noise

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3651 KiB  
Article
Experimental Analysis of Noise Characteristics on Different Types of Pavements inside and outside Highway Tunnels
by Wanyan Ren, Yi Zhang, Minmin Yuan and Jun Li
Coatings 2024, 14(9), 1213; https://doi.org/10.3390/coatings14091213 - 20 Sep 2024
Viewed by 596
Abstract
Aiming to reduce noise pollution and optimize the acoustic quality in highway tunnels, the noise characteristics on different types of pavements were analyzed and compared in this research, based on the on-site noise measurement in two tunnels with the free fields as a [...] Read more.
Aiming to reduce noise pollution and optimize the acoustic quality in highway tunnels, the noise characteristics on different types of pavements were analyzed and compared in this research, based on the on-site noise measurement in two tunnels with the free fields as a control group. Specifically, the noise characteristics include two aspects: various noise and noise time attenuation performance. Various noise includes on-board sound intensity (OBSI) noise and cabin noise. The noise time attenuation performance uses the indicator of reverberation time. Three types of pavements were measured, including dense-graded asphalt concrete (DAC) and single-layered and double-layered porous asphalt (PA) pavement. The results showed that, for the same type of pavement, compared with the free fields, the difference in OBSI noise in tunnels was within a range of less than 1 dBA; the cabin noise increased by 3.4 dBA~6.6 dBA. The noise level in tunnels was greater than that outside tunnels, and the longer tunnel exhibited higher traffic noise and worse noise time attenuation performances. For the same tunnel, PA pavement could reduce the cabin noise by 3.8 dBA~6.7 dBA. PA pavement also exhibited shorter reverberation time. The application of PA pavement could effectively improve the acoustic quality in the tunnel. This research contributes to noise pollution abatement and the improvement of the comfort and safety of drivers in tunnels. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

21 pages, 6032 KiB  
Article
Study on the Properties of Graphene Oxide–Wood Tar-Based Composite Rejuvenated Asphalt
by Ling Feng, Fuyan Zhou, Yongwei Li, Kefei Liu, Juncai Zhu and Guoqing Gong
Coatings 2024, 14(9), 1081; https://doi.org/10.3390/coatings14091081 - 23 Aug 2024
Viewed by 704
Abstract
This study aims at counteracting the problem of rejuvenated asphalt with poor performance and weak secondary anti-aging ability by improving the existing biomass rejuvenator. In this study, a carbon nanomaterial, graphene oxide (GO) with excellent anti-aging performance, was introduced to the wood tar-based [...] Read more.
This study aims at counteracting the problem of rejuvenated asphalt with poor performance and weak secondary anti-aging ability by improving the existing biomass rejuvenator. In this study, a carbon nanomaterial, graphene oxide (GO) with excellent anti-aging performance, was introduced to the wood tar-based rejuvenator (WR) to prepare a composite rejuvenator. Based on laboratory tests, the effects of the GO–wood tar-based composite rejuvenator (GWCR) on the performance of aged asphalt and on the secondary aging performance were investigated, and its rejuvenation mechanism was analyzed. The results indicate that the GWCR can increase the penetration, ductility, and creep rate (m) of aged asphalt while decreasing its softening point, rutting factor (G*/sinδ), and stiffness modulus (S). This indicates that the high-temperature resistance to the permanent deformation ability of aged asphalt degrades, while the low-temperature performance improves, and all values are slightly greater than those of the 70# original base asphalt. After PAV aging, the S value of the GO–wood tar-based composite rejuvenated asphalt (GWCRA) increased by 83.71%, while the m value decreased by 49.45%. The secondary aging resistance of the GWCRA is better than that of 70# original base asphalt, RA-75 rejuvenated asphalt, and wood tar-based rejuvenated asphalt. When adding the GWCR into aged asphalt, the content of saturates and aromatics in the asphalt increases by 1.08% and 11.1%, respectively. In contrast, the content of asphaltenes and resins decreases by 6.288% and 5.9%, respectively. As a result, the colloidal structure of the aged asphalt transfers from a gel to a sol–gel state. The surface roughness of the GWCRA increases by the synergistic effect of GO and wood tar, making its adhesion better than that of the 70# original base asphalt. Adding GO can improve the performance of wood tar rejuvenated asphalt (WRA) with high-temperature deformation resistance and resistance to secondary aging, and effectively make up for the defects in the performance of WRA rejuvenated asphalt, so as to extend the service life of asphalt pavements, thus increasing the value of wood tar engineering applications, which is of great practical significance. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

16 pages, 14266 KiB  
Article
Preparation and Characterization of Bio-Asphalt Based on Sludge-Derived Heavy Oil
by Zhihao Li, Xuejuan Cao, Jue Li, Xiaoyu Yang and Chao Huang
Coatings 2024, 14(8), 992; https://doi.org/10.3390/coatings14080992 - 6 Aug 2024
Viewed by 651
Abstract
To achieve the efficient resource utilization of municipal sludge and promote the sustainability of pavement materials, this study employed liquefaction technology to process municipal sludge. The resulting liquefied-sludge-derived heavy oil was blended with 50# asphalt to prepare a bio-asphalt that can replace [...] Read more.
To achieve the efficient resource utilization of municipal sludge and promote the sustainability of pavement materials, this study employed liquefaction technology to process municipal sludge. The resulting liquefied-sludge-derived heavy oil was blended with 50# asphalt to prepare a bio-asphalt that can replace petroleum asphalt. Firstly, orthogonal experiments were conducted to analyze the effects of the solid–liquid ratio (dried sludge:anhydrous ethanol), liquefaction temperature, and reaction time on the yield of the sludge-derived heavy oil. Then, the basic characteristics of the sludge-derived heavy oil were studied using an elemental analyzer, gel permeation chromatography, thermal analysis, gas chromatography–mass spectrometry, and Fourier transform infrared spectroscopy, and the differences between the sludge-derived heavy oil and petroleum asphalt were compared. Finally, to determine the appropriate content range of sludge-derived heavy oil in bio-asphalt, a comprehensive evaluation of the three major indicators, aging resistance, storage stability, low-temperature performance, and high-temperature performance was carried out for the prepared bio-asphalts. The results indicated that the optimal preparation process for liquefied sludge oil involves a liquefaction temperature of 275 °C, a solid–liquid ratio of 1:15, and a reaction time of 1 h, resulting in an oil production rate of 22.36%. The sludge-derived heavy oil demonstrated good thermal stability, with its primary components being aliphatic compounds (carboxylic acids, ketones, aldehydes, alcohols, alkanes, esters, etc.), with esters being the most abundant. Furthermore, the sludge-derived heavy oil was highly compatible with 50# asphalt, but no chemical reaction occurred between them. When the sludge-derived heavy oil content ranged from 5% to 20%, bio-asphalt showed favorable aging resistance and storage stability. As the content of the sludge-derived heavy oil increased, its low-temperature performance improved, but there was a slight decrease in high-temperature performance. Additionally, correlation analysis highlighted that the influence of sludge-derived heavy oil content on the high-temperature performance of bio-asphalt was notably greater than on other properties. Therefore, the recommended dosage of sludge-derived heavy oil should be between 5% and 10%. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

28 pages, 9038 KiB  
Article
Analysis of the Interfacial Interaction between Wood Tar-Rejuvenated Asphalt and Aggregate Based on Molecular Dynamics Simulation
by Le Xu, Guoqing Gong, Deliang Zeng, Yongwei Li, Xing Chen, Kefei Liu and Quan Li
Coatings 2024, 14(7), 905; https://doi.org/10.3390/coatings14070905 - 19 Jul 2024
Viewed by 573
Abstract
This study utilized molecular dynamics simulation to investigate the adhesion process between wood tar-rejuvenated asphalt and acid/alkaline aggregate. Initially, various indicators including the contact area, cohesion coefficient, and interaction energy were employed to assess the adhesion effect under dry conditions. This revealed the [...] Read more.
This study utilized molecular dynamics simulation to investigate the adhesion process between wood tar-rejuvenated asphalt and acid/alkaline aggregate. Initially, various indicators including the contact area, cohesion coefficient, and interaction energy were employed to assess the adhesion effect under dry conditions. This revealed the action mechanism of the wood tar-rejuvenator in enhancing the adhesion performance between aged asphalt and aggregate. Subsequently, an asphalt–water–aggregate interface model was developed to simulate the water damage process of the asphalt mixture. This aimed to unveil the damage mechanism of water intrusion on the adhesion performance of the asphalt–aggregate interface and evaluate the water damage resistance of wood tar-rejuvenated asphalt through adhesion energy, stripping work, and the energy ratio. The findings indicate that wood tar-rejuvenated asphalt exhibits favorable adhesion properties with both acid and alkaline aggregates. The addition of wood tar-rejuvenated asphalt increased the interaction energy between aged asphalt and acid and alkali aggregates by 67.75 kJ/mol and 97.3 kJ/mol, respectively. The addition of a wood tar rejuvenator enhances the interaction energy between aged asphalt and aggregate, thereby increasing mutual attraction and enlarging the contact area. The adhesion between asphalt and aggregates hinges on the interaction between asphaltene and aggregates, and the wood tar rejuvenator reduces the diffusion ability of asphaltene in the attractive state of the aggregate, resulting in stable aggregation. Moisture intrusion increased the aggregation distance between asphaltene and aggregate by 14.1% and decreased the degree of aggregation by 24.0%, thereby reducing the interaction energy. The extent of damage caused by water intrusion is linked to the aggregation distance, with greater distances leading to deeper damage. Under wet conditions, the interaction energy of wood tar-rejuvenated asphalt increased by 78.2% in the acidic aggregate system and 98.1% in the basic aggregate system compared with aged asphalt. Meanwhile, wood tar-based rejuvenated asphalt improves the adhesion between aged asphalt and aggregate and reduces the stripping function of asphalt affected by water replacement, which results in the ER value of wood tar-rejuvenated asphalt being higher than that of the original asphalt by 0.12 and 0.22 in the acidic and alkaline environments, respectively, thus showing excellent resistance to water damage. This study provides new criteria for the selection of rejuvenators for waste asphalt, which will help in the future selection of superior rejuvenators for aged asphalt and reduce the possibility of choosing the wrong rejuvenator. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

19 pages, 6919 KiB  
Article
Study of the Performance of Emulsified Asphalt Shotcrete in High-Altitude Permafrost Regions
by Yitong Hou, Kaimin Niu, Bo Tian, Xueyang Li and Junli Chen
Coatings 2024, 14(6), 692; https://doi.org/10.3390/coatings14060692 - 1 Jun 2024
Viewed by 532
Abstract
To improve the performance of shotcrete in high-altitude and low-temperature environments, emulsified asphalt shotcrete (EASC), which can be used in negative-temperature environments, was prepared by using low-freezing-point emulsified asphalt, calcium aluminate cement, and sodium pyrophosphate as modified materials. The effect of emulsified asphalt [...] Read more.
To improve the performance of shotcrete in high-altitude and low-temperature environments, emulsified asphalt shotcrete (EASC), which can be used in negative-temperature environments, was prepared by using low-freezing-point emulsified asphalt, calcium aluminate cement, and sodium pyrophosphate as modified materials. The effect of emulsified asphalt on the performance of shotcrete was investigated through concrete spraying and indoor tests. Then, the modification mechanism of emulsified asphalt with respect to EASC was analyzed by combining scanning electron microscopy images and the pore structure characteristics of EASC. The results showed that in a negative-temperature environment, the incorporation of emulsified asphalt delayed the formation of the peak of the cement hydration exotherm, slowed the rate of the cement hydration exotherm, reduced the thermal perturbation of permafrost by EASC, increased the cohesion of the concrete, improved the bond strength between EASC and permafrost, and reduced the rate of rebound. The mechanical strength of the studied EASC decreased upon increasing the amount of emulsified asphalt in the admixture, and its resistance to cracking gradually improved. A content of less than 5% emulsified asphalt could improve the internal pore structure of EASC, thus improving its durability. Increasing the content of emulsified asphalt affected the hydration process of the cement, and the volume content of the capillary pores and macropores increased, which reduced the durability of the EASC. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

16 pages, 3849 KiB  
Article
Feasibility Analysis of Resource Application of Dry Flue Gas Desulfurization Ash in Asphalt Pavement Materials
by Kai Li, Zhigang Zhou, Yinghui Zhang and Ronghua Ying
Coatings 2024, 14(5), 591; https://doi.org/10.3390/coatings14050591 - 9 May 2024
Viewed by 825
Abstract
To verify the feasibility of applying dry flue gas desulfurization ash (DFGDA) to asphalt pavement materials, the asphalt mastic (filler and asphalt composition) prepared by adding different proportions of DFGDA and LSP (limestone powder) into 70# matrix asphalt was studied experimentally. The asphalt [...] Read more.
To verify the feasibility of applying dry flue gas desulfurization ash (DFGDA) to asphalt pavement materials, the asphalt mastic (filler and asphalt composition) prepared by adding different proportions of DFGDA and LSP (limestone powder) into 70# matrix asphalt was studied experimentally. The asphalt mastics were subjected to the penetration test, the softening point test, and the ductility test. Moreover, the rheological properties of asphalt mastic were evaluated with dynamic shear rheometer (DSR) tests and bending beam rheometer (BBR) tests. An interaction ability index C-value based on the Palierne model was proposed to evaluate the interaction ability between DFGDA and asphalt. The influence of DFGDA asphalt on the interaction ability of matrix asphalt was observed and evaluated using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results showed that with the increasing proportion of DFGDA, the penetration of asphalt mastic gradually decreased, the softening point increased, and the ductility slightly decreased. At the same temperature, the dynamic shear modulus G* of the asphalt mortar significantly increased with increasing DFGDA content. The incorporation of DFGDA negatively affected the low-temperature plastic deformation resistance of asphalt, but the impact was weakened with the growing DFGDA amount and the powder mastic ratio. The combination mode of DFGDA and matrix asphalt depends on the physical blending, and their interaction ability mainly depends on the miscibility between DFGDA and matrix asphalt. In conclusion, DFGDA can be utilized as a novel filler in asphalt pavement materials. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

16 pages, 6090 KiB  
Article
Evaluation of the Fatigue Performance of Full-Depth Reclamation with Portland Cement Material Based on the Weibull Distribution Model
by Yongxiang Li, Longwei Zhao, Junfeng Gao, Yanyan Ru and Haiwei Zhang
Coatings 2024, 14(4), 437; https://doi.org/10.3390/coatings14040437 - 7 Apr 2024
Viewed by 813
Abstract
The full-depth reclamation with Portland cement (FDR-PC) technology embodies an environmentally friendly approach to solving the damage to old asphalt pavement. Fatigue failure emerges as the predominant mode of degradation for FDR-PC pavement. The fatigue characteristics of the full-depth reclamation with Portland cement [...] Read more.
The full-depth reclamation with Portland cement (FDR-PC) technology embodies an environmentally friendly approach to solving the damage to old asphalt pavement. Fatigue failure emerges as the predominant mode of degradation for FDR-PC pavement. The fatigue characteristics of the full-depth reclamation with Portland cement cold recycled mixtures were evaluated through four-point bending tests. Three contents (4%, 5%, 6%) of cement and three base-to-surface ratios (10:0, 8:2, 6:4) were utilized. The fatigue equations were derived for the mixtures using a two-parameter Weibull distribution. The results indicate that all correlation coefficients of the Weibull distribution model surpass 0.88, effectively projecting the lifespan of FDR-PC. With increases in cement contents and base-to-surface ratios, the fatigue life of the mixture extends, though with an augmentation of stress sensitivity. Comparative analysis with the fatigue equation model parameters of the current Chinese specifications for the design of highway asphalt pavement reveals that mixtures with a 4% cement content and combinations of a 5% cement content with a low base-to-surface ratio meet the requirements for inorganic-binder-stabilized soil. Additionally, mixtures with a 5% cement content and a high base-to-surface ratio, along with those with a 6% cement content, fulfill the specifications for inorganic-binder-stabilized granular materials. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

10 pages, 3495 KiB  
Article
Study on Plugging Microfracture by Using High-Temperature Emulsified Bitumen
by Liang Yang, Xiang Chen, Linhao Gu, Yan Chen and Shuang Shi
Coatings 2024, 14(4), 387; https://doi.org/10.3390/coatings14040387 - 26 Mar 2024
Viewed by 839
Abstract
A new kind of modified emulsified bitumen used to plug a microcrack was studied. The sizes of high-temperature emulsified bitumen were fit for the sizes of the microcrack, which were approved by the scanning electron microscope and laser particle size analyzer. Some tests [...] Read more.
A new kind of modified emulsified bitumen used to plug a microcrack was studied. The sizes of high-temperature emulsified bitumen were fit for the sizes of the microcrack, which were approved by the scanning electron microscope and laser particle size analyzer. Some tests have been designed to demonstrate that the polymer could be used to promote the softening point of modified asphalt, and the high-temperature emulsified bitumen has also shown an excellent performance in terms of static filtration, the viscous coefficient, and extreme pressure lubrication, as well as to inhibit ting shale expansion. The permeability recovery could reach 88.26%, which meets the specification requirements. The mud cake, which was formed by high-temperature emulsified bitumen as an additive, was thin, tough, and dense, which was proved by the scanning electron microscope. The process used to obtain this additive was simple, and the performance of the plugging microfracture was excellent, so this kind of plugging agent could have a better application future. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

26 pages, 19238 KiB  
Article
Enhancing Sulfate Erosion Resistance in Ultra-High-Performance Concrete through Mix Design Optimization Using the Modified Andreasen and Andersen Method
by Guan Wang, Wenlin Chen, Xiangyu Shen, Xin Ren, Jiawei Niu, Sihang Pan, Yifan Huang and Jinliang Wu
Coatings 2024, 14(3), 274; https://doi.org/10.3390/coatings14030274 - 23 Feb 2024
Cited by 1 | Viewed by 1249
Abstract
This study presents an in-depth investigation into optimizing the mix design of ultra-high-performance concrete (UHPC) for enhanced sulfate erosion resistance, utilizing the modified Andreasen and Andersen (MAA) method. By testing the mechanical properties and slump flow of UHPC, it was determined that the [...] Read more.
This study presents an in-depth investigation into optimizing the mix design of ultra-high-performance concrete (UHPC) for enhanced sulfate erosion resistance, utilizing the modified Andreasen and Andersen (MAA) method. By testing the mechanical properties and slump flow of UHPC, it was determined that the optimal W/B = 0.2, and the best volume content of steel fibers is 2%. Through long-term tests lasting 360 days on three groups of UHPC specimens under different curing conditions, their mass loss, compressive strength corrosion resistance coefficient, surface appearance, and erosion layer thickness were tested. The results indicate that under sulfate attack, the mass and compressive strength corrosion resistance coefficients of UHPC specimens showed a trend of first increasing and then decreasing, due to the formation and expansion of ettringite and gypsum. The thickness of the erosion layer increases over time. By 360 days, the internal damage caused by sulfate attack is about twice as severe as it was after 60 days. However, the addition of steel fibers was found to effectively mitigate these effects, reducing mass loss and preserving the structural integrity of UHPC. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

18 pages, 3509 KiB  
Article
The Early Performance Development of Hot In-Place Recycled Asphalt Mixture
by Qijia Shi, Chaochao Liu, Yanhua Xue, Yiyang Xue, Chen Zhang, Wenlong Lu, Yiyi Wen and Songtao Lv
Coatings 2024, 14(2), 175; https://doi.org/10.3390/coatings14020175 - 30 Jan 2024
Viewed by 1350
Abstract
With increasing societal attention being directed to resource and environment problems, the research focus on high reclaimed asphalt content mixtures has become pertinent. The degree of asphalt fusion in the thermal regeneration process of a high RAP content reclaimed asphalt mixture has a [...] Read more.
With increasing societal attention being directed to resource and environment problems, the research focus on high reclaimed asphalt content mixtures has become pertinent. The degree of asphalt fusion in the thermal regeneration process of a high RAP content reclaimed asphalt mixture has a great influence on its performance. In order to explore the development process of hot in-place recycling mixture performance along with internal asphalt fusion, this study conducted research on a geothermal regeneration mixture with 80% RAP content. Dynamic shear rheology (DSR), infrared spectroscopy, and scanning electron microscopy were used to investigate the fusion of recycled mixture under different placement times (1 day, 4 days, and 7 days), and the road performance and fatigue life of the recycled mixture under different placement times were then studied. The results showed that the fusion degree of old asphalt and new asphalt in a recycled asphalt mixture reached 100%, and gradually increased with the extension of placement time. With the increase in placement time, the high temperature performance of the regenerated mixture gradually decreased, the water stability gradually increased, and the low-temperature performance and fatigue life significantly increased from 1 day to 7 days, by 19% and 32%, respectively. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

21 pages, 31329 KiB  
Article
Frost-Heaving Behavior and Enhancement Approaches of Cement-Based Grout Materials under Freeze–Thaw Conditions
by Yongfeng Wei, Hui Dou, Jiangtao Gao, Run Su and Shengjun Ma
Coatings 2023, 13(11), 1919; https://doi.org/10.3390/coatings13111919 - 9 Nov 2023
Viewed by 933
Abstract
In the seasonally frozen regions, during the grouting of prestressed bridge ducts in low-temperature environments, incompletely cured grout materials undergo volumetric changes due to freeze–thaw cycling, resulting in structural cracks along the prestressing ducts of the bridge, thereby diminishing the bridge’s operational lifespan. [...] Read more.
In the seasonally frozen regions, during the grouting of prestressed bridge ducts in low-temperature environments, incompletely cured grout materials undergo volumetric changes due to freeze–thaw cycling, resulting in structural cracks along the prestressing ducts of the bridge, thereby diminishing the bridge’s operational lifespan. In order to investigate the freeze–thaw characteristics of grouting materials under the influence of freeze–thaw cycles and propose improvement measures, the influence of various additives on the freeze–thaw stress characteristics of mortar under freeze–thaw cycle conditions was elucidated through freeze–thaw stress tests. The mechanisms for improving the freeze–thaw characteristics of grouting materials were explored through analyses of free water content, setting time, compressive strength, XRD, and SEM. In light of the requirements for comprehensive performance of grouting materials, composite additives are employed to enhance the freeze–thaw performance of the grout. The results indicate that reducing the water-cement ratio, incorporating calcium formate, sulfoaluminate cement, air-entraining agents, and carbamide all have a positive impact on mitigating frost-heaving stress in grout materials. However, the improvement mechanisms differ, and employing a single measure alone is insufficient to effectively reduce frost-heaving stress while meeting performance criteria such as compressive strength, setting time, and flowability. Free water content emerges as a crucial indicator determining the magnitude of frost-heaving stress in grout materials, with 11.5% of free water content representing the critical threshold for frost heaving in grout materials. Utilizing composite admixtures can simultaneously decrease free water content, lower the freezing point of free water, and alleviate frost-heaving deformation, resulting in a more efficient reduction of frost-heaving stress. When the admixture content reaches 9.9%, frost-heaving stress is eliminated, and the comprehensive performance parameters, including compressive strength, setting time, and flowability, meet the specified requirements. Overall, the conclusions of this research will offer a scientific foundation for the choice of cold-resistant grouting materials, the mitigation of grout material freeze–thaw risk, and the improvement of quality assurance levels in bridge construction within seasonally frozen areas. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

17 pages, 9768 KiB  
Article
Experimental Evaluation of the Properties of Asphalt Binders Modified with Calcium Sulfate Anhydrous Whiskers and Polyester Fibers
by Taotao Fan, Chundi Si and Junfeng Gao
Coatings 2023, 13(10), 1802; https://doi.org/10.3390/coatings13101802 - 20 Oct 2023
Viewed by 1086
Abstract
The use of waste calcium sulfate whiskers in pavement construction is cost-effective and beneficial to the environment. In this paper, modified asphalt binders are prepared by adding calcium sulfate anhydrous whiskers (ACSW, 9 wt.%,11 wt.%, and 13 wt.% by weight of asphalt binder) [...] Read more.
The use of waste calcium sulfate whiskers in pavement construction is cost-effective and beneficial to the environment. In this paper, modified asphalt binders are prepared by adding calcium sulfate anhydrous whiskers (ACSW, 9 wt.%,11 wt.%, and 13 wt.% by weight of asphalt binder) and polyester fibers (4 wt.%,6 wt.%, and 8 wt.% by weight of asphalt binder). The viscosity-temperature, rheological, and low-temperature properties of the modified asphalt binder were evaluated using the Brookfield rotational viscosity test, the dynamic shear rheometer (DSR) test, the bending beam rheometer (BBR) test, and the force ductility test. The results demonstrated that the addition of the ACSW and polyester fiber could improve the anti-deformation and low-temperature properties of the asphalt binders, but reduce their viscosity-temperature properties to some extent. The modified asphalt binder with 11 wt.% ACSW and 8% polyester fiber showed the best anti-deformation property, while the 11 wt.% ACSW and 6 wt.% polyester fiber modified asphalt binder had a better low-temperature performance. The force ductility test was more suitable than the BBR test to characterize the low-temperature properties of the modified asphalt binders. The Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) tests were conducted to study the functional groups and micro-structure of the modified asphalt binders, and the results indicated that no new functional groups were generated and that the interaction between the ACSW, polyester fiber, and asphalt binder was a physical adsorption and interleaving process. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

Back to TopTop