Advances in Diamond Materials and Films

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Surface Characterization, Deposition and Modification".

Deadline for manuscript submissions: closed (30 September 2024) | Viewed by 1538

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Interests: CVD diamond growth; diamond doping; diamond nanomaterials; theoretical diamond calculations; the multi-functional applications of diamonds; achievement transformation.
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Interests: theoretical diamond calculations; diamonds for electrochemical applications

E-Mail Website
Guest Editor
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Interests: CVD diamond growth; diamond doping

Special Issue Information

Dear Colleagues,

We would like to invite you to submit your work to this Special Issue on "Advances in Diamond Materials and Films".

The synthesis, characterization, and processing of single-crystal diamonds, polycrystalline films, nanodiamond powders, and heterostructures with other advanced materials are topics of interest for the technical and review articles that will comprise this Special Issue.

The aim of this Special Issue is to present the latest experimental and theoretical developments in the field through a combination of original research papers and review articles. In particular, the main topics of interest include but are not limited to the following:

  • The fundamentals and new concepts of diamond hybrid materials;
  • Novel synthesis methods for diamond and hybrid materials;
  • Surface modeling and characterization methods for diamond hybrid materials;
  • The applications of diamond hybrid materials.

Prof. Dr. Hongdong Li
Dr. Nan Gao
Dr. Shaoheng Cheng
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • diamond growth
  • diamond applications
  • diamond films
  • nanodiamond

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 5267 KiB  
Article
Improving Trace Detection of Methylene Blue by Designing Nanowire Array on Boron-Doped Diamond as Electrochemical Electrode
by Sihan He, Kun Lin, Shaoheng Cheng, Nan Gao, Junsong Liu and Hongdong Li
Coatings 2024, 14(6), 762; https://doi.org/10.3390/coatings14060762 - 16 Jun 2024
Viewed by 1032
Abstract
In this study, a boron-doped diamond nanowire array (BDD-NWA)-based electrode is prepared by using a microwave plasma chemical vapor deposition system and treated with inductively coupled plasma reactive ion etching. The BDD-NWA electrode is used for trace detection of methylene blue, which has [...] Read more.
In this study, a boron-doped diamond nanowire array (BDD-NWA)-based electrode is prepared by using a microwave plasma chemical vapor deposition system and treated with inductively coupled plasma reactive ion etching. The BDD-NWA electrode is used for trace detection of methylene blue, which has a wide linear range of 0.04–10 μM and a low detection limit of 0.72 nM. Both the superhydrophilicity (contact angle ~0°) and the dense nanowire array’s structure after the etching process improve the sensitivity of the electrochemical detection compared to the pristine BDD. In addition, the electrode shows great repeatability (peak current fluctuation range of −3.3% to 2.9% for five detection/cleaning cycles) and stability (peak current fluctuation range of −5.3% to 6.3% after boiling) due to the unique properties of diamonds (mechanical and chemical stability). Moreover, the BDD-NWA electrode achieves satisfactory recoveries (93.8%–107.5%) and real-time monitoring in tap water. Full article
(This article belongs to the Special Issue Advances in Diamond Materials and Films)
Show Figures

Figure 1

Back to TopTop