Technological Innovations and Image Analysis: The Need of Standardized Guidelines for the Clinical Translation of Radiomics Studies

A special issue of Diagnostics (ISSN 2075-4418). This special issue belongs to the section "Medical Imaging and Theranostics".

Deadline for manuscript submissions: closed (29 February 2024) | Viewed by 3779

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy
Interests: biomedical engineering; technological innovations of CT and MRI; ultrasound based imaging techniques; mechanical behavior of materials; radiomics; medical imaging physics; medical image analysis

Special Issue Information

Dear Colleagues,

Although radiomics holds great promise in disease management, the reproducibility and robustness of radiomics studies are often poor due to a lack of standardization or insufficient reporting, preventing the translation of this powerful technique to clinical practice.

Indeed, the interpretability of the radiomics features is key to the interpretation of the results and the possibility of it being used in clinical decision support systems and personalized medicine per patient.

This Special Issue aims to investigate how radiomics, in the absence of well-defined standard guidelines, cannot be considered a really useful tool for clinical routine, promoting a more systematic approach with clear and solid strategies.

Dr. Fabiano Bini
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diagnostics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2034 KiB  
Article
A Critical Analysis of the Robustness of Radiomics to Variations in Segmentation Methods in 18F-PSMA-1007 PET Images of Patients Affected by Prostate Cancer
by Giovanni Pasini, Giorgio Russo, Cristina Mantarro, Fabiano Bini, Selene Richiusa, Lucrezia Morgante, Albert Comelli, Giorgio Ivan Russo, Maria Gabriella Sabini, Sebastiano Cosentino, Franco Marinozzi, Massimo Ippolito and Alessandro Stefano
Diagnostics 2023, 13(24), 3640; https://doi.org/10.3390/diagnostics13243640 - 11 Dec 2023
Cited by 1 | Viewed by 1120
Abstract
Background: Radiomics shows promising results in supporting the clinical decision process, and much effort has been put into its standardization, thus leading to the Imaging Biomarker Standardization Initiative (IBSI), that established how radiomics features should be computed. However, radiomics still lacks standardization and [...] Read more.
Background: Radiomics shows promising results in supporting the clinical decision process, and much effort has been put into its standardization, thus leading to the Imaging Biomarker Standardization Initiative (IBSI), that established how radiomics features should be computed. However, radiomics still lacks standardization and many factors, such as segmentation methods, limit study reproducibility and robustness. Aim: We investigated the impact that three different segmentation methods (manual, thresholding and region growing) have on radiomics features extracted from 18F-PSMA-1007 Positron Emission Tomography (PET) images of 78 patients (43 Low Risk, 35 High Risk). Segmentation was repeated for each patient, thus leading to three datasets of segmentations. Then, feature extraction was performed for each dataset, and 1781 features (107 original, 930 Laplacian of Gaussian (LoG) features, 744 wavelet features) were extracted. Feature robustness and reproducibility were assessed through the intra class correlation coefficient (ICC) to measure agreement between the three segmentation methods. To assess the impact that the three methods had on machine learning models, feature selection was performed through a hybrid descriptive-inferential method, and selected features were given as input to three classifiers, K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Linear Discriminant Analysis (LDA), Random Forest (RF), AdaBoost and Neural Networks (NN), whose performance in discriminating between low-risk and high-risk patients have been validated through 30 times repeated five-fold cross validation. Conclusions: Our study showed that segmentation methods influence radiomics features and that Shape features were the least reproducible (average ICC: 0.27), while GLCM features the most reproducible. Moreover, feature reproducibility changed depending on segmentation type, resulting in 51.18% of LoG features exhibiting excellent reproducibility (range average ICC: 0.68–0.87) and 47.85% of wavelet features exhibiting poor reproducibility that varied between wavelet sub-bands (range average ICC: 0.34–0.80) and resulted in the LLL band showing the highest average ICC (0.80). Finally, model performance showed that region growing led to the highest accuracy (74.49%), improved sensitivity (84.38%) and AUC (79.20%) in contrast with manual segmentation. Full article
Show Figures

Figure 1

27 pages, 7094 KiB  
Article
Phenotyping the Histopathological Subtypes of Non-Small-Cell Lung Carcinoma: How Beneficial Is Radiomics?
by Giovanni Pasini, Alessandro Stefano, Giorgio Russo, Albert Comelli, Franco Marinozzi and Fabiano Bini
Diagnostics 2023, 13(6), 1167; https://doi.org/10.3390/diagnostics13061167 - 18 Mar 2023
Cited by 10 | Viewed by 2017
Abstract
The aim of this study was to investigate the usefulness of radiomics in the absence of well-defined standard guidelines. Specifically, we extracted radiomics features from multicenter computed tomography (CT) images to differentiate between the four histopathological subtypes of non-small-cell lung carcinoma (NSCLC). In [...] Read more.
The aim of this study was to investigate the usefulness of radiomics in the absence of well-defined standard guidelines. Specifically, we extracted radiomics features from multicenter computed tomography (CT) images to differentiate between the four histopathological subtypes of non-small-cell lung carcinoma (NSCLC). In addition, the results that varied with the radiomics model were compared. We investigated the presence of the batch effects and the impact of feature harmonization on the models’ performance. Moreover, the question on how the training dataset composition influenced the selected feature subsets and, consequently, the model’s performance was also investigated. Therefore, through combining data from the two publicly available datasets, this study involves a total of 152 squamous cell carcinoma (SCC), 106 large cell carcinoma (LCC), 150 adenocarcinoma (ADC), and 58 no other specified (NOS). Through the matRadiomics tool, which is an example of Image Biomarker Standardization Initiative (IBSI) compliant software, 1781 radiomics features were extracted from each of the malignant lesions that were identified in CT images. After batch analysis and feature harmonization, which were based on the ComBat tool and were integrated in matRadiomics, the datasets (the harmonized and the non-harmonized) were given as an input to a machine learning modeling pipeline. The following steps were articulated: (i) training-set/test-set splitting (80/20); (ii) a Kruskal–Wallis analysis and LASSO linear regression for the feature selection; (iii) model training; (iv) a model validation and hyperparameter optimization; and (v) model testing. Model optimization consisted of a 5-fold cross-validated Bayesian optimization, repeated ten times (inner loop). The whole pipeline was repeated 10 times (outer loop) with six different machine learning classification algorithms. Moreover, the stability of the feature selection was evaluated. Results showed that the batch effects were present even if the voxels were resampled to an isotropic form and whether feature harmonization correctly removed them, even though the models’ performances decreased. Moreover, the results showed that a low accuracy (61.41%) was reached when differentiating between the four subtypes, even though a high average area under curve (AUC) was reached (0.831). Further, a NOS subtype was classified as almost completely correct (true positive rate ~90%). The accuracy increased (77.25%) when only the SCC and ADC subtypes were considered, as well as when a high AUC (0.821) was obtained—although harmonization decreased the accuracy to 58%. Moreover, the features that contributed the most to models’ performance were those extracted from wavelet decomposed and Laplacian of Gaussian (LoG) filtered images and they belonged to the texture feature class.. In conclusion, we showed that our multicenter data were affected by batch effects, that they could significantly alter the models’ performance, and that feature harmonization correctly removed them. Although wavelet features seemed to be the most informative features, an absolute subset could not be identified since it changed depending on the training/testing splitting. Moreover, performance was influenced by the chosen dataset and by the machine learning methods, which could reach a high accuracy in binary classification tasks, but could underperform in multiclass problems. It is, therefore, essential that the scientific community propose a more systematic radiomics approach, focusing on multicenter studies, with clear and solid guidelines to facilitate the translation of radiomics to clinical practice. Full article
Show Figures

Figure 1

Back to TopTop