Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 14303 KiB  
Review
Unmanned Aerial Vehicles for Magnetic Surveys: A Review on Platform Selection and Interference Suppression
by Yaoxin Zheng, Shiyan Li, Kang Xing and Xiaojuan Zhang
Drones 2021, 5(3), 93; https://doi.org/10.3390/drones5030093 - 8 Sep 2021
Cited by 40 | Viewed by 9885
Abstract
In the past two decades, unmanned aerial vehicles (UAVs) have been used in many scientific research fields for various applications. In particular, the use of UAVs for magnetic surveys has become a hot spot and is expected to be actively applied in the [...] Read more.
In the past two decades, unmanned aerial vehicles (UAVs) have been used in many scientific research fields for various applications. In particular, the use of UAVs for magnetic surveys has become a hot spot and is expected to be actively applied in the future. A considerable amount of literature has been published on the use of UAVs for magnetic surveys, however, how to choose the platform and reduce the interference of UAV to the collected data have not been discussed systematically. There are two primary aims of this study: (1) To ascertain the basis of UAV platform selection and (2) to investigate the characteristics and suppression methods of UAV magnetic interference. Systematic reviews were performed to summarize the results of 70 academic studies (from 2005 to 2021) and outline the research tendencies for applying UAVs in magnetic surveys. This study found that multi-rotor UAVs have become the most widely used type of UAVs in recent years because of their advantages such as easiness to operate, low cost, and the ability of flying at a very low altitude, despite their late appearance. With the improvement of the payload capacity of UAVs, to use multiple magnetometers becomes popular since it can provide more abundant information. In addition, this study also found that the most commonly used method to reduce the effects of the UAV’s magnetic interference is to increase the distance between the sensors and the UAV, although this method will bring about other problems, e.g., the directional and positional errors of sensors caused by erratic movements, the increased risk of impact to the magnetometers. The pros and cons of different types of UAV, magnetic interference characteristics and suppression methods based on traditional aeromagnetic compensation and other methods are discussed in detail. This study contributes to the classification of current UAV applications as well as the data processing methods in magnetic surveys. Full article
Show Figures

Figure 1

14 pages, 3031 KiB  
Article
Numerical Fluid Dynamics Simulation for Drones’ Chemical Detection
by Fabio Marturano, Luca Martellucci, Andrea Chierici, Andrea Malizia, Daniele Di Giovanni, Francesco d’Errico, Pasquale Gaudio and Jean-Franҫois Ciparisse
Drones 2021, 5(3), 69; https://doi.org/10.3390/drones5030069 - 29 Jul 2021
Cited by 13 | Viewed by 3421
Abstract
The risk associated with chemical, biological, radiological, nuclear, and explosive (CBRNe) threats in the last two decades has grown as a result of easier access to hazardous materials and agents, potentially increasing the chance for dangerous events. Consequently, early detection of a threat [...] Read more.
The risk associated with chemical, biological, radiological, nuclear, and explosive (CBRNe) threats in the last two decades has grown as a result of easier access to hazardous materials and agents, potentially increasing the chance for dangerous events. Consequently, early detection of a threat following a CBRNe event is a mandatory requirement for the safety and security of human operators involved in the management of the emergency. Drones are nowadays one of the most advanced and versatile tools available, and they have proven to be successfully used in many different application fields. The use of drones equipped with inexpensive and selective detectors could be both a solution to improve the early detection of threats and, at the same time, a solution for human operators to prevent dangerous situations. To maximize the drone’s capability of detecting dangerous volatile substances, fluid dynamics numerical simulations may be used to understand the optimal configuration of the detectors positioned on the drone. This study serves as a first step to investigate how the fluid dynamics of the drone propeller flow and the different sensors position on-board could affect the conditioning and acquisition of data. The first consequence of this approach may lead to optimizing the position of the detectors on the drone based not only on the specific technology of the sensor, but also on the type of chemical agent dispersed in the environment, eventually allowing to define a technological solution to enhance the detection process and ensure the safety and security of first responders. Full article
(This article belongs to the Special Issue Feature Papers of Drones)
Show Figures

Figure 1

24 pages, 7747 KiB  
Article
Multiscale Object Detection from Drone Imagery Using Ensemble Transfer Learning
by Rahee Walambe, Aboli Marathe and Ketan Kotecha
Drones 2021, 5(3), 66; https://doi.org/10.3390/drones5030066 - 23 Jul 2021
Cited by 32 | Viewed by 10760
Abstract
Object detection in uncrewed aerial vehicle (UAV) images has been a longstanding challenge in the field of computer vision. Specifically, object detection in drone images is a complex task due to objects of various scales such as humans, buildings, water bodies, and hills. [...] Read more.
Object detection in uncrewed aerial vehicle (UAV) images has been a longstanding challenge in the field of computer vision. Specifically, object detection in drone images is a complex task due to objects of various scales such as humans, buildings, water bodies, and hills. In this paper, we present an implementation of ensemble transfer learning to enhance the performance of the base models for multiscale object detection in drone imagery. Combined with a test-time augmentation pipeline, the algorithm combines different models and applies voting strategies to detect objects of various scales in UAV images. The data augmentation also presents a solution to the deficiency of drone image datasets. We experimented with two specific datasets in the open domain: the VisDrone dataset and the AU-AIR Dataset. Our approach is more practical and efficient due to the use of transfer learning and two-level voting strategy ensemble instead of training custom models on entire datasets. The experimentation shows significant improvement in the mAP for both VisDrone and AU-AIR datasets by employing the ensemble transfer learning method. Furthermore, the utilization of voting strategies further increases the 3reliability of the ensemble as the end-user can select and trace the effects of the mechanism for bounding box predictions. Full article
(This article belongs to the Special Issue Advances in Deep Learning for Drones and Its Applications)
Show Figures

Figure 1

16 pages, 2874 KiB  
Article
Drone Trajectory Segmentation for Real-Time and Adaptive Time-Of-Flight Prediction
by Claudia Conte, Giorgio de Alteriis, Rosario Schiano Lo Moriello, Domenico Accardo and Giancarlo Rufino
Drones 2021, 5(3), 62; https://doi.org/10.3390/drones5030062 - 16 Jul 2021
Cited by 11 | Viewed by 4566
Abstract
This paper presents a method developed to predict the flight-time employed by a drone to complete a planned path adopting a machine-learning-based approach. A generic path is cut in properly designed corner-shaped standard sub-paths and the flight-time needed to travel along a standard [...] Read more.
This paper presents a method developed to predict the flight-time employed by a drone to complete a planned path adopting a machine-learning-based approach. A generic path is cut in properly designed corner-shaped standard sub-paths and the flight-time needed to travel along a standard sub-path is predicted employing a properly trained neural network. The final flight-time over the complete path is computed summing the partial results related to the standard sub-paths. Real drone flight-tests were performed in order to realize an adequate database needed to train the adopted neural network as a classifier, employing the Bayesian regularization backpropagation algorithm as training function. For the network, the relative angle between two sides of a corner and the wind condition are the inputs, while the flight-time over the corner is the output parameter. Then, generic paths were designed and performed to test the method. The total flight-time as resulting from the drone telemetry was compared with the flight-time predicted by the developed method based on machine learning techniques. At the end of the paper, the proposed method was demonstrated as effective in predicting possible collisions among drones flying intersecting paths, as a possible application to support the development of unmanned traffic management procedures. Full article
(This article belongs to the Special Issue Advances in Deep Learning for Drones and Its Applications)
Show Figures

Figure 1

18 pages, 1129 KiB  
Article
Flying Free: A Research Overview of Deep Learning in Drone Navigation Autonomy
by Thomas Lee, Susan Mckeever and Jane Courtney
Drones 2021, 5(2), 52; https://doi.org/10.3390/drones5020052 - 17 Jun 2021
Cited by 29 | Viewed by 11748
Abstract
With the rise of Deep Learning approaches in computer vision applications, significant strides have been made towards vehicular autonomy. Research activity in autonomous drone navigation has increased rapidly in the past five years, and drones are moving fast towards the ultimate goal of [...] Read more.
With the rise of Deep Learning approaches in computer vision applications, significant strides have been made towards vehicular autonomy. Research activity in autonomous drone navigation has increased rapidly in the past five years, and drones are moving fast towards the ultimate goal of near-complete autonomy. However, while much work in the area focuses on specific tasks in drone navigation, the contribution to the overall goal of autonomy is often not assessed, and a comprehensive overview is needed. In this work, a taxonomy of drone navigation autonomy is established by mapping the definitions of vehicular autonomy levels, as defined by the Society of Automotive Engineers, to specific drone tasks in order to create a clear definition of autonomy when applied to drones. A top–down examination of research work in the area is conducted, focusing on drone navigation tasks, in order to understand the extent of research activity in each area. Autonomy levels are cross-checked against the drone navigation tasks addressed in each work to provide a framework for understanding the trajectory of current research. This work serves as a guide to research in drone autonomy with a particular focus on Deep Learning-based solutions, indicating key works and areas of opportunity for development of this area in the future. Full article
(This article belongs to the Topic Autonomy for Enabling the Next Generation of UAVs)
Show Figures

Figure 1

19 pages, 5455 KiB  
Article
Development of a Solar-Powered Unmanned Aerial Vehicle for Extended Flight Endurance
by Yauhei Chu, Chunleung Ho, Yoonjo Lee and Boyang Li
Drones 2021, 5(2), 44; https://doi.org/10.3390/drones5020044 - 24 May 2021
Cited by 29 | Viewed by 14467
Abstract
Having an exciting array of applications, the scope of unmanned aerial vehicle (UAV) application could be far wider one if its flight endurance can be prolonged. Solar-powered UAV, promising notable prolongation in flight endurance, is drawing increasing attention in the industries’ recent research [...] Read more.
Having an exciting array of applications, the scope of unmanned aerial vehicle (UAV) application could be far wider one if its flight endurance can be prolonged. Solar-powered UAV, promising notable prolongation in flight endurance, is drawing increasing attention in the industries’ recent research and development. This work arose from a Bachelor’s degree capstone project at Hong Kong Polytechnic University. The project aims to modify a 2-metre wingspan remote-controlled (RC) UAV available in the consumer market to be powered by a combination of solar and battery-stored power. The major objective is to greatly increase the flight endurance of the UAV by the power generated from the solar panels. The power system is first designed by selecting the suitable system architecture and then by selecting suitable components related to solar power. The flight control system is configured to conduct flight tests and validate the power system performance. Under fair experimental conditions with desirable weather conditions, the solar power system on the aircraft results in 22.5% savings in the use of battery-stored capacity. The decrease rate of battery voltage during the stable level flight of the solar-powered UAV built is also much slower than the same configuration without a solar-power system. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

15 pages, 15831 KiB  
Article
Visual SLAM for Indoor Livestock and Farming Using a Small Drone with a Monocular Camera: A Feasibility Study
by Sander Krul, Christos Pantos, Mihai Frangulea and João Valente
Drones 2021, 5(2), 41; https://doi.org/10.3390/drones5020041 - 19 May 2021
Cited by 43 | Viewed by 9403
Abstract
Real-time data collection and decision making with drones will play an important role in precision livestock and farming. Drones are already being used in precision agriculture. Nevertheless, this is not the case for indoor livestock and farming environments due to several challenges and [...] Read more.
Real-time data collection and decision making with drones will play an important role in precision livestock and farming. Drones are already being used in precision agriculture. Nevertheless, this is not the case for indoor livestock and farming environments due to several challenges and constraints. These indoor environments are limited in physical space and there is the localization problem, due to GPS unavailability. Therefore, this work aims to give a step toward the usage of drones for indoor farming and livestock management. To investigate on the drone positioning in these workspaces, two visual simultaneous localization and mapping (VSLAM)—LSD-SLAM and ORB-SLAM—algorithms were compared using a monocular camera onboard a small drone. Several experiments were carried out in a greenhouse and a dairy farm barn with the absolute trajectory and the relative pose error being analyzed. It was found that the approach that suits best these workspaces is ORB-SLAM. This algorithm was tested by performing waypoint navigation and generating maps from the clustered areas. It was shown that aerial VSLAM could be achieved within these workspaces and that plant and cattle monitoring could benefit from using affordable and off-the-shelf drone technology. Full article
(This article belongs to the Special Issue Advances in Civil Applications of Unmanned Aircraft Systems)
Show Figures

Figure 1

25 pages, 15446 KiB  
Article
Comparing UAS LiDAR and Structure-from-Motion Photogrammetry for Peatland Mapping and Virtual Reality (VR) Visualization
by Margaret Kalacska, J. Pablo Arroyo-Mora and Oliver Lucanus
Drones 2021, 5(2), 36; https://doi.org/10.3390/drones5020036 - 9 May 2021
Cited by 19 | Viewed by 6798
Abstract
The mapping of peatland microtopography (e.g., hummocks and hollows) is key for understanding and modeling complex hydrological and biochemical processes. Here we compare unmanned aerial system (UAS) derived structure-from-motion (SfM) photogrammetry and LiDAR point clouds and digital surface models of an ombrotrophic bog, [...] Read more.
The mapping of peatland microtopography (e.g., hummocks and hollows) is key for understanding and modeling complex hydrological and biochemical processes. Here we compare unmanned aerial system (UAS) derived structure-from-motion (SfM) photogrammetry and LiDAR point clouds and digital surface models of an ombrotrophic bog, and we assess the utility of these technologies in terms of payload, efficiency, and end product quality (e.g., point density, microform representation, etc.). In addition, given their generally poor accessibility and fragility, peatlands provide an ideal model to test the usability of virtual reality (VR) and augmented reality (AR) visualizations. As an integrated system, the LiDAR implementation was found to be more straightforward, with fewer points of potential failure (e.g., hardware interactions). It was also more efficient for data collection (10 vs. 18 min for 1.17 ha) and produced considerably smaller file sizes (e.g., 51 MB vs. 1 GB). However, SfM provided higher spatial detail of the microforms due to its greater point density (570.4 vs. 19.4 pts/m2). Our VR/AR assessment revealed that the most immersive user experience was achieved from the Oculus Quest 2 compared to Google Cardboard VR viewers or mobile AR, showcasing the potential of VR for natural sciences in different environments. We expect VR implementations in environmental sciences to become more popular, as evaluations such as the one shown in our study are carried out for different ecosystems. Full article
(This article belongs to the Special Issue Feature Papers of Drones)
Show Figures

Figure 1

26 pages, 1950 KiB  
Article
Communication Aware UAV Swarm Surveillance Based on Hierarchical Architecture
by Chengtao Xu, Kai Zhang, Yushan Jiang, Shuteng Niu, Thomas Yang and Houbing Song
Drones 2021, 5(2), 33; https://doi.org/10.3390/drones5020033 - 30 Apr 2021
Cited by 27 | Viewed by 7832
Abstract
Multi-agent unmanned aerial vehicle (UAV) teaming becomes an essential part in science mission, modern warfare surveillance, and disaster rescuing. This paper proposes a decentralized UAV swarm persistent monitoring strategy in realizing continuous sensing coverage and network service. A two-layer (high altitude and low [...] Read more.
Multi-agent unmanned aerial vehicle (UAV) teaming becomes an essential part in science mission, modern warfare surveillance, and disaster rescuing. This paper proposes a decentralized UAV swarm persistent monitoring strategy in realizing continuous sensing coverage and network service. A two-layer (high altitude and low altitude) UAV teaming hierarchical structure is adopted in realizing the accurate object tracking in the area of interest (AOI). By introducing the UAV communication channel model in its path planning, both centralized and decentralized control schemes would be evaluated in the waypoint tracking simulation. The UAV swarm network service and object tracking are measured by metrics of communication link quality and waypoints tracking accuracy. UAV swarm network connectivity are evaluated over different aspects, such as stability and volatility. The comparison of proposed algorithms is presented with simulations. The result shows that the decentralized scheme outperforms the centralized scheme in the mission of persistent surveillance, especially on maintaining the stability of inner UAV swarm network while tracking moving objects. Full article
(This article belongs to the Special Issue Feature Papers of Drones)
Show Figures

Figure 1

20 pages, 4872 KiB  
Article
Assessing the Potential of Remotely-Sensed Drone Spectroscopy to Determine Live Coral Cover on Heron Reef
by Valerie J. Cornet and Karen E. Joyce
Drones 2021, 5(2), 29; https://doi.org/10.3390/drones5020029 - 17 Apr 2021
Cited by 6 | Viewed by 4248
Abstract
Coral reefs, as biologically diverse ecosystems, hold significant ecological and economic value. With increased threats imposed on them, it is increasingly important to monitor reef health by developing accessible methods to quantify coral cover. Discriminating between substrate types has previously been achieved with [...] Read more.
Coral reefs, as biologically diverse ecosystems, hold significant ecological and economic value. With increased threats imposed on them, it is increasingly important to monitor reef health by developing accessible methods to quantify coral cover. Discriminating between substrate types has previously been achieved with in situ spectroscopy but has not been tested using drones. In this study, we test the ability of using point-based drone spectroscopy to determine substrate cover through spectral unmixing on a portion of Heron Reef, Australia. A spectral mixture analysis was conducted to separate the components contributing to spectral signatures obtained across the reef. The pure spectra used to unmix measured data include live coral, algae, sand, and rock, obtained from a public spectral library. These were able to account for over 82% of the spectral mixing captured in each spectroscopy measurement, highlighting the benefits of using a public database. The unmixing results were then compared to a categorical classification on an overlapping mosaicked drone image but yielded inconclusive results due to challenges in co-registration. This study uniquely showcases the potential of using commercial-grade drones and point spectroscopy in mapping complex environments. This can pave the way for future research, by increasing access to repeatable, effective, and affordable technology. Full article
(This article belongs to the Special Issue Feature Papers of Drones)
Show Figures

Figure 1

19 pages, 18890 KiB  
Article
SeeCucumbers: Using Deep Learning and Drone Imagery to Detect Sea Cucumbers on Coral Reef Flats
by Joan Y. Q. Li, Stephanie Duce, Karen E. Joyce and Wei Xiang
Drones 2021, 5(2), 28; https://doi.org/10.3390/drones5020028 - 16 Apr 2021
Cited by 5 | Viewed by 5750
Abstract
Sea cucumbers (Holothuroidea or holothurians) are a valuable fishery and are also crucial nutrient recyclers, bioturbation agents, and hosts for many biotic associates. Their ecological impacts could be substantial given their high abundance in some reef locations and thus monitoring their populations [...] Read more.
Sea cucumbers (Holothuroidea or holothurians) are a valuable fishery and are also crucial nutrient recyclers, bioturbation agents, and hosts for many biotic associates. Their ecological impacts could be substantial given their high abundance in some reef locations and thus monitoring their populations and spatial distribution is of research interest. Traditional in situ surveys are laborious and only cover small areas but drones offer an opportunity to scale observations more broadly, especially if the holothurians can be automatically detected in drone imagery using deep learning algorithms. We adapted the object detection algorithm YOLOv3 to detect holothurians from drone imagery at Hideaway Bay, Queensland, Australia. We successfully detected 11,462 of 12,956 individuals over 2.7ha with an average density of 0.5 individual/m2. We tested a range of hyperparameters to determine the optimal detector performance and achieved 0.855 mAP, 0.82 precision, 0.83 recall, and 0.82 F1 score. We found as few as ten labelled drone images was sufficient to train an acceptable detection model (0.799 mAP). Our results illustrate the potential of using small, affordable drones with direct implementation of open-source object detection models to survey holothurians and other shallow water sessile species. Full article
Show Figures

Graphical abstract

32 pages, 9731 KiB  
Article
Hybrid LoRa-IEEE 802.11s Opportunistic Mesh Networking for Flexible UAV Swarming
by Luca Davoli, Emanuele Pagliari and Gianluigi Ferrari
Drones 2021, 5(2), 26; https://doi.org/10.3390/drones5020026 - 15 Apr 2021
Cited by 26 | Viewed by 11668
Abstract
Unmanned Aerial Vehicles (UAVs) and small drones are nowadays being widely used in heterogeneous use cases: aerial photography, precise agriculture, inspections, environmental data collection, search-and-rescue operations, surveillance applications, and more. When designing UAV swarm-based applications, a key “ingredient” to make them effective is [...] Read more.
Unmanned Aerial Vehicles (UAVs) and small drones are nowadays being widely used in heterogeneous use cases: aerial photography, precise agriculture, inspections, environmental data collection, search-and-rescue operations, surveillance applications, and more. When designing UAV swarm-based applications, a key “ingredient” to make them effective is the communication system (possible involving multiple protocols) shared by flying drones and terrestrial base stations. When compared to ground communication systems for swarms of terrestrial vehicles, one of the main advantages of UAV-based communications is the presence of direct Line-of-Sight (LOS) links between flying UAVs operating at an altitude of tens of meters, often ensuring direct visibility among themselves and even with some ground Base Transceiver Stations (BTSs). Therefore, the adoption of proper networking strategies for UAV swarms allows users to exchange data at distances (significantly) longer than in ground applications. In this paper, we propose a hybrid communication architecture for UAV swarms, leveraging heterogeneous radio mesh networking based on long-range communication protocols—such as LoRa and LoRaWAN—and IEEE 802.11s protocols. We then discuss its strengths, constraints, viable implementation, and relevant reference use cases. Full article
(This article belongs to the Special Issue Mobile Fog and Edge Computing in Drone Swarms)
Show Figures

Figure 1

24 pages, 2041 KiB  
Article
Biomimetic Drones Inspired by Dragonflies Will Require a Systems Based Approach and Insights from Biology
by Javaan Chahl, Nasim Chitsaz, Blake McIvor, Titilayo Ogunwa, Jia-Ming Kok, Timothy McIntyre and Ermira Abdullah
Drones 2021, 5(2), 24; https://doi.org/10.3390/drones5020024 - 27 Mar 2021
Cited by 7 | Viewed by 13739
Abstract
Many drone platforms have matured to become nearly optimal flying machines with only modest improvements in efficiency possible. “Chimera” craft combine fixed wing and rotary wing characteristics while being substantially less efficient than both. The increasing presence of chimeras suggests that their mix [...] Read more.
Many drone platforms have matured to become nearly optimal flying machines with only modest improvements in efficiency possible. “Chimera” craft combine fixed wing and rotary wing characteristics while being substantially less efficient than both. The increasing presence of chimeras suggests that their mix of vertical takeoff, hover, and more efficient cruise is invaluable to many end users. We discuss the opportunity for flapping wing drones inspired by large insects to perform these mixed missions. Dragonflies particularly are capable of efficiency in all modes of flight. We will explore the fundamental principles of dragonfly flight to allow for a comparison between proposed flapping wing technological solutions and a flapping wing organism. We chart one approach to achieving the next step in drone technology through systems theory and an appreciation of how biomimetics can be applied. New findings in dynamics of flapping, practical actuation technology, wing design, and flight control are presented and connected. We show that a theoretical understanding of flight systems and an appreciation of the detail of biological implementations may be key to achieving an outcome that matches the performance of natural systems. We assert that an optimal flapping wing drone, capable of efficiency in all modes of flight with high performance upon demand, might look somewhat like an abstract dragonfly. Full article
(This article belongs to the Special Issue Feature Papers of Drones)
Show Figures

Figure 1

26 pages, 28168 KiB  
Article
Quantifying the Effects of Vibration on Medicines in Transit Caused by Fixed-Wing and Multi-Copter Drones
by Andrew Oakey, Tim Waters, Wanqing Zhu, Paul G. Royall, Tom Cherrett, Patrick Courtney, Dennis Majoe and Nickolay Jelev
Drones 2021, 5(1), 22; https://doi.org/10.3390/drones5010022 - 13 Mar 2021
Cited by 21 | Viewed by 8040
Abstract
The concept of transporting medical products by drone is gaining a lot of interest amongst the medical and logistics communities. Such innovation has generated several questions, a key one being the potential effects of flight on the stability of medical products. The aims [...] Read more.
The concept of transporting medical products by drone is gaining a lot of interest amongst the medical and logistics communities. Such innovation has generated several questions, a key one being the potential effects of flight on the stability of medical products. The aims of this study were to quantify the vibration present within drone flight, study its effect on the quality of the medical insulin through live flight trials, and compare the effects of vibration from drone flight with traditional road transport. Three trials took place in which insulin ampoules and mock blood stocks were transported to site and flown using industry standard packaging by a fixed-wing or a multi-copter drone. Triaxial vibration measurements were acquired, both in-flight and during road transit, from which overall levels and frequency spectra were derived. British Pharmacopeia quality tests were undertaken in which the UV spectra of the flown insulin samples were compared to controls of known turbidity. In-flight vibration levels in both the drone types exceeded road induced levels by up to a factor of three, and predominant vibration occurred at significantly higher frequencies. Flown samples gave clear insulin solutions that met the British Pharmacopoeia specification, and no aggregation of insulin was detected. Full article
(This article belongs to the Special Issue Drones for Medicine Delivery and Healthcare Logistics)
Show Figures

Figure 1

24 pages, 3431 KiB  
Article
Drone Swarms in Fire Suppression Activities: A Conceptual Framework
by Elena Ausonio, Patrizia Bagnerini and Marco Ghio
Drones 2021, 5(1), 17; https://doi.org/10.3390/drones5010017 - 7 Mar 2021
Cited by 45 | Viewed by 16777
Abstract
The recent huge technological development of unmanned aerial vehicles (UAVs) can provide breakthrough means of fighting wildland fires. We propose an innovative forest firefighting system based on the use of a swarm of hundreds of UAVs able to generate a continuous flow of [...] Read more.
The recent huge technological development of unmanned aerial vehicles (UAVs) can provide breakthrough means of fighting wildland fires. We propose an innovative forest firefighting system based on the use of a swarm of hundreds of UAVs able to generate a continuous flow of extinguishing liquid on the fire front, simulating the effect of rain. Automatic battery replacement and extinguishing liquid refill ensure the continuity of the action. We illustrate the validity of the approach in Mediterranean scrub first computing the critical water flow rate according to the main factors involved in the evolution of a fire, then estimating the number of linear meters of active fire front that can be extinguished depending on the number of drones available and the amount of extinguishing fluid carried. A fire propagation cellular automata model is also employed to study the evolution of the fire. Simulation results suggest that the proposed system can provide the flow of water required to fight low-intensity and limited extent fires or to support current forest firefighting techniques. Full article
(This article belongs to the Special Issue UAV Application for Wildfire Detection, Prevention and Management)
Show Figures

Figure 1

25 pages, 1432 KiB  
Article
Unmanned Aerial Vehicles for Wildland Fires: Sensing, Perception, Cooperation and Assistance
by Moulay A. Akhloufi, Andy Couturier and Nicolás A. Castro
Drones 2021, 5(1), 15; https://doi.org/10.3390/drones5010015 - 22 Feb 2021
Cited by 81 | Viewed by 18196
Abstract
Wildfires represent a significant natural risk causing economic losses, human death and environmental damage. In recent years, the world has seen an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland fire assistance and [...] Read more.
Wildfires represent a significant natural risk causing economic losses, human death and environmental damage. In recent years, the world has seen an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small-scale environments. However, wildland fires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, unmanned aerial vehicles (UAV) and unmanned aerial systems (UAS) were proposed. UAVs have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper, previous works related to the use of UAV in wildland fires are reviewed. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, some of the recent frameworks proposing the use of both aerial vehicles and unmanned ground vehicles (UGV) for a more efficient wildland firefighting strategy at a larger scale are presented. Full article
(This article belongs to the Special Issue Feature Papers of Drones)
Show Figures

Figure 1

14 pages, 4247 KiB  
Article
StratoTrans: Unmanned Aerial System (UAS) 4G Communication Framework Applied on the Monitoring of Road Traffic and Linear Infrastructure
by Robert Guirado, Joan-Cristian Padró, Albert Zoroa, José Olivert, Anica Bukva and Pedro Cavestany
Drones 2021, 5(1), 10; https://doi.org/10.3390/drones5010010 - 28 Jan 2021
Cited by 11 | Viewed by 5708
Abstract
This study provides an operational solution to directly connect drones to internet by means of 4G telecommunications and exploit drone acquired data, including telemetry and imagery but focusing on video transmission. The novelty of this work is the application of 4G connection to [...] Read more.
This study provides an operational solution to directly connect drones to internet by means of 4G telecommunications and exploit drone acquired data, including telemetry and imagery but focusing on video transmission. The novelty of this work is the application of 4G connection to link the drone directly to a data server where video (in this case to monitor road traffic) and imagery (in the case of linear infrastructures) are processed. However, this framework is appliable to any other monitoring purpose where the goal is to send real-time video or imagery to the headquarters where the drone data is processed, analyzed, and exploited. We describe a general framework and analyze some key points, such as the hardware to use, the data stream, and the network coverage, but also the complete resulting implementation of the applied unmanned aerial system (UAS) communication system through a Virtual Private Network (VPN) featuring a long-range telemetry high-capacity video link (up to 15 Mbps, 720 p video at 30 fps with 250 ms of latency). The application results in the real-time exploitation of the video, obtaining key information for traffic managers such as vehicle tracking, vehicle classification, speed estimation, and roundabout in-out matrices. The imagery downloads and storage is also performed thorough internet, although the Structure from Motion postprocessing is not real-time due to photogrammetric workflows. In conclusion, we describe a real-case application of drone connection to internet thorough 4G network, but it can be adapted to other applications. Although 5G will -in time- surpass 4G capacities, the described framework can enhance drone performance and facilitate paths for upgrading the connection of on-board devices to the 5G network. Full article
(This article belongs to the Special Issue Feature Papers of Drones)
Show Figures

Graphical abstract

19 pages, 10009 KiB  
Article
Ears in the Sky: Potential of Drones for the Bioacoustic Monitoring of Birds and Bats
by Adrien Michez, Stéphane Broset and Philippe Lejeune
Drones 2021, 5(1), 9; https://doi.org/10.3390/drones5010009 - 26 Jan 2021
Cited by 13 | Viewed by 5272
Abstract
In the context of global biodiversity loss, wildlife population monitoring is a major challenge. Some innovative techniques such as the use of drones—also called unmanned aerial vehicle/system (UAV/UAS)—offer promising opportunities. The potential of UAS-based wildlife census using high-resolution imagery is now well established [...] Read more.
In the context of global biodiversity loss, wildlife population monitoring is a major challenge. Some innovative techniques such as the use of drones—also called unmanned aerial vehicle/system (UAV/UAS)—offer promising opportunities. The potential of UAS-based wildlife census using high-resolution imagery is now well established for terrestrial mammals or birds that can be seen on images. Nevertheless, the ability of UASs to detect non-conspicuous species, such as small birds below the forest canopy, remains an open question. This issue can be solved with bioacoustics for acoustically active species such as bats and birds. In this context, UASs represent an interesting solution that could be deployed on a larger scale, at lower risk for the operator, and over hard-to-reach locations, such as forest canopies or complex topographies, when compared with traditional protocols (fixed location recorders placed or handled by human operators). In this context, this study proposes a methodological framework to assess the potential of UASs in bioacoustic surveys for birds and bats, using low-cost audible and ultrasound recorders mounted on a low-cost quadcopter UAS (DJI Phantom 3 Pro). The proposed methodological workflow can be straightforwardly replicated in other contexts to test the impact of other UAS bioacoustic recording platforms in relation to the targeted species and the specific UAS design. This protocol allows one to evaluate the sensitivity of UAS approaches through the estimate of the effective detection radius for the different species investigated at several flight heights. The results of this study suggest a strong potential for the bioacoustic monitoring of birds but are more contrasted for bat recordings, mainly due to quadcopter noise (i.e., electronic speed controller (ESC) noise) but also, in a certain manner, to the experimental design (use of a directional speaker with limited call intensity). Technical developments, such as the use of a winch to safely extent the distance between the UAS and the recorder during UAS sound recordings or the development of an innovative platform, such as a plane–blimp hybrid UAS, should make it possible to solve these issues. Full article
Show Figures

Figure 1

28 pages, 2530 KiB  
Review
The Drone Revolution of Shark Science: A Review
by Paul A. Butcher, Andrew P. Colefax, Robert A. Gorkin, Stephen M. Kajiura, Naima A. López, Johann Mourier, Cormac R. Purcell, Gregory B. Skomal, James P. Tucker, Andrew J. Walsh, Jane E. Williamson and Vincent Raoult
Drones 2021, 5(1), 8; https://doi.org/10.3390/drones5010008 - 21 Jan 2021
Cited by 67 | Viewed by 21205
Abstract
Over the past decade, drones have become a popular tool for wildlife management and research. Drones have shown significant value for animals that were often difficult or dangerous to study using traditional survey methods. In the past five years drone technology has become [...] Read more.
Over the past decade, drones have become a popular tool for wildlife management and research. Drones have shown significant value for animals that were often difficult or dangerous to study using traditional survey methods. In the past five years drone technology has become commonplace for shark research with their use above, and more recently, below the water helping to minimise knowledge gaps about these cryptic species. Drones have enhanced our understanding of shark behaviour and are critically important tools, not only due to the importance and conservation of the animals in the ecosystem, but to also help minimise dangerous encounters with humans. To provide some guidance for their future use in relation to sharks, this review provides an overview of how drones are currently used with critical context for shark monitoring. We show how drones have been used to fill knowledge gaps around fundamental shark behaviours or movements, social interactions, and predation across multiple species and scenarios. We further detail the advancement in technology across sensors, automation, and artificial intelligence that are improving our abilities in data collection and analysis and opening opportunities for shark-related beach safety. An investigation of the shark-based research potential for underwater drones (ROV/AUV) is also provided. Finally, this review provides baseline observations that have been pioneered for shark research and recommendations for how drones might be used to enhance our knowledge in the future. Full article
(This article belongs to the Special Issue Drone Technology for Wildlife and Human Management)
Show Figures

Figure 1

20 pages, 43356 KiB  
Article
A Citizen Science Unmanned Aerial System Data Acquisition Protocol and Deep Learning Techniques for the Automatic Detection and Mapping of Marine Litter Concentrations in the Coastal Zone
by Apostolos Papakonstantinou, Marios Batsaris, Spyros Spondylidis and Konstantinos Topouzelis
Drones 2021, 5(1), 6; https://doi.org/10.3390/drones5010006 - 18 Jan 2021
Cited by 51 | Viewed by 8273
Abstract
Marine litter (ML) accumulation in the coastal zone has been recognized as a major problem in our time, as it can dramatically affect the environment, marine ecosystems, and coastal communities. Existing monitoring methods fail to respond to the spatiotemporal changes and dynamics of [...] Read more.
Marine litter (ML) accumulation in the coastal zone has been recognized as a major problem in our time, as it can dramatically affect the environment, marine ecosystems, and coastal communities. Existing monitoring methods fail to respond to the spatiotemporal changes and dynamics of ML concentrations. Recent works showed that unmanned aerial systems (UAS), along with computer vision methods, provide a feasible alternative for ML monitoring. In this context, we proposed a citizen science UAS data acquisition and annotation protocol combined with deep learning techniques for the automatic detection and mapping of ML concentrations in the coastal zone. Five convolutional neural networks (CNNs) were trained to classify UAS image tiles into two classes: (a) litter and (b) no litter. Testing the CCNs’ generalization ability to an unseen dataset, we found that the VVG19 CNN returned an overall accuracy of 77.6% and an f-score of 77.42%. ML density maps were created using the automated classification results. They were compared with those produced by a manual screening classification proving our approach’s geographical transferability to new and unknown beaches. Although ML recognition is still a challenging task, this study provides evidence about the feasibility of using a citizen science UAS-based monitoring method in combination with deep learning techniques for the quantification of the ML load in the coastal zone using density maps. Full article
Show Figures

Graphical abstract

25 pages, 18850 KiB  
Article
Correlation among Earthwork and Cropmark Anomalies within Archaeological Landscape Investigation by Using LiDAR and Multispectral Technologies from UAV
by Diego Ronchi, Marco Limongiello and Salvatore Barba
Drones 2020, 4(4), 72; https://doi.org/10.3390/drones4040072 - 30 Nov 2020
Cited by 19 | Viewed by 5500
Abstract
This project aimed to systematically investigate the archaeological remains of the imperial Domitian villa in Sabaudia (Italy), using different three-dimensional survey techniques. Particular attention in the research was paid to the identification and documentation of traces that buried structures left on the surface [...] Read more.
This project aimed to systematically investigate the archaeological remains of the imperial Domitian villa in Sabaudia (Italy), using different three-dimensional survey techniques. Particular attention in the research was paid to the identification and documentation of traces that buried structures left on the surface occupied by the villa, which extended for 46 hectares, an area that was fully covered with structures. Since a dense pine forest was planted during the 1940s and is currently covering the site, this contribution investigates particularly the correlation among the presence of cropmarks, identifiable with the processing of multispectral maps and vegetation indices from RGB images, and earthwork anomalies identified in a Digital Terrain Model (DTM) built, by utilizing a light detection and ranging (LiDAR) flight from an Unmanned Aerial Vehicle (UAV). The study demonstrates how the use of vegetation maps—calculated starting from RGB and multispectral aerial photos—can provide a more expeditious preliminary analysis on the position and extension of areas characterized by the presence of buried structures, but also that, in order to investigate in-depth a context in similar conditions, the most effective approach remains the one based on LiDAR technology. The integration between the two techniques may prove fruitful in limiting the extension of the areas to be investigated with terrestrial survey techniques. Full article
Show Figures

Graphical abstract

21 pages, 5397 KiB  
Article
An Evaluation of the Drone Delivery of Adrenaline Auto-Injectors for Anaphylaxis: Pharmacists’ Perceptions, Acceptance, and Concerns
by September Beck, Tam T. Bui, Andrew Davies, Patrick Courtney, Alex Brown, Jef Geudens and Paul G. Royall
Drones 2020, 4(4), 66; https://doi.org/10.3390/drones4040066 - 9 Oct 2020
Cited by 18 | Viewed by 7148
Abstract
Anaphylaxis is a life-threatening condition where delays in medical treatment can be fatal. Such situations would benefit from the drone delivery of an adrenaline auto-injector such as EpiPen®. This study evaluates the potential risk, reward, and impact of drone transportation on [...] Read more.
Anaphylaxis is a life-threatening condition where delays in medical treatment can be fatal. Such situations would benefit from the drone delivery of an adrenaline auto-injector such as EpiPen®. This study evaluates the potential risk, reward, and impact of drone transportation on the stability of adrenaline during episodes of anaphylaxis. Further, this study examines pharmacists’ perceptions on drone delivery—pharmacists approved the use of drones to deliver EpiPen® during emergencies but had concerns with drone safety and supply chain security. Laboratory simulated onboard drone conditions reflected typical missions. In these experiments, in vitro model and pharmaceutical equivalent formulations were subjected independently to 30 min vibrations at 5, 8.43, and 13.33 Hz, and temperature storage at 4, 25, 40, and 65 °C for 0, 0.5, 3, and 24 h. The chiral composition (an indicator of chemical purity that relates to molecular structure) and concentration of these adrenaline formulations were determined using ultraviolet (UV) and circular dichroism spectroscopy (CD). Adrenaline intrinsic stability was also explored by edge-of-failure experimentation to signpost the uppermost limits for safe transportation. During drone flight with EpiPen®, the temperature and vibration g-force were 10.7 °C and 1.8 g, respectively. No adverse impact on adrenaline was observed during drone flight and laboratory-simulated conditions shown by conformation to the British Pharmacopeia standards (p > 0.05 for CD and UV). This study showed that drone delivery of EpiPen® is feasible. There are more than 15,000 community pharmacies and ≈9000 GP surgeries spanning the UK, which are likely to provide achievable ranges and distances for the direct drone delivery of EpiPen®. The authors recommend that when designing future missions, in addition to medicine stability testing that models the stresses imposed by drone flight, one must conduct a perceptions survey on the relevant group of medical professionals, because their insights, acceptance, and concerns are extremely valuable for the design and evaluation of the mission. Full article
(This article belongs to the Special Issue Drones for Medicine Delivery and Healthcare Logistics)
Show Figures

Graphical abstract

35 pages, 1164 KiB  
Review
Operational Protocols for the Use of Drones in Marine Animal Research
by Vincent Raoult, Andrew P Colefax, Blake M. Allan, Daniele Cagnazzi, Nataly Castelblanco-Martínez, Daniel Ierodiaconou, David W. Johnston, Sarah Landeo-Yauri, Mitchell Lyons, Vanessa Pirotta, Gail Schofield and Paul A Butcher
Drones 2020, 4(4), 64; https://doi.org/10.3390/drones4040064 - 25 Sep 2020
Cited by 79 | Viewed by 19255
Abstract
The use of drones to study marine animals shows promise for the examination of numerous aspects of their ecology, behaviour, health and movement patterns. However, the responses of some marine phyla to the presence of drones varies broadly, as do the general operational [...] Read more.
The use of drones to study marine animals shows promise for the examination of numerous aspects of their ecology, behaviour, health and movement patterns. However, the responses of some marine phyla to the presence of drones varies broadly, as do the general operational protocols used to study them. Inconsistent methodological approaches could lead to difficulties comparing studies and can call into question the repeatability of research. This review draws on current literature and researchers with a wealth of practical experience to outline the idiosyncrasies of studying various marine taxa with drones. We also outline current best practice for drone operation in marine environments based on the literature and our practical experience in the field. The protocols outlined herein will be of use to researchers interested in incorporating drones as a tool into their research on marine animals and will help form consistent approaches for drone-based studies in the future. Full article
(This article belongs to the Special Issue Drone Technology for Wildlife and Human Management)
Show Figures

Figure 1

19 pages, 3895 KiB  
Article
High Resolution Geospatial Evapotranspiration Mapping of Irrigated Field Crops Using Multispectral and Thermal Infrared Imagery with METRIC Energy Balance Model
by Abhilash K. Chandel, Behnaz Molaei, Lav R. Khot, R. Troy Peters and Claudio O. Stöckle
Drones 2020, 4(3), 52; https://doi.org/10.3390/drones4030052 - 1 Sep 2020
Cited by 21 | Viewed by 4561
Abstract
Geospatial crop water use mapping is critical for field-scale site-specific irrigation management. Landsat 7/8 satellite imagery with a widely adopted METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration) energy balance model (LM approach) estimates accurate evapotranspiration (ET) but limits field-scale spatiotemporal (30 [...] Read more.
Geospatial crop water use mapping is critical for field-scale site-specific irrigation management. Landsat 7/8 satellite imagery with a widely adopted METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration) energy balance model (LM approach) estimates accurate evapotranspiration (ET) but limits field-scale spatiotemporal (30 m pixel−1, ~16 days) mapping. A study was therefore conducted to map actual ET of commercially grown irrigated-field crops (spearmint, potato, and alfalfa) at very high-resolution (7 cm pixel−1). Six small unmanned aerial system (UAS)-based multispectral and thermal infrared imagery campaigns were conducted (two for each crop) at the same time as the Landsat 7/8 overpass. Three variants of METRIC model were used to process the UAS imagery; UAS-METRIC-1, -2, and -3 (UASM-1, -2, and -3) and outputs were compared with the standard LM approach. ET root mean square differences (RMSD) between LM-UASM-1, LM-UASM-2, and LM-UASM-3 were in the ranges of 0.2–2.9, 0.5–0.9, and 0.5–2.7 mm day−1, respectively. Internal calibrations and sensible heat fluxes majorly resulted in such differences. UASM-2 had the highest similarity with the LM approach (RMSD: 0.5–0.9, ETdep,abs (daily ET departures): 2–14%, r (Pearson correlation coefficient) = 0.91). Strong ET correlations between UASM and LM approaches (0.7–0.8, 0.7–0.8, and 0.8–0.9 for spearmint, potato, and alfalfa crops) suggest equal suitability of UASM approaches as LM to map ET for a range of similar crops. UASM approaches (Coefficient of variation, CV: 6.7–24.3%) however outperformed the LM approach (CV: 2.1–11.2%) in mapping spatial ET variations due to large number of pixels. On-demand UAS imagery may thus help in deriving high resolution site-specific ET maps, for growers to aid in timely crop water management. Full article
(This article belongs to the Special Issue Feature Papers of Drones)
Show Figures

Figure 1

28 pages, 29496 KiB  
Review
UAS-Based Archaeological Remote Sensing: Review, Meta-Analysis and State-of-the-Art
by Efstathios Adamopoulos and Fulvio Rinaudo
Drones 2020, 4(3), 46; https://doi.org/10.3390/drones4030046 - 19 Aug 2020
Cited by 56 | Viewed by 8779
Abstract
Over the last decade, we have witnessed momentous technological developments in unmanned aircraft systems (UAS) and in lightweight sensors operating at various wavelengths, at and beyond the visible spectrum, which can be integrated with unmanned aerial platforms. These innovations have made feasible close-range [...] Read more.
Over the last decade, we have witnessed momentous technological developments in unmanned aircraft systems (UAS) and in lightweight sensors operating at various wavelengths, at and beyond the visible spectrum, which can be integrated with unmanned aerial platforms. These innovations have made feasible close-range and high-resolution remote sensing for numerous archaeological applications, including documentation, prospection, and monitoring bridging the gap between satellite, high-altitude airborne, and terrestrial sensing of historical sites and landscapes. In this article, we track the progress made so far, by systematically reviewing the literature relevant to the combined use of UAS platforms with visible, infrared, multi-spectral, hyper-spectral, laser, and radar sensors to reveal archaeological features otherwise invisible to archaeologists with applied non-destructive techniques. We review, specific applications and their global distribution, as well as commonly used platforms, sensors, and data-processing workflows. Furthermore, we identify the contemporary state-of-the-art and discuss the challenges that have already been overcome, and those that have not, to propose suggestions for future research. Full article
Show Figures

Figure 1

18 pages, 6548 KiB  
Article
Towards Bio-Inspiration, Development, and Manufacturing of a Flapping-Wing Micro Air Vehicle
by P. Lane, G. Throneberry, I. Fernandez, M. Hassanalian, R. Vasconcellos and A. Abdelkefi
Drones 2020, 4(3), 39; https://doi.org/10.3390/drones4030039 - 25 Jul 2020
Cited by 11 | Viewed by 4007
Abstract
Throughout the last decade, there has been an increased demand for intricate flapping-wing drones with different capabilities than larger drones. The design of flapping-wing drones is focused on endurance and stability, as these are two of the main challenges of these systems. Researchers [...] Read more.
Throughout the last decade, there has been an increased demand for intricate flapping-wing drones with different capabilities than larger drones. The design of flapping-wing drones is focused on endurance and stability, as these are two of the main challenges of these systems. Researchers have recently been turning towards bioinspiration as a way to enhance aerodynamic performance. In this work, the propulsion system of a flapping-wing micro air vehicle is investigated to identify the limitations and drawbacks of specific designs. Each system has a tandem wing configuration inspired by a dragonfly, with wing shapes inspired by a bumblebee. For the design of this flapping-wing, a sizing process is carried out. A number of actuation mechanisms are considered, and two different mechanisms are designed and integrated into a flapping-wing system and compared to one another. The second system is tested using a thrust stand to investigate the impact of wing configurations on aerodynamic force production and the trend of force production from varying flapping frequency. Results present the optimal wing configuration of those tested and that an angle of attack of two degrees yields the greatest force production. A tethered flight test is conducted to examine the stability and aerodynamic capabilities of the drone, and challenges of flapping-wing systems and solutions that can lead to successful flight are presented. Key challenges to the successful design of these systems are weight management, force production, and stability and control. Full article
Show Figures

Figure 1

25 pages, 2825 KiB  
Review
A Comprehensive Review of Applications of Drone Technology in the Mining Industry
by Javad Shahmoradi, Elaheh Talebi, Pedram Roghanchi and Mostafa Hassanalian
Drones 2020, 4(3), 34; https://doi.org/10.3390/drones4030034 - 15 Jul 2020
Cited by 174 | Viewed by 28577
Abstract
This paper aims to provide a comprehensive review of the current state of drone technology and its applications in the mining industry. The mining industry has shown increased interest in the use of drones for routine operations. These applications include 3D mapping of [...] Read more.
This paper aims to provide a comprehensive review of the current state of drone technology and its applications in the mining industry. The mining industry has shown increased interest in the use of drones for routine operations. These applications include 3D mapping of the mine environment, ore control, rock discontinuities mapping, postblast rock fragmentation measurements, and tailing stability monitoring, to name a few. The article offers a review of drone types, specifications, and applications of commercially available drones for mining applications. Finally, the research needs for the design and implementation of drones for underground mining applications are discussed. Full article
Show Figures

Figure 1

21 pages, 6430 KiB  
Article
Estimating Tree Height and Volume Using Unmanned Aerial Vehicle Photography and SfM Technology, with Verification of Result Accuracy
by Shohei Kameyama and Katsuaki Sugiura
Drones 2020, 4(2), 19; https://doi.org/10.3390/drones4020019 - 11 May 2020
Cited by 35 | Viewed by 7892
Abstract
This study aimed to investigate the effects of differences in shooting and flight conditions for an unmanned aerial vehicle (UAV) on the processing method and estimated results of aerial images. Forest images were acquired under 80 different conditions, combining various aerial photography methods [...] Read more.
This study aimed to investigate the effects of differences in shooting and flight conditions for an unmanned aerial vehicle (UAV) on the processing method and estimated results of aerial images. Forest images were acquired under 80 different conditions, combining various aerial photography methods and flight conditions. We verified errors in values measured by the UAV and the measurement accuracy with respect to tree height and volume. Our results showed that aerial images could be processed under all the studied flight conditions. However, although tree height and crown were decipherable in the created 3D model in 64 conditions, they were undecipherable in 16. The standard deviation (SD) in crown area values for each target tree was 0.08 to 0.68 m2. UAV measurements of tree height tended to be lower than the actual values, and the RMSE (root mean square error) was high (5.2 to 7.1 m) through all the 64 modeled conditions. With the estimated volume being lower than the actual volume, the RMSE volume measurements for each flight condition were from 0.31 to 0.4 m3. Therefore, irrespective of flight conditions for UAV measurements, accuracy was low with respect to the actual values. Full article
Show Figures

Graphical abstract

17 pages, 5973 KiB  
Article
Sharkeye: Real-Time Autonomous Personal Shark Alerting via Aerial Surveillance
by Robert Gorkin III, Kye Adams, Matthew J Berryman, Sam Aubin, Wanqing Li, Andrew R Davis and Johan Barthelemy
Drones 2020, 4(2), 18; https://doi.org/10.3390/drones4020018 - 4 May 2020
Cited by 27 | Viewed by 9784
Abstract
While aerial shark spotting has been a standard practice for beach safety for decades, new technologies offer enhanced opportunities, ranging from drones/unmanned aerial vehicles (UAVs) that provide new viewing capabilities, to new apps that provide beachgoers with up-to-date risk analysis before entering the [...] Read more.
While aerial shark spotting has been a standard practice for beach safety for decades, new technologies offer enhanced opportunities, ranging from drones/unmanned aerial vehicles (UAVs) that provide new viewing capabilities, to new apps that provide beachgoers with up-to-date risk analysis before entering the water. This report describes the Sharkeye platform, a first-of-its-kind project to demonstrate personal shark alerting for beachgoers in the water and on land, leveraging innovative UAV image collection, cloud-hosted machine learning detection algorithms, and reporting via smart wearables. To execute, our team developed a novel detection algorithm trained via machine learning based on aerial footage of real sharks and rays collected at local beaches, hosted and deployed the algorithm in the cloud, and integrated push alerts to beachgoers in the water via a shark app to run on smartwatches. The project was successfully trialed in the field in Kiama, Australia, with over 350 detection events recorded, followed by the alerting of multiple smartwatches simultaneously both on land and in the water, and with analysis capable of detecting shark analogues, rays, and surfers in average beach conditions, and all based on ~1 h of training data in total. Additional demonstrations showed potential of the system to enable lifeguard-swimmer communication, and the ability to create a network on demand to enable the platform. Our system was developed to provide swimmers and surfers with immediate information via smart apps, empowering lifeguards/lifesavers and beachgoers to prevent unwanted encounters with wildlife before it happens. Full article
(This article belongs to the Special Issue Drone Technology for Wildlife and Human Management)
Show Figures

Graphical abstract

22 pages, 7172 KiB  
Article
Reliable Long-Range Multi-Link Communication for Unmanned Search and Rescue Aircraft Systems in Beyond Visual Line of Sight Operation
by Johannes Güldenring, Philipp Gorczak, Fabian Eckermann, Manuel Patchou, Janis Tiemann, Fabian Kurtz and Christian Wietfeld
Drones 2020, 4(2), 16; https://doi.org/10.3390/drones4020016 - 1 May 2020
Cited by 20 | Viewed by 7516
Abstract
With the increasing availability of unmanned aircraft systems, their usage for search and rescue is close at hand. Especially in the maritime context, aerial support can yield significant benefits. This article proposes and evaluates the concept of combining multiple cellular networks for highly [...] Read more.
With the increasing availability of unmanned aircraft systems, their usage for search and rescue is close at hand. Especially in the maritime context, aerial support can yield significant benefits. This article proposes and evaluates the concept of combining multiple cellular networks for highly reliable communication with those aircraft systems. The proposed approach is experimentally validated in several unprecedented large-scale experiments in the maritime context. It is found that in this scenario, conventional methods do not suffice for reliable connectivity to the aircraft with significantly varying overall availabilities between 68% and 97%. The underlying work, however, overcomes the limitations of single-link connectivity by providing availability of up to 99.8% in the analyzed scenarios. Therefore, the approach and the experimental data presented in this work yield a solid contribution to search and rescue drones. All results and flight recording data sets are published along with this article to enable future related work and studies, external reproduction, and validation of the underlying results and findings. Full article
Show Figures

Figure 1

26 pages, 8837 KiB  
Article
Accuracy of 3D Landscape Reconstruction without Ground Control Points Using Different UAS Platforms
by Margaret Kalacska, Oliver Lucanus, J. Pablo Arroyo-Mora, Étienne Laliberté, Kathryn Elmer, George Leblanc and Andrew Groves
Drones 2020, 4(2), 13; https://doi.org/10.3390/drones4020013 - 24 Apr 2020
Cited by 43 | Viewed by 9553
Abstract
The rapid increase of low-cost consumer-grade to enterprise-level unmanned aerial systems (UASs) has resulted in the exponential use of these systems in many applications. Structure from motion with multiview stereo (SfM-MVS) photogrammetry is now the baseline for the development of orthoimages and 3D [...] Read more.
The rapid increase of low-cost consumer-grade to enterprise-level unmanned aerial systems (UASs) has resulted in the exponential use of these systems in many applications. Structure from motion with multiview stereo (SfM-MVS) photogrammetry is now the baseline for the development of orthoimages and 3D surfaces (e.g., digital elevation models). The horizontal and vertical positional accuracies (x, y and z) of these products in general, rely heavily on the use of ground control points (GCPs). However, for many applications, the use of GCPs is not possible. Here we tested 14 UASs to assess the positional and within-model accuracy of SfM-MVS reconstructions of low-relief landscapes without GCPs ranging from consumer to enterprise-grade vertical takeoff and landing (VTOL) platforms. We found that high positional accuracy is not necessarily related to the platform cost or grade, rather the most important aspect is the use of post-processing kinetic (PPK) or real-time kinetic (RTK) solutions for geotagging the photographs. SfM-MVS products generated from UAS with onboard geotagging, regardless of grade, results in greater positional accuracies and lower within-model errors. We conclude that where repeatability and adherence to a high level of accuracy are needed, only RTK and PPK systems should be used without GCPs. Full article
(This article belongs to the Special Issue She Maps)
Show Figures

Graphical abstract

19 pages, 14040 KiB  
Article
Coastal Mapping Using DJI Phantom 4 RTK in Post-Processing Kinematic Mode
by Yuri Taddia, Francesco Stecchi and Alberto Pellegrinelli
Drones 2020, 4(2), 9; https://doi.org/10.3390/drones4020009 - 30 Mar 2020
Cited by 105 | Viewed by 10875
Abstract
Topographic and geomorphological surveys of coastal areas usually require the aerial mapping of long and narrow sections of littoral. The georeferencing of photogrammetric models is generally based on the signalization and survey of Ground Control Points (GCPs), which are very time-consuming tasks. Direct [...] Read more.
Topographic and geomorphological surveys of coastal areas usually require the aerial mapping of long and narrow sections of littoral. The georeferencing of photogrammetric models is generally based on the signalization and survey of Ground Control Points (GCPs), which are very time-consuming tasks. Direct georeferencing with high camera location accuracy due to on-board multi-frequency GNSS receivers can limit the need for GCPs. Recently, DJI has made available the Phantom 4 Real-Time Kinematic (RTK) (DJI-P4RTK), which combines the versatility and the ease of use of previous DJI Phantom models with the advantages of a multi-frequency on-board GNSS receiver. In this paper, we investigated the accuracy of both photogrammetric models and Digital Terrain Models (DTMs) generated in Agisoft Metashape from two different image datasets (nadiral and oblique) acquired by a DJI-P4RTK. Camera locations were computed with the Post-Processing Kinematic (PPK) of the Receiver Independent Exchange Format (RINEX) file recorded by the aircraft during flight missions. A Continuously Operating Reference Station (CORS) located at a 15 km distance from the site was used for this task. The results highlighted that the oblique dataset produced very similar results, with GCPs (3D RMSE = 0.025 m) and without (3D RMSE = 0.028 m), while the nadiral dataset was affected more by the position and number of the GCPs (3D RMSE from 0.034 to 0.075 m). The introduction of a few oblique images into the nadiral dataset without any GCP improved the vertical accuracy of the model (Up RMSE from 0.052 to 0.025 m) and can represent a solution to speed up the image acquisition of nadiral datasets for PPK with the DJI-P4RTK and no GCPs. Moreover, the results of this research are compared to those obtained in RTK mode for the same datasets. The novelty of this research is the combination of a multitude of aspects regarding the DJI Phantom 4 RTK aircraft and the subsequent data processing strategies for assessing the quality of photogrammetric models, DTMs, and cross-section profiles. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles in Geomatics)
Show Figures

Figure 1

16 pages, 4905 KiB  
Article
Adaptive Water Sampling Device for Aerial Robots
by Cengiz Koparan, A. Bulent Koc, Charles V. Privette and Calvin B. Sawyer
Drones 2020, 4(1), 5; https://doi.org/10.3390/drones4010005 - 6 Feb 2020
Cited by 26 | Viewed by 8950
Abstract
Water quality monitoring and predicting the changes in water characteristics require the collection of water samples in a timely manner. Water sample collection based on in situ measurable water quality indicators can increase the efficiency and precision of data collection while reducing the [...] Read more.
Water quality monitoring and predicting the changes in water characteristics require the collection of water samples in a timely manner. Water sample collection based on in situ measurable water quality indicators can increase the efficiency and precision of data collection while reducing the cost of laboratory analyses. The objective of this research was to develop an adaptive water sampling device for an aerial robot and demonstrate the accuracy of its functions in laboratory and field conditions. The prototype device consisted of a sensor node with dissolved oxygen, pH, electrical conductivity, temperature, turbidity, and depth sensors, a microcontroller, and a sampler with three cartridges. Activation of water capturing cartridges was based on in situ measurements from the sensor node. The activation mechanism of the prototype device was tested with standard solutions in the laboratory and with autonomous water sampling flights over the 11-ha section of a lake. A total of seven sampling locations were selected based on a grid system. Each cartridge collected 130 mL of water samples at a 3.5 m depth. Mean water quality parameters were measured as 8.47 mg/L of dissolved oxygen, pH of 5.34, 7 µS/cm of electrical conductivity, temperature of 18 °C, and 37 Formazin Nephelometric Unit (FNU) of turbidity. The dissolved oxygen was within allowable limits that were pre-set in the self-activation computer program while the pH, electrical conductivity, and temperature were outside of allowable limits that were specified by Environmental Protection Agency (EPA). Therefore, the activation mechanism of the device was triggered and water samples were collected from all the sampling locations successfully. The adaptive water sampling with Unmanned Aerial Vehicle-assisted water sampling device was proved to be a successful method for water quality evaluation. Full article
Show Figures

Figure 1

19 pages, 8175 KiB  
Article
Accuracy Assessment of 3D Photogrammetric Models from an Unmanned Aerial Vehicle
by Salvatore Barba, Maurizio Barbarella, Alessandro Di Benedetto, Margherita Fiani, Lucas Gujski and Marco Limongiello
Drones 2019, 3(4), 79; https://doi.org/10.3390/drones3040079 - 15 Oct 2019
Cited by 55 | Viewed by 8447
Abstract
The unmanned aerial vehicle (UAV) photogrammetric survey of an archaeological site has proved itself to be particularly efficient. In order to obtain highly accurate and reliable results, it is necessary to design carefully the flight plan and the geo-referencing, while also evaluating the [...] Read more.
The unmanned aerial vehicle (UAV) photogrammetric survey of an archaeological site has proved itself to be particularly efficient. In order to obtain highly accurate and reliable results, it is necessary to design carefully the flight plan and the geo-referencing, while also evaluating the indicators of the accuracy rate. Using as a test case a UAV photogrammetric survey conducted on the archaeological site of the Roman Amphitheatre of Avella (Italy), in this paper, we propose a pipeline to assess the accuracy of the results according to some quality indicators. The flight configuration and the georeferencing chosen is then be checked via the residuals on the ground control points (GCPs), evenly distributed on the edges and over the entire area. With the aim of appraising the accuracy of the final model, we will suggest a method for the outlier detection, taking into account the statistical distribution (both global and of portion of the study object) of the reprojection errors. A filter to reduce the noise within the model will then be implemented through the detection of the angle formed by homologous rays, in order to reach a compromise between the number of the usable points and the reduction of the noise linked to the definition of the 3D model. Full article
Show Figures

Figure 1

19 pages, 42678 KiB  
Article
Deep Reinforcement Learning for Drone Delivery
by Guillem Muñoz, Cristina Barrado, Ender Çetin and Esther Salami
Drones 2019, 3(3), 72; https://doi.org/10.3390/drones3030072 - 10 Sep 2019
Cited by 37 | Viewed by 16622
Abstract
Drones are expected to be used extensively for delivery tasks in the future. In the absence of obstacles, satellite based navigation from departure to the geo-located destination is a simple task. When obstacles are known to be in the path, pilots must build [...] Read more.
Drones are expected to be used extensively for delivery tasks in the future. In the absence of obstacles, satellite based navigation from departure to the geo-located destination is a simple task. When obstacles are known to be in the path, pilots must build a flight plan to avoid them. However, when they are unknown, there are too many or they are in places that are not fixed positions, then to build a safe flight plan becomes very challenging. Moreover, in a weak satellite signal environment, such as indoors, under trees canopy or in urban canyons, the current drone navigation systems may fail. Artificial intelligence, a research area with increasing activity, can be used to overcome such challenges. Initially focused on robots and now mostly applied to ground vehicles, artificial intelligence begins to be used also to train drones. Reinforcement learning is the branch of artificial intelligence able to train machines. The application of reinforcement learning to drones will provide them with more intelligence, eventually converting drones in fully-autonomous machines. In this work, reinforcement learning is studied for drone delivery. As sensors, the drone only has a stereo-vision front camera, from which depth information is obtained. The drone is trained to fly to a destination in a neighborhood environment that has plenty of obstacles such as trees, cables, cars and houses. The flying area is also delimited by a geo-fence; this is a virtual (non-visible) fence that prevents the drone from entering or leaving a defined area. The drone has to avoid visible obstacles and has to reach a goal. Results show that, in comparison with the previous results, the new algorithms have better results, not only with a better reward, but also with a reduction of its variance. The second contribution is the checkpoints. They consist of saving a trained model every time a better reward is achieved. Results show how checkpoints improve the test results. Full article
Show Figures

Graphical abstract

30 pages, 343 KiB  
Review
A Survey of Recent Extended Variants of the Traveling Salesman and Vehicle Routing Problems for Unmanned Aerial Vehicles
by Ines Khoufi, Anis Laouiti and Cedric Adjih
Drones 2019, 3(3), 66; https://doi.org/10.3390/drones3030066 - 24 Aug 2019
Cited by 96 | Viewed by 9936
Abstract
The use of Unmanned Aerial Vehicles (UAVs) is rapidly growing in popularity. Initially introduced for military purposes, over the past few years, UAVs and related technologies have successfully transitioned to a whole new range of civilian applications such as delivery, logistics, surveillance, entertainment, [...] Read more.
The use of Unmanned Aerial Vehicles (UAVs) is rapidly growing in popularity. Initially introduced for military purposes, over the past few years, UAVs and related technologies have successfully transitioned to a whole new range of civilian applications such as delivery, logistics, surveillance, entertainment, and so forth. They have opened new possibilities such as allowing operation in otherwise difficult or hazardous areas, for instance. For all applications, one foremost concern is the selection of the paths and trajectories of UAVs, and at the same time, UAVs control comes with many challenges, as they have limited energy, limited load capacity and are vulnerable to difficult weather conditions. Generally, efficiently operating a drone can be mathematically formalized as a path optimization problem under some constraints. This shares some commonalities with similar problems that have been extensively studied in the context of urban vehicles and it is only natural that the recent literature has extended the latter to fit aerial vehicle constraints. The knowledge of such problems, their formulation, the resolution methods proposed—through the variants induced specifically by UAVs features—are of interest for practitioners for any UAV application. Hence, in this study, we propose a review of existing literature devoted to such UAV path optimization problems, focusing specifically on the sub-class of problems that consider the mobility on a macroscopic scale. These are related to the two existing general classic ones—the Traveling Salesman Problem and the Vehicle Routing Problem. We analyze the recent literature that adapted the problems to the UAV context, provide an extensive classification and taxonomy of their problems and their formulation and also give a synthetic overview of the resolution techniques, performance metrics and obtained numerical results. Full article
(This article belongs to the Special Issue Drones Navigation and Orientation)
14 pages, 4049 KiB  
Article
Comparing Filtering Techniques for Removing Vegetation from UAV-Based Photogrammetric Point Clouds
by Niels Anders, João Valente, Rens Masselink and Saskia Keesstra
Drones 2019, 3(3), 61; https://doi.org/10.3390/drones3030061 - 30 Jul 2019
Cited by 57 | Viewed by 13934
Abstract
Digital Elevation Models (DEMs) are 3D representations of the Earth’s surface and have numerous applications in geomorphology, hydrology and ecology. Structure-from-Motion (SfM) photogrammetry using photographs obtained by unmanned aerial vehicles (UAVs) have been increasingly used for obtaining high resolution DEMs. These DEMs are [...] Read more.
Digital Elevation Models (DEMs) are 3D representations of the Earth’s surface and have numerous applications in geomorphology, hydrology and ecology. Structure-from-Motion (SfM) photogrammetry using photographs obtained by unmanned aerial vehicles (UAVs) have been increasingly used for obtaining high resolution DEMs. These DEMs are interpolated from point clouds representing entire landscapes, including points of terrain, vegetation and infrastructure. Up to date, there has not been any study clearly comparing different algorithms for filtering of vegetation. The objective in this study was, therefore, to assess the performance of various vegetation filter algorithms for SfM-obtained point clouds. The comparison was done for a Mediterranean area in Murcia, Spain with heterogeneous vegetation cover. The filter methods that were compared were: color-based filtering using an excessive greenness vegetation index (VI), Triangulated Irregular Networks (TIN) densification from LAStools, the standard method in Agisoft Photoscan (PS), iterative surface lowering (ISL), and a combination of iterative surface lowering and the VI method (ISL_VI). Results showed that for bare areas there was little to no difference between the filtering methods, which is to be expected because there is little to no vegetation present to filter. For areas with shrubs and trees, the ISL_VI and TIN method performed best. These results show that different filtering techniques have various degrees of success in different use cases. A default filter in commercial software such as Photoscan may not always be the best way to remove unwanted vegetation from a point cloud, but instead alternative methods such as a TIN densification algorithm should be used to obtain a vegetation-less Digital Terrain Model (DTM). Full article
Show Figures

Figure 1

26 pages, 4128 KiB  
Review
Review: Using Unmanned Aerial Vehicles (UAVs) as Mobile Sensing Platforms (MSPs) for Disaster Response, Civil Security and Public Safety
by Hanno Hildmann and Ernö Kovacs
Drones 2019, 3(3), 59; https://doi.org/10.3390/drones3030059 - 25 Jul 2019
Cited by 143 | Viewed by 21267
Abstract
The use of UAVs in areas ranging from agriculture over urban services to entertainment or simply as a hobby has rapidly grown over the last years. Regarding serious/commercial applications, UAVs have been considered in the literature, especially as mobile sensing/actuation platforms (i.e., as [...] Read more.
The use of UAVs in areas ranging from agriculture over urban services to entertainment or simply as a hobby has rapidly grown over the last years. Regarding serious/commercial applications, UAVs have been considered in the literature, especially as mobile sensing/actuation platforms (i.e., as a delivery platform for an increasingly wide range of sensors and actuators). With regard to timely, cost-effective and very rich data acquisition, both, NEC Research as well as TNO are pursuing investigations into the use of UAVs and swarms of UAVs for scenarios where high-resolution requirements, prohibiting environments or tight time constraints render traditional approaches ineffective. In this review article, we provide a brief overview of safety and security-focused application areas that we identified as main targets for industrial and commercial projects, especially in the context of intelligent autonomous systems and autonomous/semi-autonomously operating swarms. We discuss a number of challenges related to the deployment of UAVs in general and to their deployment within the identified application areas in particular. As such, this article is meant to serve as a review and overview of the literature and the state-of-the-art, but also to offer an outlook over our possible (near-term) future work and the challenges that we will face there. Full article
Show Figures

Figure 1

28 pages, 12290 KiB  
Article
Illumination Geometry and Flying Height Influence Surface Reflectance and NDVI Derived from Multispectral UAS Imagery
by Daniel Stow, Caroline J. Nichol, Tom Wade, Jakob J. Assmann, Gillian Simpson and Carole Helfter
Drones 2019, 3(3), 55; https://doi.org/10.3390/drones3030055 - 8 Jul 2019
Cited by 42 | Viewed by 7479
Abstract
Small unmanned aerial systems (UAS) have allowed the mapping of vegetation at very high spatial resolution, but a lack of standardisation has led to uncertainties regarding data quality. For reflectance measurements and vegetation indices (Vis) to be comparable between sites and over time, [...] Read more.
Small unmanned aerial systems (UAS) have allowed the mapping of vegetation at very high spatial resolution, but a lack of standardisation has led to uncertainties regarding data quality. For reflectance measurements and vegetation indices (Vis) to be comparable between sites and over time, careful flight planning and robust radiometric calibration procedures are required. Two sources of uncertainty that have received little attention until recently are illumination geometry and the effect of flying height. This study developed methods to quantify and visualise these effects in imagery from the Parrot Sequoia, a UAV-mounted multispectral sensor. Change in illumination geometry over one day (14 May 2018) had visible effects on both individual images and orthomosaics. Average near-infrared (NIR) reflectance and NDVI in regions of interest were slightly lower around solar noon, and the contrast between shadowed and well-illuminated areas increased over the day in all multispectral bands. Per-pixel differences in NDVI maps were spatially variable, and much larger than average differences in some areas. Results relating to flying height were inconclusive, though small increases in NIR reflectance with height were observed over a black sailcloth tarp. These results underline the need to consider illumination geometry when carrying out UAS vegetation surveys. Full article
Show Figures

Figure 1

20 pages, 4201 KiB  
Article
An Evaluation of the Delivery of Medicines Using Drones
by Michelle Sing Yee Hii, Patrick Courtney and Paul G. Royall
Drones 2019, 3(3), 52; https://doi.org/10.3390/drones3030052 - 27 Jun 2019
Cited by 58 | Viewed by 15952
Abstract
This study tests the impact of drone transportation on the quality of a medicine. Modelling the critical process parameters of drone flight, the effects of temperature and vibration on insulin were investigated using the pharmacopoeia methods. The medicine, Actrapid, (3.5 mg/mL of insulin), [...] Read more.
This study tests the impact of drone transportation on the quality of a medicine. Modelling the critical process parameters of drone flight, the effects of temperature and vibration on insulin were investigated using the pharmacopoeia methods. The medicine, Actrapid, (3.5 mg/mL of insulin), was flown by a quad-rotor drone. Insulin stored between −20 and 40 °C for 30 mins, and subjected to vibration (0–40 Hz, 25 °C, 30 mins) passed the pharmacopeia tests. Dynamic light scattering identified the active tetrameric and hexameric forms of insulin post testing. Vibration frequencies during drone flight were between 0.1 and 3.4 Hz. There was no evidence of visible insulin aggregates following the drone transportation. The differences in UV absorbance readings between flown Actrapid and controls were insignificant (p = 0.89). No adverse impact of drone transport on insulin was observed. This study provides supporting evidence that drone transportation of medicinal products containing insulin is feasible. The authors recommend that when considering the drone delivery of medicines five tests need to be applied. These tests must determine the safe flight time and range, the quality of the medicine post flight, the onboard conditions experienced by the medicine, the security of the drone supply chain and the effect of drone failure on both the medicine and the environment. Full article
Show Figures

Graphical abstract

19 pages, 3608 KiB  
Article
Assessing Reef-Island Shoreline Change Using UAV-Derived Orthomosaics and Digital Surface Models
by Meagan K. Lowe, Farrah Anis Fazliatul Adnan, Sarah M. Hamylton, Rafael C. Carvalho and Colin D. Woodroffe
Drones 2019, 3(2), 44; https://doi.org/10.3390/drones3020044 - 14 May 2019
Cited by 33 | Viewed by 6278
Abstract
This study presents an analysis of shoreline change on reef islands using unmanned aerial vehicle (UAV)-derived orthomosaics and digital surface models (DSMs) collected on Sipadan Island, Sabah, Malaysia, and Sasahura Ite Island, Isabel Province, Solomon Islands. The high resolution of UAV-derived orthomosaics enabled [...] Read more.
This study presents an analysis of shoreline change on reef islands using unmanned aerial vehicle (UAV)-derived orthomosaics and digital surface models (DSMs) collected on Sipadan Island, Sabah, Malaysia, and Sasahura Ite Island, Isabel Province, Solomon Islands. The high resolution of UAV-derived orthomosaics enabled changes in the position of the base of beach to be detected with confidence. The accuracy of the UAV-derived DSMs was assessed against equivalent topographic profiles via root-mean-square error, and found to be <0.21 m in all but one case; this demonstrates the potential for using UAV-derived DSMs to interpret three-dimensional island beach morphology and detect patterns of geomorphic change. The correlation between planimetric and volumetric change along selected beach transects was also investigated and found to be variable, indicating that a multifaceted approach including both planimetric (two-dimensional) and volumetric (three-dimensional) metrics is of value when analysing reef-island change. However, interpretations of UAV-derived data must carefully consider errors associated with global positioning system (GPS) positioning, the distribution of ground control points, the chosen UAV flight parameters, and the data processing methodology. Further application of this technology has the potential to expand our understanding of reef-island morphodynamics and their vulnerability to sea-level rise and other stressors. Full article
(This article belongs to the Special Issue Drones for Coastal Environments)
Show Figures

Figure 1

27 pages, 409 KiB  
Review
A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses
by Jayme Garcia Arnal Barbedo
Drones 2019, 3(2), 40; https://doi.org/10.3390/drones3020040 - 20 Apr 2019
Cited by 166 | Viewed by 22731
Abstract
Unmanned aerial vehicles (UAVs) are becoming a valuable tool to collect data in a variety of contexts. Their use in agriculture is particularly suitable, as those areas are often vast, making ground scouting difficult, and sparsely populated, which means that injury and privacy [...] Read more.
Unmanned aerial vehicles (UAVs) are becoming a valuable tool to collect data in a variety of contexts. Their use in agriculture is particularly suitable, as those areas are often vast, making ground scouting difficult, and sparsely populated, which means that injury and privacy risks are not as important as in urban settings. Indeed, the use of UAVs for monitoring and assessing crops, orchards, and forests has been growing steadily during the last decade, especially for the management of stresses such as water, diseases, nutrition deficiencies, and pests. This article presents a critical overview of the main advancements on the subject, focusing on the strategies that have been used to extract the information contained in the images captured during the flights. Based on the information found in more than 100 published articles and on our own research, a discussion is provided regarding the challenges that have already been overcome and the main research gaps that still remain, together with some suggestions for future research. Full article
(This article belongs to the Special Issue UAV/Drones for Agriculture and Forestry)
22 pages, 26577 KiB  
Article
Using Fixed-Wing UAV for Detecting and Mapping the Distribution and Abundance of Penguins on the South Shetlands Islands, Antarctica
by Christian Pfeifer, Andres Barbosa, Osama Mustafa, Hans-Ulrich Peter, Marie-Charlott Rümmler and Alexander Brenning
Drones 2019, 3(2), 39; https://doi.org/10.3390/drones3020039 - 19 Apr 2019
Cited by 34 | Viewed by 8944
Abstract
Antarctic marine ecosystems undergo enormous changes, presumably due to climate change and fishery. Unmanned aerial vehicles (UAVs) have an unprecedented potential for measuring these changes by mapping indicator species such as penguins even in remote areas. We used a battery-powered fixed-wing UAV to [...] Read more.
Antarctic marine ecosystems undergo enormous changes, presumably due to climate change and fishery. Unmanned aerial vehicles (UAVs) have an unprecedented potential for measuring these changes by mapping indicator species such as penguins even in remote areas. We used a battery-powered fixed-wing UAV to survey colonies along a 30-km stretch of the remote coast of southwest King George Island and northwest Nelson Island (South Shetland Islands, Antarctica) during the austral summer 2016/17. With multiple flights, we covered a total distance of 317 km. We determined the exact position of 14 chinstrap penguin colonies, including two small unknown colonies, with a total abundance of 35,604 adults. To model the number of occupied nests based on the number of adults counted in the UAV imagery we used data derived from terrestrial time-lapse imagery. The comparison with previous studies revealed a decline in the total abundance of occupied nests. However, we also found four chinstrap penguin colonies that have grown since the 1980s against the general trend on the South Shetland Islands. The results proved the suitability of the use of small and lightweight fixed-wing UAVs with electric engines for mapping penguin colonies in remote areas in the Antarctic. Full article
Show Figures

Graphical abstract

15 pages, 6030 KiB  
Article
Use of Fire-Extinguishing Balls for a Conceptual System of Drone-Assisted Wildfire Fighting
by Burchan Aydin, Emre Selvi, Jian Tao and Michael J. Starek
Drones 2019, 3(1), 17; https://doi.org/10.3390/drones3010017 - 12 Feb 2019
Cited by 69 | Viewed by 27748
Abstract
This paper examines the potential use of fire extinguishing balls as part of a proposed system, where drone and remote-sensing technologies are utilized cooperatively as a supplement to traditional firefighting methods. The proposed system consists of (1) scouting unmanned aircraft system (UAS) to [...] Read more.
This paper examines the potential use of fire extinguishing balls as part of a proposed system, where drone and remote-sensing technologies are utilized cooperatively as a supplement to traditional firefighting methods. The proposed system consists of (1) scouting unmanned aircraft system (UAS) to detect spot fires and monitor the risk of wildfire approaching a building, fence, and/or firefighting crew via remote sensing, (2) communication UAS to establish and extend the communication channel between scouting UAS and fire-fighting UAS, and (3) a fire-fighting UAS autonomously traveling to the waypoints to drop fire extinguishing balls (environmental friendly, heat activated suppressants). This concept is under development through a transdisciplinary multi-institutional project. The scope of this paper encloses general illustration of this design, and the experiments conducted so far to evaluate fire extinguishing balls. The results of the experiments show that smaller size fire extinguishing balls available in the global marketplace attached to drones might not be effective in aiding in building fires (unless there are open windows in the buildings already). On the contrary, results show that even the smaller size fire extinguishing balls might be effective in extinguishing short grass fires (around 0.5 kg size ball extinguished a circle of 1-meter of short grass). This finding guided the authors towards wildfire fighting rather than building fires. The paper also demonstrates building of heavy payload drones (around 15 kg payload), and the progress of development of an apparatus carrying fire-extinguishing balls attachable to drones. Full article
Show Figures

Figure 1

20 pages, 4178 KiB  
Article
A Hybrid Communication Scheme for Efficient and Low-Cost Deployment of Future Flying Ad-Hoc Network (FANET)
by Muhammad Asghar Khan, Ijaz Mansoor Qureshi and Fahimullah Khanzada
Drones 2019, 3(1), 16; https://doi.org/10.3390/drones3010016 - 11 Feb 2019
Cited by 100 | Viewed by 18712
Abstract
In recent years, FANET-related research and development has doubled, due to the increased demands of unmanned aerial vehicles (UAVs) in both military and civilian operations. Equipped with more capabilities and unique characteristics, FANET is able to play a vital role in mission-critical applications. [...] Read more.
In recent years, FANET-related research and development has doubled, due to the increased demands of unmanned aerial vehicles (UAVs) in both military and civilian operations. Equipped with more capabilities and unique characteristics, FANET is able to play a vital role in mission-critical applications. However, these distinctive features enforce a series of guidelines to be considered for its efficient deployment. Particularly, the use of FANET for on-time data communication services presents demanding challenges in terms of energy efficiency and quality of service (QoS). Proper use of communication architecture and wireless technology will assist to solve these challenges. Therefore, in this paper, we review different communication architectures, including the existing wireless technologies, in order to provide seamless wireless connectivity. Based on the discussions, we conclude that a multi-layer UAV ad-hoc network is the most suitable architecture for networking a group of heterogeneous UAVs, while Bluetooth 5 (802.15.1) is the most favored option because of its low-cost, low power consumption, and longer transmission range for FANET. However, 802.15.1 has the limitation of a lower data rate as compared to Wi-Fi (802.11). Therefore, we propose a hybrid wireless communication scheme so as to utilize the features of the high data transmission rate of 802.11 and the low-power consumption of 802.15.1. The proposed scheme significantly reduces communication cost and improves the network performance in terms of throughput and delay. Further, simulation results using the Optimized Network Engineering Tool (OPNET) further support the effectiveness of our proposed scheme. Full article
(This article belongs to the Special Issue Advances in Drone Communications, State-of-the-Art and Architectures)
Show Figures

Figure 1

14 pages, 3312 KiB  
Article
Assessing the Accuracy of Digital Surface Models Derived from Optical Imagery Acquired with Unmanned Aerial Systems
by Salvatore Manfreda, Petr Dvorak, Jana Mullerova, Sorin Herban, Pietro Vuono, José Juan Arranz Justel and Matthew Perks
Drones 2019, 3(1), 15; https://doi.org/10.3390/drones3010015 - 30 Jan 2019
Cited by 40 | Viewed by 8399
Abstract
Small unmanned aerial systems (UASs) equipped with an optical camera are a cost-effective strategy for topographic surveys. These low-cost UASs can provide useful information for three-dimensional (3D) reconstruction even if they are equipped with a low-quality navigation system. To ensure the production of [...] Read more.
Small unmanned aerial systems (UASs) equipped with an optical camera are a cost-effective strategy for topographic surveys. These low-cost UASs can provide useful information for three-dimensional (3D) reconstruction even if they are equipped with a low-quality navigation system. To ensure the production of high-quality topographic models, careful consideration of the flight mode and proper distribution of ground control points are required. To this end, a commercial UAS was adopted to monitor a small earthen dam using different combinations of flight configurations and by adopting a variable number of ground control points (GCPs). The results highlight that optimization of both the choice and combination of flight plans can reduce the relative error of the 3D model to within two meters without the need to include GCPs. However, the use of GCPs greatly improved the quality of the topographic survey, reducing error to the order of a few centimeters. The combined use of images extracted from two flights, one with a camera mounted at nadir and the second with a 20° angle, was found to be beneficial for increasing the overall accuracy of the 3D model and especially the vertical precision. Full article
(This article belongs to the Special Issue Drones for Topographic Mapping)
Show Figures

Graphical abstract

15 pages, 5444 KiB  
Article
UAVs for Hydrologic Scopes: Application of a Low-Cost UAV to Estimate Surface Water Velocity by Using Three Different Image-Based Methods
by Paschalis Koutalakis, Ourania Tzoraki and George Zaimes
Drones 2019, 3(1), 14; https://doi.org/10.3390/drones3010014 - 28 Jan 2019
Cited by 58 | Viewed by 9199
Abstract
Stream velocity and flow are very important parameters that must be measured accurately to develop effective water resource management plans. There are various methods and tools to measure the velocity but, nowadays, image-based methods are a promising alternative that does not require physical [...] Read more.
Stream velocity and flow are very important parameters that must be measured accurately to develop effective water resource management plans. There are various methods and tools to measure the velocity but, nowadays, image-based methods are a promising alternative that does not require physical contact with the water body. The current study describes the application of a low cost unmanned aerial vehicle that was selected in order to capture a video over a specific reach of Aggitis River in Greece. The captured frames were analyzed by three different software (PIVlab, PTVlab, and KU-STIV) in order to estimate accurately the surface water velocity. These three software also represent three different image-based methodologies. Although there are differences among these three methods, the analysis produced similar trends for all. The velocity ranged between 0.02 and 3.98 m/s for PIVlab, 0.12 and 3.44 m/s for PTVlab, and 0.04 and 3.99 m/s for KU-STIV software. There were parts, especially in the existing vegetation, where differences were observed. Further applications will be examined in the same or different reaches, to study the parameters affecting the analysis. Finally, the image-based methods will be coupled with verification measurements by a current meter to produce more rigorous results. Full article
Show Figures

Figure 1

18 pages, 3820 KiB  
Article
Collaboration of Drone and Internet of Public Safety Things in Smart Cities: An Overview of QoS and Network Performance Optimization
by Saeed H. Alsamhi, Ou Ma, M. Samar Ansari and Sachin Kumar Gupta
Drones 2019, 3(1), 13; https://doi.org/10.3390/drones3010013 - 27 Jan 2019
Cited by 100 | Viewed by 11612
Abstract
This paper studies the network performance of collaboration between the Internet of public safety things (IoPST) and drones. Drones play a vital role in delivering timely and essential wireless communication services for the recovery of services right after a disaster by increasing surge [...] Read more.
This paper studies the network performance of collaboration between the Internet of public safety things (IoPST) and drones. Drones play a vital role in delivering timely and essential wireless communication services for the recovery of services right after a disaster by increasing surge capacity for the purposes of public safety, exploring areas that are difficult to reach, and providing an area of rapid coverage and connectivity. To provide such critical facilities in the case of disasters and for the purposes of public safety, collaboration between drones and IoPST is able to support public safety requirements such as real-time analytics, real-time monitoring, and enhanced decision-making to help smart cities meet their public safety requirements. Therefore, the deployment of drone-based wireless communication can save people and ecosystems by helping public safety organizations face threats and manage crises in an efficient manner. The contribution of this work lies in improving the level of public safety in smart cities through collaborating between smart wearable devices and drone technology. Thus, the collaboration between drones and IoPST devices establishes a public safety network that shows satisfying results in terms of enhancing efficiency and information accuracy. Full article
(This article belongs to the Special Issue Advances in Drone Communications, State-of-the-Art and Architectures)
Show Figures

Figure 1

24 pages, 7764 KiB  
Article
Implementation of a UAV–Hyperspectral Pushbroom Imager for Ecological Monitoring
by J. Pablo Arroyo-Mora, Margaret Kalacska, Deep Inamdar, Raymond Soffer, Oliver Lucanus, Janine Gorman, Tomas Naprstek, Erica Skye Schaaf, Gabriela Ifimov, Kathryn Elmer and George Leblanc
Drones 2019, 3(1), 12; https://doi.org/10.3390/drones3010012 - 15 Jan 2019
Cited by 56 | Viewed by 9207
Abstract
Hyperspectral remote sensing provides a wealth of data essential for vegetation studies encompassing a wide range of applications (e.g., species diversity, ecosystem monitoring, etc.). The development and implementation of UAV-based hyperspectral systems have gained popularity over the last few years with novel efforts [...] Read more.
Hyperspectral remote sensing provides a wealth of data essential for vegetation studies encompassing a wide range of applications (e.g., species diversity, ecosystem monitoring, etc.). The development and implementation of UAV-based hyperspectral systems have gained popularity over the last few years with novel efforts to demonstrate their operability. Here we describe the design, implementation, testing, and early results of the UAV-μCASI system, which showcases a relatively new hyperspectral sensor suitable for ecological studies. The μCASI (288 spectral bands) was integrated with a custom IMU-GNSS data recorder built in-house and mounted on a commercially available hexacopter platform with a gimbal to maximize system stability and minimize image distortion. We deployed the UAV-μCASI at three sites with different ecological characteristics across Canada: The Mer Bleue peatland, an abandoned agricultural field on Ile Grosbois, and the Cowichan Garry Oak Preserve meadow. We examined the attitude data from the flight controller to better understand airframe motion and the effectiveness of the integrated Differential Real Time Kinematic (RTK) GNSS. We describe important aspects of mission planning and show the effectiveness of a bundling adjustment to reduce boresight errors as well as the integration of a digital surface model for image geocorrection to account for parallax effects at the Mer Bleue test site. Finally, we assessed the quality of the radiometrically and atmospherically corrected imagery from the UAV-μCASI and found a close agreement (<2%) between the image derived reflectance and in-situ measurements. Overall, we found that a flight speed of 2.7 m/s, careful mission planning, and the integration of the bundling adjustment were important system characteristics for optimizing the image quality at an ultra-high spatial resolution (3–5 cm). Furthermore, environmental considerations such as wind speed (<5 m/s) and solar illumination also play a critical role in determining image quality. With the growing popularity of “turnkey” UAV-hyperspectral systems on the market, we demonstrate the basic requirements and technical challenges for these systems to be fully operational. Full article
Show Figures

Graphical abstract

23 pages, 849 KiB  
Review
Drones for Conservation in Protected Areas: Present and Future
by Jesús Jiménez López and Margarita Mulero-Pázmány
Drones 2019, 3(1), 10; https://doi.org/10.3390/drones3010010 - 9 Jan 2019
Cited by 161 | Viewed by 39514
Abstract
Park managers call for cost-effective and innovative solutions to handle a wide variety of environmental problems that threaten biodiversity in protected areas. Recently, drones have been called upon to revolutionize conservation and hold great potential to evolve and raise better-informed decisions to assist [...] Read more.
Park managers call for cost-effective and innovative solutions to handle a wide variety of environmental problems that threaten biodiversity in protected areas. Recently, drones have been called upon to revolutionize conservation and hold great potential to evolve and raise better-informed decisions to assist management. Despite great expectations, the benefits that drones could bring to foster effectiveness remain fundamentally unexplored. To address this gap, we performed a literature review about the use of drones in conservation. We selected a total of 256 studies, of which 99 were carried out in protected areas. We classified the studies in five distinct areas of applications: “wildlife monitoring and management”; “ecosystem monitoring”; “law enforcement”; “ecotourism”; and “environmental management and disaster response”. We also identified specific gaps and challenges that would allow for the expansion of critical research or monitoring. Our results support the evidence that drones hold merits to serve conservation actions and reinforce effective management, but multidisciplinary research must resolve the operational and analytical shortcomings that undermine the prospects for drones integration in protected areas. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation and Ecological Monitoring)
Show Figures

Figure 1

Back to TopTop