Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6596 KiB  
Article
Greenness Indices from a Low-Cost UAV Imagery as Tools for Monitoring Post-Fire Forest Recovery
by Asier R. Larrinaga and Lluis Brotons
Drones 2019, 3(1), 6; https://doi.org/10.3390/drones3010006 - 6 Jan 2019
Cited by 54 | Viewed by 8350
Abstract
During recent years unmanned aerial vehicles (UAVs) have been increasingly used for research and application in both agriculture and forestry. Nevertheless, most of this work has been devoted to improving accuracy and explanatory power, often at the cost of usability and affordability. We [...] Read more.
During recent years unmanned aerial vehicles (UAVs) have been increasingly used for research and application in both agriculture and forestry. Nevertheless, most of this work has been devoted to improving accuracy and explanatory power, often at the cost of usability and affordability. We tested a low-cost UAV and a simple workflow to apply four different greenness indices to the monitoring of pine (Pinus sylvestris and P. nigra) post-fire regeneration in a Mediterranean forest. We selected two sites and measured all pines within a pre-selected plot. Winter flights were carried out at each of the sites, at two flight heights (50 and 120 m). Automatically normalized images entered an structure from motion (SfM) based photogrammetric software for restitution, and the obtained point cloud and orthomosaic processed to get a canopy height model and four different greenness indices. The sum of pine diameter at breast height (DBH) was regressed on summary statistics of greenness indices and the canopy height model. Excess green index (ExGI) and green chromatic coordinate (GCC) index outperformed the visible atmospherically resistant index (VARI) and green red vegetation index (GRVI) in estimating pine DBH, while canopy height slightly improved the models. Flight height did not severely affect model performance. Our results show that low cost UAVs may improve forest monitoring after disturbance, even in those habitats and situations where resource limitation is an issue. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation and Ecological Monitoring)
Show Figures

Figure 1

12 pages, 3630 KiB  
Article
Classification of Lowland Native Grassland Communities Using Hyperspectral Unmanned Aircraft System (UAS) Imagery in the Tasmanian Midlands
by Bethany Melville, Arko Lucieer and Jagannath Aryal
Drones 2019, 3(1), 5; https://doi.org/10.3390/drones3010005 - 5 Jan 2019
Cited by 31 | Viewed by 5045
Abstract
This paper presents the results of a study undertaken to classify lowland native grassland communities in the Tasmanian Midlands region. Data was collected using the 20 band hyperspectral snapshot PhotonFocus sensor mounted on an unmanned aerial vehicle. The spectral range of the sensor [...] Read more.
This paper presents the results of a study undertaken to classify lowland native grassland communities in the Tasmanian Midlands region. Data was collected using the 20 band hyperspectral snapshot PhotonFocus sensor mounted on an unmanned aerial vehicle. The spectral range of the sensor is 600 to 875 nm. Four vegetation classes were identified for analysis including Themeda triandra grassland, Wilsonia rotundifolia, Danthonia/Poa grassland, and Acacia dealbata. In addition to the hyperspectral UAS dataset, a Digital Surface Model (DSM) was derived using a structure-from-motion (SfM). Classification was undertaken using an object-based Random Forest (RF) classification model. Variable importance measures from the training model indicated that the DSM was the most significant variable. Key spectral variables included bands two (620.9 nm), four (651.1 nm), and 11 (763.2 nm) from the hyperspectral UAS imagery. Classification validation was performed using both the reference segments and the two transects. For the reference object validation, mean accuracies were between 70% and 72%. Classification accuracies based on the validation transects achieved a maximum overall classification accuracy of 93. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation and Ecological Monitoring)
Show Figures

Figure 1

38 pages, 4962 KiB  
Article
Survey on Coverage Path Planning with Unmanned Aerial Vehicles
by Tauã M. Cabreira, Lisane B. Brisolara and Paulo R. Ferreira Jr.
Drones 2019, 3(1), 4; https://doi.org/10.3390/drones3010004 - 4 Jan 2019
Cited by 340 | Viewed by 33284
Abstract
Coverage path planning consists of finding the route which covers every point of a certain area of interest. In recent times, Unmanned Aerial Vehicles (UAVs) have been employed in several application domains involving terrain coverage, such as surveillance, smart farming, photogrammetry, disaster management, [...] Read more.
Coverage path planning consists of finding the route which covers every point of a certain area of interest. In recent times, Unmanned Aerial Vehicles (UAVs) have been employed in several application domains involving terrain coverage, such as surveillance, smart farming, photogrammetry, disaster management, civil security, and wildfire tracking, among others. This paper aims to explore and analyze the existing studies in the literature related to the different approaches employed in coverage path planning problems, especially those using UAVs. We address simple geometric flight patterns and more complex grid-based solutions considering full and partial information about the area of interest. The surveyed coverage approaches are classified according to a classical taxonomy, such as no decomposition, exact cellular decomposition, and approximate cellular decomposition. This review also contemplates different shapes of the area of interest, such as rectangular, concave and convex polygons. The performance metrics usually applied to evaluate the success of the coverage missions are also presented. Full article
Show Figures

Graphical abstract

Back to TopTop