energies-logo

Journal Browser

Journal Browser

Recent Development and Future Perspective of Wind Power Generation

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A3: Wind, Wave and Tidal Energy".

Deadline for manuscript submissions: closed (25 June 2024) | Viewed by 13055

Special Issue Editor


E-Mail Website
Guest Editor
Environmental Meteorology, University of Freiburg, Werthmannstrasse 10, 79085 Freiburg, Germany
Interests: renewable energy; wind energy; wind resource assessment; climate change
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue provides a platform for current research developments in the field of wind energy. The global expansion of wind energy has significantly increased in recent years, both onshore and offshore. This growth can be attributed to growing awareness of the need to transition to renewable energy sources, advancements in turbine technology, and increasing investments. Wind energy is already making a substantial contribution to the electricity supply and the reduction in greenhouse gases in many countries. The further development of wind energy depends on various factors, including wind resources, available land, turbine characteristics, investments, and social acceptance.

This Special Issue will consider new and well-organized contributions addressing these factors, recent developments, and future perspectives related to wind energy.

Topics of interest for publication include, but are not limited to:

Wind resource and wind potential assessment;

Wind speed and wind power forecasting;

Wind resource availability under climate change;

Challenges of future wind energy expansion;

Socioeconomic factors of wind energy expansion;

Wind turbine design development.

Dr. Christopher Jung
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wind energy
  • wind turbines
  • wind speed
  • wind power assessment
  • climate change

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

24 pages, 7387 KiB  
Article
Joint Modeling of Wind Speed and Power via a Nonparametric Approach
by Saulo Custodio de Aquino Ferreira, Paula Medina Maçaira and Fernando Luiz Cyrino Oliveira
Energies 2024, 17(14), 3573; https://doi.org/10.3390/en17143573 - 20 Jul 2024
Viewed by 599
Abstract
Power output from wind turbines is influenced by wind speed, but the traditional theoretical power curve approach introduces uncertainty into wind energy forecasting models. This is because it assumes a consistent power output for a given wind speed. To address this issue, a [...] Read more.
Power output from wind turbines is influenced by wind speed, but the traditional theoretical power curve approach introduces uncertainty into wind energy forecasting models. This is because it assumes a consistent power output for a given wind speed. To address this issue, a new nonparametric method has been proposed. It uses K-means clustering to estimate wind speed intervals, applies kernel density estimation (KDE) to establish the probability density function (PDF) for each interval and employs Monte Carlo simulation to predict power output based on the PDF. The method was tested using data from the MERRA-2 database, covering five wind farms in Brazil. The results showed that the new method outperformed the conventional estimation technique, improving estimates by an average of 47 to 49%. This study contributes by (i) proposing a new nonparametric method for modeling the relationship between wind speed and power; (ii) emphasizing the superiority of probabilistic modeling in capturing the natural variability in wind generation; (iii) demonstrating the benefits of temporally segregating data; (iv) highlighting how different wind farms within the same region can have distinct generation profiles due to environmental and technical factors; and (v) underscoring the significance and reliability of the data provided by the MERRA-2 database. Full article
(This article belongs to the Special Issue Recent Development and Future Perspective of Wind Power Generation)
Show Figures

Figure 1

22 pages, 7023 KiB  
Article
Site Selection of Wind Farms in Poland: Combining Theory with Reality
by Artur Amsharuk and Grażyna Łaska
Energies 2024, 17(11), 2635; https://doi.org/10.3390/en17112635 - 29 May 2024
Viewed by 880
Abstract
With global shifts towards sustainable energy models, the urgency to address rising fossil fuel prices, military conflicts, and climate change concerns has become evident. The article aims to identify the development of wind energy in Poland. This study introduces an integrated methodology for [...] Read more.
With global shifts towards sustainable energy models, the urgency to address rising fossil fuel prices, military conflicts, and climate change concerns has become evident. The article aims to identify the development of wind energy in Poland. This study introduces an integrated methodology for enhancing renewable energy capacities by selecting new construction sites for onshore wind farms across Poland. The proposed methodology utilises a hybrid model incorporating multiple criteria decision-making methods, such as the Analytic Hierarchy Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), alongside the semiautomated spatial analysis method using QGiS software (v. 3.32 Lima). The model considers economic, social, and environmental criteria and limitations, offering a comprehensive approach to the decision-making process. It was found that wind farms occupy 460.7 km2 in Poland, with a 250 m buffer around each turbine and a total power capacity of 5818 MW. The results show that an additional 7555.91 km2 of selected areas, 2.34% of the country’s area, theoretically offer significant opportunities for wind energy development. The spatial analysis identifies potential sites with promising opportunities for domestic and international renewable energy investors. The study’s findings contribute towards achieving national and EU renewable energy targets while offering a replicable framework for informed spatial planning decisions in other regions. Full article
(This article belongs to the Special Issue Recent Development and Future Perspective of Wind Power Generation)
Show Figures

Figure 1

11 pages, 3797 KiB  
Article
Modeling Wind-Speed Statistics beyond the Weibull Distribution
by Pedro Lencastre, Anis Yazidi and Pedro G. Lind
Energies 2024, 17(11), 2621; https://doi.org/10.3390/en17112621 - 29 May 2024
Viewed by 963
Abstract
While it is well known that the Weibull distribution is a good model for wind-speed measurements and can be explained through simple statistical arguments, how such a model holds for shorter time periods is still an open question. In this paper, we present [...] Read more.
While it is well known that the Weibull distribution is a good model for wind-speed measurements and can be explained through simple statistical arguments, how such a model holds for shorter time periods is still an open question. In this paper, we present a systematic investigation of the accuracy of the Weibull distribution to wind-speed measurements, in comparison with other possible “cousin” distributions. In particular, we show that the Gaussian distribution enables one to predict wind-speed histograms with higher accuracy than the Weibull distribution. Two other good candidates are the Nakagami and the Rice distributions, which can be interpreted as particular cases of the Weibull distribution for particular choices of the shape and scale parameters. These findings hold not only when predicting next-point values of the wind speed but also when predicting the wind energy values. Finally, we discuss such findings in the context of wind power forecasting and monitoring for power-grid assessment. Full article
(This article belongs to the Special Issue Recent Development and Future Perspective of Wind Power Generation)
Show Figures

Figure 1

20 pages, 2545 KiB  
Article
Offshore Energy Development in Poland—Social and Economic Dimensions
by Ewa Chomać-Pierzecka
Energies 2024, 17(9), 2068; https://doi.org/10.3390/en17092068 - 26 Apr 2024
Cited by 7 | Viewed by 997
Abstract
The development of green technology in the world is progressing extremely rapidly. New possibilities for obtaining energy from renewable sources are constantly being sought and existing solutions are being improved. The multifaceted potential of the seas and oceans is an important aspect being [...] Read more.
The development of green technology in the world is progressing extremely rapidly. New possibilities for obtaining energy from renewable sources are constantly being sought and existing solutions are being improved. The multifaceted potential of the seas and oceans is an important aspect being taken into account in the development of the energy systems of a number of economies. One dimension of action in this area is the orientation towards offshore wind energy and the construction of offshore wind farms for this purpose. The purpose of this article is to analyse the importance of offshore wind farms in Poland’s energy system and to assess public perception of the changes taking place in this dimension. The article is based on research and critical analysis of the available literature, legal regulations and industry reports, as well as on the results of our own surveys, the scientific findings of which were developed with the application of statistical instruments using PQstat software, ensuring the expected quality of results. The findings of the article indicate the significant importance of offshore wind farms in the creation of Poland’s energy mix, with differing public attitudes towards their construction. Furthermore, the results of the research indicate a differentiated attitude of society towards the construction of offshore wind farms. The main motivation for majority support of the measure in question are economic reasons, which are connected with the expectation of a real price reduction per 1 kW of energy, as well as increased attractiveness of the region due to investments in this area. The main concern with the measure relates to environmental aspects, with concerns about the functioning of ecosystems in light of the construction and subsequent operation of wind farms. Negative public opinion is also signalled in relation to the potential risk of landscape change in a direction that is undesirable for the studied developed coastal tourist region in Poland. Full article
(This article belongs to the Special Issue Recent Development and Future Perspective of Wind Power Generation)
Show Figures

Figure 1

22 pages, 8552 KiB  
Article
Winds of Change: A Study on the Resource Viability of Offshore Wind Energy in Montenegro
by Miloš Bogdanović and Špiro Ivošević
Energies 2024, 17(8), 1852; https://doi.org/10.3390/en17081852 - 12 Apr 2024
Cited by 1 | Viewed by 1110
Abstract
The energy produced from renewable sources (solar, wind, hydro, geothermal, and biomass) provides direct access to clean and safe energy. Offshore wind energy, generated through wind farms, has traditionally relied on fixed structures, whereas innovative floating structures have been commercially applied since 2017. [...] Read more.
The energy produced from renewable sources (solar, wind, hydro, geothermal, and biomass) provides direct access to clean and safe energy. Offshore wind energy, generated through wind farms, has traditionally relied on fixed structures, whereas innovative floating structures have been commercially applied since 2017. This study investigates offshore areas in Montenegro suitable for wind farm construction. Research on average annual wind speeds has successfully identified a surface area deemed suitable for constructing a wind farm in the Montenegrin part of the Adriatic Sea. Analysis of available bathymetric databases has pinpointed technical solutions for the supporting structures of wind turbines required to construct an offshore wind farm. Applying an assessment method to the defined surface of Montenegrin waters, seven blocks have been identified as suitable for wind farm construction. The research results indicate that wind farms can be built in Montenegrin waters with a technical potential corresponding to a total capacity of 2299.794 MW, which includes 2034.48 MW for floating structures, 126.759 MW for fixed structures, and 138.555 MW for jacket-fixed structures. Full article
(This article belongs to the Special Issue Recent Development and Future Perspective of Wind Power Generation)
Show Figures

Figure 1

25 pages, 9457 KiB  
Article
Simulation of the Multi-Wake Evolution of Two Sandia National Labs/National Rotor Testbed Turbines Operating in a Tandem Layout
by Apurva Baruah, Fernando Ponta and Alayna Farrell
Energies 2024, 17(5), 1000; https://doi.org/10.3390/en17051000 - 21 Feb 2024
Viewed by 842
Abstract
The future of wind power systems deployment is in the form of wind farms comprised of scores of such large turbines, most likely at offshore locations. Individual turbines have grown in span from a few tens of meters to today’s large turbines with [...] Read more.
The future of wind power systems deployment is in the form of wind farms comprised of scores of such large turbines, most likely at offshore locations. Individual turbines have grown in span from a few tens of meters to today’s large turbines with rotor diameters that dwarf even the largest commercial aircraft. These massive dynamical systems present unique challenges at scales unparalleled in prior applications of wind science research. Fundamental to this effort is the understanding of the wind turbine wake and its evolution. Furthermore, the optimization of the entire wind farm depends on the evolution of the wakes of different turbines and their interactions within the wind farm. In this article, we use the capabilities of the Common ODE Framework (CODEF) model for the analysis of the effects of wake–rotor and wake-to-wake interactions between two turbines situated in a tandem layout fully and partially aligned with the incoming wind. These experiments were conducted in the context of a research project supported by the National Rotor Testbed (NRT) program of Sandia National Labs (SNL). Results are presented for a layout which emulates the turbine interspace and relative turbine emplacement found at SNL’s Scaled Wind Technologies Facility (SWiFT), located in Lubbock, Texas. The evolution of the twin-wake interaction generates a very rich series of secondary transitions in the vortex structure of the combined wake. These ultimately affect the wake’s axial velocity patterns, altering the position, number, intensity, and shape of localized velocity-deficit zones in the wake’s cross-section. This complex distribution of axial velocity patterns has the capacity to substantially affect the power output, peak loads, fatigue damage, and aeroelastic stability of turbines located in subsequent rows downstream on the farm. Full article
(This article belongs to the Special Issue Recent Development and Future Perspective of Wind Power Generation)
Show Figures

Figure 1

18 pages, 10044 KiB  
Article
The Ability of Convergent–Divergent Diffusers for Wind Turbines to Exploit Yawed Flows on Moderate-to-High-Slope Hills
by Micol Pucci and Stefania Zanforlin
Energies 2024, 17(5), 990; https://doi.org/10.3390/en17050990 - 20 Feb 2024
Viewed by 1062
Abstract
Small-to-medium-sized wind turbines operate with wind speeds that are often modest, and it is therefore essential to exploit all possible means to concentrate the wind and thus increase the power extracted. The advantage that can be achieved by positioning the turbine on hilly [...] Read more.
Small-to-medium-sized wind turbines operate with wind speeds that are often modest, and it is therefore essential to exploit all possible means to concentrate the wind and thus increase the power extracted. The advantage that can be achieved by positioning the turbine on hilly reliefs, which act as natural diffusers, is well known, and some recent studies can be found on the effects of the characteristics of hilly terrain on the turbine performance. The literature shows numerous investigations on the behavior of ducted wind turbines, i.e., equipped with a diffuser. But so far, there is a lack of studies on the flow acceleration effects achievable by combining natural relief and a diffuser together. In this study, we analyze the performance of a 50 kW ducted turbine positioned on the top of hills of various shapes and slopes, with the aim of identifying the geometric characteristics of the diffuser most suitable for maximizing power extraction. The results show that a symmetrical convergent–divergent diffuser is well suited to exploit winds skewed by the slope of the hill, and therefore characterized by significant vertical velocity components. Due to its important convergent section, the diffuser is able to convey and realign the flow in the direction of the turbine axis. However, the thrust on the diffuser and therefore on the entire system increases dramatically, as does the turbulence released downwind. Full article
(This article belongs to the Special Issue Recent Development and Future Perspective of Wind Power Generation)
Show Figures

Figure 1

16 pages, 4120 KiB  
Article
Development of the Wind Generation Sector and Its Effect on the Grid Operation—The Case of Poland
by Sylwester Robak, Robert Raczkowski and Michał Piekarz
Energies 2023, 16(19), 6805; https://doi.org/10.3390/en16196805 - 25 Sep 2023
Cited by 4 | Viewed by 1276
Abstract
One of the main factors for changes in the structure of the energy mix in Poland is the development of renewable energy sources, in particular wind generation. In 2009–2020, the installed capacity of wind sources in Poland increased more than ninefold. At the [...] Read more.
One of the main factors for changes in the structure of the energy mix in Poland is the development of renewable energy sources, in particular wind generation. In 2009–2020, the installed capacity of wind sources in Poland increased more than ninefold. At the same time, new legislation significantly curbed the development of onshore wind farms. Further development of wind energy in Poland will rely largely on offshore wind farms. The current state of development of wind power in Poland allows for analyses of the onshore part of wind energy development in Poland. The paper aims to conduct a detailed analysis of the Polish wind sector from an electric power generation perspective. This article presents a comprehensive discussion of the development of onshore wind generation in Poland. In particular, analyses address the production of electric power from wind. Various time horizons are taken into account, as well as the correlation of wind generation with demand for power in the Polish Power System (PPS). The results of the analysis indicate a high variability of wind generation throughout the month or year. The largest wind generation occurred during the night valley, which makes it difficult to operate the power system. In the winter months, wind generation is much greater than in the summer months. Monthly average values of the capacity factor for onshore wind farms (WFs) vary from 0.14 in August to 0.48 in February. Moreover, the coefficient of determination R2 close to zero shows a lack of correlation between offshore wind power generation and real power demand in the PPS. The studied high variability of wind generation in PPS can be mitigated by the wide use of electricity storage systems. Moreover, the obtained results can be part of a model to describe the energy mix in Poland. Full article
(This article belongs to the Special Issue Recent Development and Future Perspective of Wind Power Generation)
Show Figures

Figure 1

17 pages, 4310 KiB  
Article
Reasons for the Recent Onshore Wind Capacity Factor Increase
by Christopher Jung and Dirk Schindler
Energies 2023, 16(14), 5390; https://doi.org/10.3390/en16145390 - 14 Jul 2023
Cited by 1 | Viewed by 2358
Abstract
Increasing wind capacity and capacity factors (CF) are essential for achieving the goals set by the Paris Climate Agreement. From 2010–2012 to 2018–2020, the 3-year mean CF of the global onshore wind turbine fleet rose from 0.22 to 0.25. Wind turbine [...] Read more.
Increasing wind capacity and capacity factors (CF) are essential for achieving the goals set by the Paris Climate Agreement. From 2010–2012 to 2018–2020, the 3-year mean CF of the global onshore wind turbine fleet rose from 0.22 to 0.25. Wind turbine siting, wind turbine technology, hub height, and curtailed wind energy are well-known CF drivers. However, the extent of these drivers for CF is unknown. Thus, the goal is to quantify the shares of the four drivers in CF development in Germany as a case. Newly developed national power curves from high-resolution wind speed models and hourly energy market data are the basis for the study. We created four scenarios, each with one driver kept constant at the 2010–2012 level, in order to quantify the share of a driver for CF change between 2010–2012 and 2019–2021. The results indicated that rising hub heights increased CF by 10.4%. Improved wind turbine technology caused 7.3% higher CF. However, the absolute CF increase amounted to only 11.9%. It is because less favorable wind turbine sites and curtailment in the later period moderated the CF increase by 2.1% and 3.6%, respectively. The drivers are mainly responsible for perennial CF development. In contrast, variations in wind resource availability drive the enormous CF inter-annual variability. No multi-year wind resource change was detected. Full article
(This article belongs to the Special Issue Recent Development and Future Perspective of Wind Power Generation)
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 3393 KiB  
Review
Global Review on Environmental Impacts of Onshore Wind Energy in the Field of Tension between Human Societies and Natural Systems
by Leon Sander, Christopher Jung and Dirk Schindler
Energies 2024, 17(13), 3098; https://doi.org/10.3390/en17133098 - 23 Jun 2024
Viewed by 2187
Abstract
Deploying onshore wind energy as a cornerstone of future global energy systems challenges societies and decision-makers worldwide. Expanding wind energy should contribute to a more sustainable electricity generation without harnessing humans and their environment. Opponents often highlight the negative environmental impacts of wind [...] Read more.
Deploying onshore wind energy as a cornerstone of future global energy systems challenges societies and decision-makers worldwide. Expanding wind energy should contribute to a more sustainable electricity generation without harnessing humans and their environment. Opponents often highlight the negative environmental impacts of wind energy to impede its expansion. This study reviews 152 studies to synthesize, summarize, and discuss critically the current knowledge, research gaps, and mitigation strategies on the environmental impacts of onshore wind energy. The investigated effects comprise impacts on the abiotic and biotic environment, with birds and bats in particular, noise and visual impacts. Effects are discussed in the context of social acceptance, other energy technologies, and wind energy expansion in forests. This review illustrates that many effects are highly case-specific and must be more generalizable. Studies are biased regarding the research focus and areas, needing more standardized research methods and long-term measurements. Most studies focus on the direct mortality of birds and bats at wind farms and are concentrated in Europe and North America. Knowledge gaps persist for many impact categories, and the efficacy of mitigation strategies has yet to be proven. More targeted, unbiased research is required that allows for an objective evaluation of the environmental impacts of wind energy and strategies to mitigate them. Impacts, such as those on biodiversity, need to be addressed in the context of other anthropogenic influences and the benefits of wind energy. This forms the basis for a socially acceptable, efficient, and sustainable expansion of wind energy. Full article
(This article belongs to the Special Issue Recent Development and Future Perspective of Wind Power Generation)
Show Figures

Graphical abstract

Back to TopTop