Application of Hydrocolloids in Human Health and Nutrition

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Applications".

Deadline for manuscript submissions: closed (31 October 2022) | Viewed by 27121

Special Issue Editors

School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
Interests: starch; protein; film-forming properties; controlled release; plasticizing effect; food packaging
Special Issues, Collections and Topics in MDPI journals
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Interests: intelligent food packaging; starch-based biodegradable packaging
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With the improvement of living standards, more attention has been paid to nutrition and health. Certain nutrients may be required, but the absorption rate is not high due to the instability of the nutrients during digestion and absorption. The use of gels as delivery carriers of nutrients has attracted much attention from researchers. Gels can be formed from many naturally edible materials, so they are biocompatible, biodegradable, and safe. Because of the formation of the gel network, it can better protect the nutrients. Since some of the nutrients are insoluble in water, emulsion gels are used to solve this problem. Fat soluble nutrients are dissolved in the oil phase to prepare the emulsion, and the emulsion gels are formed by cross-linking it with some bio-based materials. Digestion and absorption is a complex process, and the delivery carrier may be affected by a variety of conditions, such as pH change and an enzyme attack. Therefore, the problem of structural changes and nutrient release and absorption during the process of nutrient delivery in gels and emulsion gels is a challenge and deserves to be studied.

In this Special Issue, edible hydrogels and their encapsulation and delivery of bioactive substances will be discussed. Research areas may include (but are not limited to) the following: design and characterization of protein-based and polysaccharide based hydrogels; encapsulation and delivery of bioactive substances; changes in the structure of the gels during digestion; the relationship between the addition of bioactive substances and the stability of gels; responsiveness design of edible hydrogel; design and fabrication of stimulus-responsive hydrogels, as well as the potential applications in smart packaging, nutrient delivery, flavor retention and release in the food; study on interaction forces in hydrogels; stability and digestive properties of emulsion gels; and the relationship between the gelation mechanism of emulsion gels and release of bioactive substances.

Dr. Bao Zhang
Dr. Long Chen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Polysaccharide-based hydrogels
  • Protein-based hydrogels
  • Emulsion gels
  • Bioactive substances
  • Delivery
  • Digestion and absorption
  • Stimulus-responsive hydrogels

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 3989 KiB  
Article
Characterization of Acid- and Pepsin-Soluble Collagen Extracted from the Skin of Purple-Spotted Bigeye Snapper
by Siti Nur Hazwani Oslan, Rossita Shapawi, Ruzaidi Azli Mohd Mokhtar, Wan Norhana Md. Noordin and Nurul Huda
Gels 2022, 8(10), 665; https://doi.org/10.3390/gels8100665 - 17 Oct 2022
Cited by 14 | Viewed by 2639
Abstract
Fish processing waste is a prospective source of collagen and a cost-effective environmental pollutant. The skin of the purple-spotted bigeye snapper (Priacanthus tayenus) was extracted utilising various acid soluble collagens (ASC) including acetic acid (AAC), lactic acid (LAC), citric acid (CAC) [...] Read more.
Fish processing waste is a prospective source of collagen and a cost-effective environmental pollutant. The skin of the purple-spotted bigeye snapper (Priacanthus tayenus) was extracted utilising various acid soluble collagens (ASC) including acetic acid (AAC), lactic acid (LAC), citric acid (CAC) and pepsin soluble collagens (PSC). In this study, PSC (6.65%) had the highest collagen yield, followed by AAC (5.79%), CAC (4.15%), and LAC (3.19%). The maximum temperatures (Tmax) denaturation of AAC, LAC, CAC, and PSC were 31.4, 31.7, 31.5, and 33.2 °C, respectively. UV-VIS absorption spectra showed all extracted collagens had a range of absorbance at 230 nm, due to the presence of glycine, proline, hydroxyproline, and triple-helical collagen. Additionally, they exhibited amide A, B, amide I, II, and III peaks. SDS–PAGE identified all extracted collagens as type I. The PSC had a significantly higher (p < 0.05) hydroxyproline content than acidic extraction 66.3 ± 1.03 (mg/g sample). Furthermore, all samples were extremely soluble in acetic conditions at pH 5, and all collagen was soluble in NaCl up to 3% (w/v). Therefore, PSC was the best treatment since it did not impact collagen triple helical and acetic acid yielded the most collagen in ASC extraction. Overall, the analysis revealed that fish skin waste might be used as an alternate source of collagen in diverse applications, particularly in food applications. Full article
(This article belongs to the Special Issue Application of Hydrocolloids in Human Health and Nutrition)
Show Figures

Figure 1

24 pages, 4356 KiB  
Article
Ultraviolet Radiation Protective and Anti-Inflammatory Effects of Kaempferia galanga L. Rhizome Oil and Microemulsion: Formulation, Characterization, and Hydrogel Preparation
by Chuda Chittasupho, Sakdanai Ditsri, Sudarshan Singh, Mayuree Kanlayavattanakul, Natthachai Duangnin, Warintorn Ruksiriwanich and Sirivan Athikomkulchai
Gels 2022, 8(10), 639; https://doi.org/10.3390/gels8100639 - 09 Oct 2022
Cited by 11 | Viewed by 2199
Abstract
Long-term UV radiation exposure can induce skin disorders such as cancer and photoallergic reactions. Natural products have been considered as non-irritate and potential sunscreen resources due to their UV absorption and anti-inflammatory activities. This study aimed to evaluate the in vitro ultraviolet radiation [...] Read more.
Long-term UV radiation exposure can induce skin disorders such as cancer and photoallergic reactions. Natural products have been considered as non-irritate and potential sunscreen resources due to their UV absorption and anti-inflammatory activities. This study aimed to evaluate the in vitro ultraviolet radiation protective effect and anti-inflammatory activity of K. galanga rhizome oil and microemulsions. The chemical components of K. galanga rhizome oil was analyzed via gas chromatography coupled with mass spectrometry. Microemulsions containing K. galanga rhizome oil were formulated using a phase-titration method. The microemulsion was characterized for droplet size, polydispersity index, and zeta potential, using a dynamic light-scattering technique. The physical and chemical stability of the microemulsion were evaluated via a dynamic light scattering technique and UV-Vis spectrophotometry, respectively. The UV protection of K. galanga rhizome oil and its microemulsion were investigated using an ultraviolet transmittance analyzer. The protective effect of K. galanga rhizome oil against LPS-induced inflammation was investigated via MTT and nitric oxide inhibitory assays. In addition, a hydrogel containing K. galanga rhizome oil microemulsion was developed, stored for 90 days at 4, 30, and 45 °C, and characterized for viscosity, rheology, and pH. The chemical degradation of the main active compound in the microemulsion was analyzed via UV-Vis spectrophotometry. The formulated O/W microemulsion contained a high loading efficiency (101.24 ± 2.08%) of K. galanga rhizome oil, suggesting a successful delivery system of the oil. The size, polydispersity index, and zeta potential values of the microemulsion were optimized and found to be stable when stored at 4, 30, and 45 °C. K. galanga rhizome oil and microemulsion demonstrated moderate sun protective activity and reduced the nitric oxide production induced by LPS in macrophage cells, indicating that microemulsion containing K. galanga rhizome oil may help protect human skin from UV damage and inflammation. A hydrogel containing K. galanga rhizome oil microemulsion was developed as a topical preparation. The hydrogel showed good physical stability after heating and cooling cycles and long-term storage (3 months) at 4 °C. The use of K. galanga rhizome oil as a natural sun-protective substance may provide a protective effect against inflammation on the skin. K. galanga rhizome oil microemulsion was successfully incorporated into the hydrogel and has the potential to be used as a topical sunscreen preparation. Full article
(This article belongs to the Special Issue Application of Hydrocolloids in Human Health and Nutrition)
Show Figures

Figure 1

14 pages, 4820 KiB  
Article
Hydrogel Improved Growth and Productive Performance of Mango Trees under Semi-Arid Condition
by Khalid S. Alshallash, Mohamed Sharaf, Ashraf E. Hmdy, Sobhy M. Khalifa, Hosny F. Abdel-Aziz, Ahmed Sharaf, Mariam T. S. Ibrahim, Khadiga Alharbi and Amr Elkelish
Gels 2022, 8(10), 602; https://doi.org/10.3390/gels8100602 - 21 Sep 2022
Cited by 6 | Viewed by 2089
Abstract
Nowadays, the production of new mango cultivars is increased in many countries worldwide. The soil application of hydrogel represents a novel approach in the fruit trees industry. This investigation aims to study the effect of adding hydrogel (as soil conditioner) on the growth [...] Read more.
Nowadays, the production of new mango cultivars is increased in many countries worldwide. The soil application of hydrogel represents a novel approach in the fruit trees industry. This investigation aims to study the effect of adding hydrogel (as soil conditioner) on the growth and yield of Shelly cv. mango trees. The experimental groups were assigned to a control group and three other treated groups, including 250, 500, or 750 g hydrogel∙tree−1. The results demonstrated that all applications of hydrogel composite had higher vegetative growth parameters, yield, and fruit quality characteristics of Shelly cv. mango trees compared to the control. The treatment of 750 g hydrogel∙tree−1 had higher values of vegetative growth parameters such as the leaf area, shoot length and tree canopy volume, compared to the control group and the other treatments. Similarly, higher values for yield and fruit quality were observed in the treatment of 750 g hydrogel∙tree−1. In conclusion, different amounts of hydrogel agent can improve the production and fruit quality of Shelly cv. mango trees in arid and semi-arid conditions in a dose-dependent manner. Full article
(This article belongs to the Special Issue Application of Hydrocolloids in Human Health and Nutrition)
Show Figures

Figure 1

18 pages, 2809 KiB  
Article
Physicochemical and Microstructural Analyses of Pepsin-Soluble Collagens Derived from Lizardfish (Saurida tumbil Bloch, 1795) Skin, Bone and Scales
by Abdul Aziz Jaziri, Rossita Shapawi, Ruzaidi Azli Mohd Mokhtar, Wan Norhana Md. Noordin and Nurul Huda
Gels 2022, 8(8), 471; https://doi.org/10.3390/gels8080471 - 27 Jul 2022
Cited by 12 | Viewed by 1686
Abstract
Reducing food waste is critical for sustainability. In the case of fish processing, more than sixty percent of by-products are generated as waste. Lizardfish (Saurida tumbil Bloch, 1795) is an economically important species for surimi production. To address waste disposal and maximize [...] Read more.
Reducing food waste is critical for sustainability. In the case of fish processing, more than sixty percent of by-products are generated as waste. Lizardfish (Saurida tumbil Bloch, 1795) is an economically important species for surimi production. To address waste disposal and maximize income, an effective utilization of fish by-products is essential. This study aims to isolate and characterize pepsin-soluble collagens from the skin, bone and scales of lizardfish. Significant differences (p < 0.05) in the yields of collagen were noted with the highest yield recorded in pepsin-soluble skin collagen (PSSC) (3.50 ± 0.11%), followed by pepsin-soluble bone collagen (PSBC) (3.26 ± 0.10%) and pepsin-soluble scales collagen (PSCC) (0.60 ± 0.65%). Through SDS–polyacrylamide gel electrophoresis, the presence of two alpha chains were noted and classified as type I. From Fourier transform infrared spectroscopy (FTIR) analysis, the triple-helix structure of the collagen was maintained. The X-ray diffraction and UV visible spectra characteristics of the lizardfish collagens in this study are similar to the previously reported fish collagens. In terms of thermostability, PSSC (Tmax = 43.89 °C) had higher thermostability in comparison to PSBC (Tmax = 31.75 °C) and PSCC (Tmax = 30.54 °C). All pepsin-soluble collagens were highly soluble (>70%) in acidic conditions (particularly at pH 4.0) and at low sodium chloride concentrations (0–30 g/L). Microstructural analysis depicted that all extracted collagens were multi-layered, irregular, dense, sheet-like films linked by random coiled filaments. Overall, pepsin-soluble collagens from lizardfish skin, bone and scales could serve as potential alternative sources of collagens. Full article
(This article belongs to the Special Issue Application of Hydrocolloids in Human Health and Nutrition)
Show Figures

Graphical abstract

18 pages, 4185 KiB  
Article
Biochemical and Microstructural Properties of Lizardfish (Saurida tumbil) Scale Collagen Extracted with Various Organic Acids
by Abdul Aziz Jaziri, Rossita Shapawi, Ruzaidi Azli Mohd Mokhtar, Wan Norhana Md. Noordin and Nurul Huda
Gels 2022, 8(5), 266; https://doi.org/10.3390/gels8050266 - 24 Apr 2022
Cited by 13 | Viewed by 2239
Abstract
The purpose of this research was to extract collagen from the scales of lizardfish (Saurida tumbil) using various acids. Acetic acid-extracted collagen (AScC) produced a higher yield (1.8 mg/g) than lactic acid-extracted collagen (LScC) and citric acid-extracted collagen (CScC) although not [...] Read more.
The purpose of this research was to extract collagen from the scales of lizardfish (Saurida tumbil) using various acids. Acetic acid-extracted collagen (AScC) produced a higher yield (1.8 mg/g) than lactic acid-extracted collagen (LScC) and citric acid-extracted collagen (CScC) although not significantly different (p > 0.05). All extracted collagens were categorized as type I collagens with the presence of alpha chains (α1 and α2) based on the SDS-PAGE profiles. The triple-helical structure of the collagen was maintained in the AScC, LScC, and CScC as confirmed by the FTIR spectra. The UV-vis and X-ray diffraction spectra observed in all collagens were in agreement with previous work on fish scale and calfskin (commercial) collagens. The thermal stability of AScC (Tmax = 31.61 °C) was greater than LScC (Tmax = 30.86 °C) and CScC (Tmax = 30.88 °C). The microstructure of acid-extracted collagens was characterized as complex, fibrous, and multilayered, with irregular sheet-like structures. All samples were highly soluble in acidic pH (1.0–4.0) and in low concentrations of NaCl (0–20 g/L). In conclusion, the lizardfish scale collagen, particularly AScC, may be used as an alternative to terrestrial animal collagen. Full article
(This article belongs to the Special Issue Application of Hydrocolloids in Human Health and Nutrition)
Show Figures

Figure 1

15 pages, 2960 KiB  
Article
Physical Properties of Peanut and Soy Protein-Based Emulsion Gels Induced by Various Coagulants
by Shaobing Zhang, Yushan Jiang, Shuyan Zhang and Lin Chen
Gels 2022, 8(2), 79; https://doi.org/10.3390/gels8020079 - 26 Jan 2022
Cited by 7 | Viewed by 2521
Abstract
Emulsions of peanut and soy proteins, including their major components (arachin, conarachin, glycinin and β−conglycinin), were prepared by ultrasonication (300 W, 20 min) at a constant protein concentration (4%, w/v) and oil fraction (30%, v/v). These emulsions were then induced by CaCl2 [...] Read more.
Emulsions of peanut and soy proteins, including their major components (arachin, conarachin, glycinin and β−conglycinin), were prepared by ultrasonication (300 W, 20 min) at a constant protein concentration (4%, w/v) and oil fraction (30%, v/v). These emulsions were then induced by CaCl2, transglutaminase (TGase) and glucono-δ-lactone (GDL) to form emulsion gels. The optimum coagulant concentrations were obtained for peanut and soy protein-stabilized emulsion gels, such as CaCl2 (0.15 and 0.25 g/dL, respectively), TGase (25 U/mL) and GDL (0.3% and 0.5%, w/v, respectively). For the CaCl2-induced emulsion gels, the hardness of the β−conglycinin gel was the highest, whereas that of the conarachin gel was the lowest. However, when TGase and GDL were used as coagulants, the strength of the conarachin emulsion gel was the best. For the GDL-induced emulsion gels, microstructural analysis indicated that the conarachin gel showed more homogeneous and compact structures. The gelation kinetics showed that the storage modulus (G′) of all the GDL-induced emulsions increased sharply except for the arachin-stabilized emulsion. The interactive force nature varied between conarachin and arachin emulsion gels. This work reveals that peanut conarachin could be used as a good protein source to produce emulsion gels when suitable coagulants are selected. Full article
(This article belongs to the Special Issue Application of Hydrocolloids in Human Health and Nutrition)
Show Figures

Figure 1

13 pages, 2710 KiB  
Article
Sodium Alginate and Chitosan as Components Modifying the Properties of Inulin Hydrogels
by Anna Florowska, Adonis Hilal, Tomasz Florowski, Paulina Mrozek and Małgorzata Wroniak
Gels 2022, 8(1), 63; https://doi.org/10.3390/gels8010063 - 17 Jan 2022
Cited by 8 | Viewed by 2974
Abstract
The aim of the study was to investigate the influence of addition of sodium alginate (SA) and chitosan (CH) on the properties of inulin hydrogels. Inulin hydrogels (20 g/100 g) containing various additions (0.0, 0.1, 0.3, and 0.5 g/100 g) of SA and [...] Read more.
The aim of the study was to investigate the influence of addition of sodium alginate (SA) and chitosan (CH) on the properties of inulin hydrogels. Inulin hydrogels (20 g/100 g) containing various additions (0.0, 0.1, 0.3, and 0.5 g/100 g) of SA and CH were produced. The hydrogels’ properties were assessed based on the volumetric gel index, microstructure, yield stress, texture, stability, and color parameters. According to the findings, the inclusion of these polysaccharides had no influence on the gelation ability of the inulin solution. The physical properties of the hydrogels containing SA or CH differed from hydrogels containing only inulin (INU). The obtained microstructural pictures revealed that the addition of SA and CH resulted in the formation of hydrogels with a more compact, smooth, and cohesive structure. Consequently, they had higher yield stress, strength, and spreadability values than INU hydrogels. The addition of chitosan in comparison with sodium alginate also had a greater effect in strengthening the structure of hydrogels, especially at the level of 0.5 g/100 g. For example, the addition of this amount of SA increased the yield stress on average from 195.0 Pa (INU) to 493.6 Pa, while the addition of CH increased it to 745.3 Pa. In the case of the strength parameter, the addition of SA increased the force from 0.24 N (INU) to 0.42 N and the addition of CH increased it to 1.29 N. In the case of spreadability this increase was from 2.89 N * s (INU) to 3.44 N * s (SA) and to 6.16 N * s (CH). Chitosan also caused an increase in the stability of inulin hydrogels, whereas such an effect was not observed with the addition of sodium alginate. The gels with the addition of SA and CH also had significantly different values of color parameters. Inulin–alginate hydrogels were characterized by higher values of the color parameter a *, lower values of the color parameter b *, and in most concentrations higher values of the color parameter L * compared to inulin–chitosan hydrogels. Based on the collected data, it can therefore be concluded that through the addition of sodium alginate and chitosan, there is a possibility to modify the properties of inulin hydrogels and, consequently, to better adapt them to the characteristics of the pro-health food products in which they will be used. Full article
(This article belongs to the Special Issue Application of Hydrocolloids in Human Health and Nutrition)
Show Figures

Figure 1

15 pages, 24802 KiB  
Article
A Study on the Skin Whitening Activity of Digesta from Edible Bird’s Nest: A Mucin Glycoprotein
by Qunyan Fan, Jianmei Lian, Xuncai Liu, Fengyang Zou, Xin Wang and Maoshen Chen
Gels 2022, 8(1), 24; https://doi.org/10.3390/gels8010024 - 28 Dec 2021
Cited by 10 | Viewed by 3201
Abstract
Edible bird’s nest (EBN) is an unusual mucin glycoprotein. In China, it is popular among consumers due to its skin whitening activity. However, the relationship between protein, sialic acid, and the whitening activity of EBN after digestion is still unclear. In the present [...] Read more.
Edible bird’s nest (EBN) is an unusual mucin glycoprotein. In China, it is popular among consumers due to its skin whitening activity. However, the relationship between protein, sialic acid, and the whitening activity of EBN after digestion is still unclear. In the present work, the whitening activity (antioxidant activity and tyrosinase inhibitory activity) of digested EBN were studied by HepG2 and B16 cell models. The dissolution rate of protein and sialic acid was 49.59% and 46.45% after the simulated digestion, respectively. The contents of free sialic acid and glycan sialic acid in EBN digesta were 17.82% and 12.24%, respectively. HepG2 cell experiment showed that the digested EBN had significant antioxidant activity, with EC50 of 1.84 mg/mL, and had a protective effect on H2O2-induced oxidative damage cells. The results of H2O2-induced oxidative damage showed that the cell survival rate increased from 40% to 57.37% when the concentration of digested EBN was 1 mg/mL. The results of the B16 cell experiment showed that the digested EBN had a significant inhibitory effect on tyrosinase activity, and the EC50 value of tyrosinase activity was 7.22 mg/mL. Cell experiments showed that free sialic acid had stronger antioxidant activity and tyrosinase inhibitory activity than glycan sialic acid. The contribution rate analysis showed that protein component was the main antioxidant component in digestive products, and the contribution rate was 85.87%; free sialic acid was the main component that inhibited tyrosinase activity, accounting for 63.43%. The products of the complete digestion of EBN are suitable for the development of a new generation of whitening health products. Full article
(This article belongs to the Special Issue Application of Hydrocolloids in Human Health and Nutrition)
Show Figures

Graphical abstract

8 pages, 1495 KiB  
Communication
Peptide-Mucin Binding and Biosimilar Mucus-Permeating Properties
by Xiaohong Sun, Raliat O. Abioye, Ogadimma D. Okagu and Chibuike C. Udenigwe
Gels 2022, 8(1), 1; https://doi.org/10.3390/gels8010001 - 21 Dec 2021
Cited by 4 | Viewed by 2725
Abstract
This study aimed to understand the role of the mucus layer (a biological hydrogel) in the transport mechanisms of peptides. Using established in vitro models, the mucin-binding activity and mucus-permeating property of peptides were determined. Uncharged peptides with relatively high hydrophilicity, including MANT, [...] Read more.
This study aimed to understand the role of the mucus layer (a biological hydrogel) in the transport mechanisms of peptides. Using established in vitro models, the mucin-binding activity and mucus-permeating property of peptides were determined. Uncharged peptides with relatively high hydrophilicity, including MANT, TNGQ, and PASL, as well as cationic peptides, including KIPAVF and KMPV, possessed strong mucin-binding activity. Contrarily, uncharged peptides with high hydrophobicity index, including YMSV and QIGLF, exhibited weak mucin-binding activity. Only TNGQ, which has high Boman index and hydrophilicity, showed a high biosimilar mucus-permeating property with a permeability of 96 ± 30% after 60 min. TNGQ showed the potential for high bioavailability due to the high mucin-binding and biosimilar mucus-permeating activities. Full article
(This article belongs to the Special Issue Application of Hydrocolloids in Human Health and Nutrition)
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 2024 KiB  
Review
Interaction-Induced Structural Transformations in Polysaccharide and Protein-Polysaccharide Gels as Functional Basis for Novel Soft-Matter: A Case of Carrageenans
by Olga N. Makshakova and Yuriy F. Zuev
Gels 2022, 8(5), 287; https://doi.org/10.3390/gels8050287 - 06 May 2022
Cited by 25 | Viewed by 3681
Abstract
Biocompatible, nontoxic, and biodegradable polysaccharides are considered as a promising base for bio-inspired materials, applicable as scaffolds in regenerative medicine, coatings in drug delivery systems, etc. The tunable macroscopic properties of gels should meet case-dependent requirements. The admixture of proteins to polysaccharides and [...] Read more.
Biocompatible, nontoxic, and biodegradable polysaccharides are considered as a promising base for bio-inspired materials, applicable as scaffolds in regenerative medicine, coatings in drug delivery systems, etc. The tunable macroscopic properties of gels should meet case-dependent requirements. The admixture of proteins to polysaccharides and their coupling in more sophisticated structures opens an avenue for gel property tuning via physical cross-linking of components and the modification of gel network structure. In this review recent success in the conformational studies of binary protein–polysaccharide gels is summarized with the main focus upon carrageenans. Future perspectives and challenges in rational design of novel polysaccharide-based materials are outlined. Full article
(This article belongs to the Special Issue Application of Hydrocolloids in Human Health and Nutrition)
Show Figures

Figure 1

Back to TopTop