ijms-logo

Journal Browser

Journal Browser

Antimicrobial Resistance, Molecular Mechanisms and Fight Strategies 3.0

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Microbiology".

Deadline for manuscript submissions: closed (29 March 2024) | Viewed by 11690

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Intercollegiate Faculty of Biotechnology UG-MUG, Laboratory of Biologically Active Compounds, University of Gdansk, 80-307 Gdansk, Poland
Interests: plant cell tissue; synergistic combination of drugs; biologically active compounds; transformation; phytopharmaceuticals; green synthesis of nanoparticles; drug resistance of bacteria
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The use of antibiotics has transformed the treatment of bacterial infections, saving and improving the health of many patients worldwide. However, the global emergence and spread of antimicrobial resistance (AMR) has been highlighted as one of the major global health challenges by different health organizations, compromising the ability to prevent and cure a wide range of infectious diseases. An integrated strategy that includes different interventions is required to fight AMR effectively. This includes the development of new molecules and the search for alternative microbe targets, molecular knowledge about mechanisms of resistance, faster diagnostic tests, monoclonal antibodies, microbiome interventions, use of bacteriophages, and new approaches to delivering small-molecule antibacterials into bacteria. Vaccines can also play a major role. Vaccination has the benefit of sustainability, can be used for decades without generating significant resistance, and can slow the spread of antibiotic resistance both directly and indirectly.

Dr. Francesca Micoli
Dr. Aleksandra Królicka
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antimicrobial resistance
  • mechanisms of antimicrobial resistance
  • rapid antimicrobial susceptible assays
  • drug discovery
  • antibiotics
  • vaccine
  • monoclonal antibodies
  • infectious diseases

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

10 pages, 1158 KiB  
Article
First Report of aac(6′)-Ib and aac(6′)-Ib-cr Variant Genes Associated with Mutations in gyrA Encoded Fluoroquinolone Resistance in Avian Campylobacter coli Strains Collected in Tunisia
by Manel Gharbi, Mohammed Abdo Saghir Abbas, Safa Hamrouni and Abderrazak Maaroufi
Int. J. Mol. Sci. 2023, 24(22), 16116; https://doi.org/10.3390/ijms242216116 - 9 Nov 2023
Viewed by 954
Abstract
The aac(6′)-Ib gene is the most widespread gene encoding aminoglycoside-modifying enzyme and conferring resistance to tobramycin, streptomycin and kanamycin. The variant aac(6′)-Ib-cr gene confers resistance to both aminoglycosides and fluoroquinolones (FQ). A total of 132 Campylobacter isolates, including 91 C. jejuni and 41 [...] Read more.
The aac(6′)-Ib gene is the most widespread gene encoding aminoglycoside-modifying enzyme and conferring resistance to tobramycin, streptomycin and kanamycin. The variant aac(6′)-Ib-cr gene confers resistance to both aminoglycosides and fluoroquinolones (FQ). A total of 132 Campylobacter isolates, including 91 C. jejuni and 41 C. coli, were selected from broiler hens isolates. The aac(6′)-Ib gene was amplified using PCR and was subsequently digested with the BtsCI restriction enzyme to identify aac(6′)-Ib-cr. Among these isolates, 31 out of 41 C. coli (75.6%) and 1 (0.98%) C. jejuni were positive for the aac(6′)-Ib gene, which was identified as the aac(6′)-Ib-cr variant in 10 (32.25%) C. coli isolates. This variant was correlated with mutations in gyrA (Thr-86-Ile), as well as resistance to FQs. This study is the first report in Tunisia on Campylobacter coli strains harboring both the aac(6′)-Ib and aac(6′)-Ib-cr variants. These genes were present in Campylobacter isolates exhibiting resistance to multiple antibiotics, which restricts the range of available treatments. Full article
Show Figures

Figure 1

20 pages, 2264 KiB  
Article
Seasonal Azithromycin Use in Paediatric Protracted Bacterial Bronchitis Does Not Promote Antimicrobial Resistance but Does Modulate the Nasopharyngeal Microbiome
by Simon J. Hardman, Fiona M. Shackley, Kelechi Ugonna, Thomas C. Darton, Alan S. Rigby, Debby Bogaert, Justyna M. Binkowska and Alison M. Condliffe
Int. J. Mol. Sci. 2023, 24(22), 16053; https://doi.org/10.3390/ijms242216053 - 7 Nov 2023
Cited by 1 | Viewed by 1218
Abstract
Protracted bacterial bronchitis (PBB) causes chronic wet cough for which seasonal azithromycin is increasingly used to reduce exacerbations. We investigated the impact of seasonal azithromycin on antimicrobial resistance and the nasopharyngeal microbiome. In an observational cohort study, 50 children with PBB were enrolled [...] Read more.
Protracted bacterial bronchitis (PBB) causes chronic wet cough for which seasonal azithromycin is increasingly used to reduce exacerbations. We investigated the impact of seasonal azithromycin on antimicrobial resistance and the nasopharyngeal microbiome. In an observational cohort study, 50 children with PBB were enrolled over two consecutive winters; 25/50 at study entry were designated on clinical grounds to take azithromycin over the winter months and 25/50 were not. Serial nasopharyngeal swabs were collected during the study period (12–20 months) and cultured bacterial isolates were assessed for antimicrobial susceptibility. 16S rRNA-based sequencing was performed on a subset of samples. Irrespective of azithromycin usage, high levels of azithromycin resistance were found; 73% of bacteria from swabs in the azithromycin group vs. 69% in the comparison group. Resistance was predominantly driven by azithromycin-resistant S. pneumoniae, yet these isolates were mostly erythromycin susceptible. Analysis of 16S rRNA-based sequencing revealed a reduction in within-sample diversity in response to azithromycin, but only in samples of children actively taking azithromycin at the time of swab collection. Actively taking azithromycin at the time of swab collection significantly contributed to dissimilarity in bacterial community composition. The discrepancy between laboratory detection of azithromycin and erythromycin resistance in the S. pneumoniae isolates requires further investigation. Seasonal azithromycin for PBB did not promote antimicrobial resistance over the study period, but did perturb the microbiome. Full article
Show Figures

Figure 1

11 pages, 639 KiB  
Article
Enterococcal Membrane Vesicles as Vaccine Candidates
by Theresa Maria Wagner, Felipe Romero-Saavedra, Diana Laverde, Mona Johannessen, Johannes Hübner and Kristin Hegstad
Int. J. Mol. Sci. 2023, 24(22), 16051; https://doi.org/10.3390/ijms242216051 - 7 Nov 2023
Cited by 1 | Viewed by 1815
Abstract
Enterococcus faecium is a leading cause of nosocomial infections, particularly in immunocompromised patients. The rise of multidrug-resistant E. faecium, including Vancomycin-Resistant Enterococci (VRE), is a major concern. Vaccines are promising alternatives to antibiotics, but there is currently no vaccine available against enterococci. [...] Read more.
Enterococcus faecium is a leading cause of nosocomial infections, particularly in immunocompromised patients. The rise of multidrug-resistant E. faecium, including Vancomycin-Resistant Enterococci (VRE), is a major concern. Vaccines are promising alternatives to antibiotics, but there is currently no vaccine available against enterococci. In a previous study, we identified six protein vaccine candidates associated with extracellular membrane vesicles (MVs) produced by nosocomial E. faecium. In this study, we immunized rabbits with two different VRE-derived MV preparations and characterized the resulting immune sera. Both anti-MV sera exhibited high immunoreactivity towards the homologous strain, three additional VRE strains, and eight different unrelated E. faecium strains representing different sequence types (STs). Additionally, we demonstrated that the two anti-MV sera were able to mediate opsonophagocytic killing of not only the homologous strain but also three unrelated heterologous VRE strains. Altogether, our results indicate that E. faecium MVs, regardless of the purification method for obtaining them, are promising vaccine candidates against multidrug-resistant E. faecium and suggest that these naturally occurring MVs can be used as a multi-antigen platform to elicit protective immune responses against enterococcal infections. Full article
Show Figures

Figure 1

19 pages, 5031 KiB  
Article
Physiologic and Transcriptomic Effects Triggered by Overexpression of Wild Type and Mutant DNA Topoisomerase I in Streptococcus pneumoniae
by Miriam García-López, Pablo Hernández, Diego Megias, María-José Ferrándiz and Adela G. de la Campa
Int. J. Mol. Sci. 2023, 24(21), 15800; https://doi.org/10.3390/ijms242115800 - 31 Oct 2023
Cited by 1 | Viewed by 1554
Abstract
Topoisomerase I (TopoI) in Streptococcus pneumoniae, encoded by topA, is a suitable target for drug development. Seconeolitsine (SCN) is a new antibiotic that specifically blocks this enzyme. We obtained the topARA mutant, which encodes an enzyme less active than the wild [...] Read more.
Topoisomerase I (TopoI) in Streptococcus pneumoniae, encoded by topA, is a suitable target for drug development. Seconeolitsine (SCN) is a new antibiotic that specifically blocks this enzyme. We obtained the topARA mutant, which encodes an enzyme less active than the wild type (topAWT) and more resistant to SCN inhibition. Likely due to the essentiality of TopoI, we were unable to replace the topAWT allele by the mutant topARA version. We compared the in vivo activity of TopoIRA and TopoIWT using regulated overexpression strains, whose genes were either under the control of a moderately (PZn) or a highly active promoter (PMal). Overproduction of TopoIRA impaired growth, increased SCN resistance and, in the presence of the gyrase inhibitor novobiocin (NOV), caused lower relaxation than TopoIWT. Differential transcriptomes were observed when the topAWT and topARA expression levels were increased about 5-fold. However, higher increases (10–15 times), produced a similar transcriptome, affecting about 52% of the genome, and correlating with a high DNA relaxation level with most responsive genes locating in topological domains. These results confirmed that TopoI is indeed the target of SCN in S. pneumoniae and show the important role of TopoI in global transcription, supporting its suitability as an antibiotic target. Full article
Show Figures

Figure 1

18 pages, 8510 KiB  
Article
The Properties of Linezolid, Rifampicin, and Vancomycin, as Well as the Mechanism of Action of Pentamidine, Determine Their Synergy against Gram-Negative Bacteria
by Miran Tang, Deyi Zhao, Sichen Liu, Xiaotuan Zhang, Zhuocheng Yao, Hule Chen, Cui Zhou, Tieli Zhou and Chunquan Xu
Int. J. Mol. Sci. 2023, 24(18), 13812; https://doi.org/10.3390/ijms241813812 - 7 Sep 2023
Cited by 1 | Viewed by 1207
Abstract
Combining pentamidine with Gram-positive-targeting antibiotics has been proven to be a promising strategy for treating infections from Gram-negative bacteria (GNB). However, which antibiotics pentamidine can and cannot synergize with and the reasons for the differences are unclear. This study aimed to identify the [...] Read more.
Combining pentamidine with Gram-positive-targeting antibiotics has been proven to be a promising strategy for treating infections from Gram-negative bacteria (GNB). However, which antibiotics pentamidine can and cannot synergize with and the reasons for the differences are unclear. This study aimed to identify the possible mechanisms for the differences in the synergy of pentamidine with rifampicin, linezolid, tetracycline, erythromycin, and vancomycin against GNB. Checkerboard assays were used to detect the synergy of pentamidine and the different antibiotics. To determine the mechanism of pentamidine, fluorescent labeling assays were used to measure membrane permeability, membrane potential, efflux pump activity, and reactive oxygen species (ROS); the LPS neutralization assay was used to evaluate the target site; and quantitative PCR was used to measure changes in efflux pump gene expression. Our results revealed that pentamidine strongly synergized with rifampicin, linezolid, and tetracycline and moderately synergized with erythromycin, but did not synergize with vancomycin against E. coli, K. pneumoniae, E. cloacae, and A. baumannii. Pentamidine increased the outer membrane permeability but did not demolish the outer and inner membranes, which exclusively permits the passage of hydrophobic, small-molecule antibiotics while hindering the entry of hydrophilic, large-molecule vancomycin. It dissipated the membrane proton motive force and inactivated the efflux pump, allowing the intracellular accumulation of antimicrobials that function as substrates of the efflux pump, such as linezolid. These processes resulted in metabolic perturbation and ROS production which ultimately was able to destroy the bacteria. These mechanisms of action of pentamidine on GNB indicate that it is prone to potentiating hydrophobic, small-molecule antibiotics, such as rifampicin, linezolid, and tetracycline, but not hydrophilic, large-molecule antibiotics like vancomycin against GNB. Collectively, our results highlight the importance of the physicochemical properties of antibiotics and the specific mechanisms of action of pentamidine for the synergy of pentamidine–antibiotic combinations. Pentamidine engages in various pathways in its interactions with GNB, but these mechanisms determine its specific synergistic effects with certain antibiotics against GNB. Pentamidine is a promising adjuvant, and we can optimize drug compatibility by considering its functional mechanisms. Full article
Show Figures

Figure 1

14 pages, 3244 KiB  
Article
Betaxolol as a Potent Inhibitor of NDM-1-Positive E. coli That Synergistically Enhances the Anti-Inflammatory Effect in Combination with Meropenem
by Jichao Sun, Shangjie Ren, Yaozu Yang, Xiaoting Li and Xiuying Zhang
Int. J. Mol. Sci. 2023, 24(17), 13399; https://doi.org/10.3390/ijms241713399 - 29 Aug 2023
Viewed by 1072
Abstract
With significant human and economic losses, increasing bacterial resistance is a serious global threat to human life. Due to their high efficacy, broad spectrum, and cost-effectiveness, beta-lactams are widely used in the clinical management of bacterial infection. The emergence and wide spread of [...] Read more.
With significant human and economic losses, increasing bacterial resistance is a serious global threat to human life. Due to their high efficacy, broad spectrum, and cost-effectiveness, beta-lactams are widely used in the clinical management of bacterial infection. The emergence and wide spread of New Delhi metallo-β-lactamase (NDM-1), which can effectively inactivate β-lactams, has posed a challenge in the design of effective new antimicrobial treatments. Medicine repurposing is now an important tool in the development of new alternative medicines. We present a known glaucoma therapeutic, betaxolol (BET), which with a 50% inhibitory concentration (IC50) of 19.3 ± 0.9 μM significantly inhibits the hydrolytic activity of the NDM-1 enzyme and may represent a potential NDM-1 enzyme inhibitor. BET combined with meropenem (MEM) showed bactericidal synergism in vitro. The efficacy of BET was further evaluated against systemic bacterial infections in BALB/c mice. The results showed that BET+MEM decreased the numbers of leukocytes and inflammatory factors in peripheral blood, as well as the organ bacterial load and pathological damage. Molecular docking and kinetic simulations showed that BET can form hydrogen bonds and hydrophobic interactions directly with key amino acid residues in the NDM-1 active site. Thus, we demonstrated that BET inhibited NDM-1 by competitively binding to it and that it can be developed in combination with MEM as a new therapy for the management of infections caused by medicine-resistant bacteria. Full article
Show Figures

Figure 1

16 pages, 2998 KiB  
Article
Roles of Lipopolysaccharide Glycosyltransferases in Maintenance of Helicobacter pylori Morphology, Cell Wall Permeability, and Antimicrobial Susceptibilities
by Xiaoqiong Tang, Tiankuo Yang, Yalin Shen, Xiaona Song, Mohammed Benghezal, Barry J. Marshall, Hong Tang and Hong Li
Int. J. Mol. Sci. 2023, 24(14), 11381; https://doi.org/10.3390/ijms241411381 - 12 Jul 2023
Cited by 3 | Viewed by 1389
Abstract
Helicobacter pylori has a unique lipopolysaccharide structure that is essential in maintaining its cell envelope integrity and imbues the bacterium with natural resistance to cationic antimicrobial peptides (CAMPs). Our group has recently elucidated the complete set of LPS glycosyltransferase genes in H. pylori [...] Read more.
Helicobacter pylori has a unique lipopolysaccharide structure that is essential in maintaining its cell envelope integrity and imbues the bacterium with natural resistance to cationic antimicrobial peptides (CAMPs). Our group has recently elucidated the complete set of LPS glycosyltransferase genes in H. pylori reference strain G27. Here, with a series of eight systematically constructed LPS glycosyltransferase gene mutants (G27ΔHP1578, G27ΔHP1283, G27ΔHP0159, G27ΔHP0479, G27ΔHP0102, G27ΔwecA, G27ΔHP1284 and G27ΔHP1191), we investigated the roles of H. pylori LPS glycosyltransferases in maintaining cell morphology, cell wall permeability, and antimicrobial susceptibilities. We demonstrated that deletion of these LPS glycosyltransferase genes did not interfere with bacterial cell wall permeability, but resulted in significant morphological changes (coccoid, coiled “c”-shape, and irregular shapes) after 48 h growth as compared to the rod-like cell shape of the wild-type strain. Moreover, as compared with the wild-type, none of the LPS mutants had altered susceptibility against clarithromycin, levofloxacin, amoxicillin, tetracycline, and metronidazole. However, the deletion of the conserved LPS glycosyltransferases, especially the O-antigen-initiating enzyme WecA, displayed a dramatic increase in susceptibility to the CAMP polymyxin B and rifampicin. Taken together, our findings suggest that the LPS glycosyltransferases play critical roles in the maintenance of the typical spiral morphology of H. pylori, as well as resistance to CAMPs and rifampicin. The LPS glycosyltransferases could be promising targets for developing novel anti-H. pylori drugs. Full article
Show Figures

Figure 1

Review

Jump to: Research

31 pages, 1044 KiB  
Review
Evolution of Vaccines Formulation to Tackle the Challenge of Anti-Microbial Resistant Pathogens
by Francesco Tognetti, Massimiliano Biagini, Maxime Denis, Francesco Berti, Domenico Maione and Daniela Stranges
Int. J. Mol. Sci. 2023, 24(15), 12054; https://doi.org/10.3390/ijms241512054 - 27 Jul 2023
Cited by 1 | Viewed by 1564
Abstract
The increasing diffusion of antimicrobial resistance (AMR) across more and more bacterial species emphasizes the urgency of identifying innovative treatment strategies to counter its diffusion. Pathogen infection prevention is among the most effective strategies to prevent the spread of both disease and AMR. [...] Read more.
The increasing diffusion of antimicrobial resistance (AMR) across more and more bacterial species emphasizes the urgency of identifying innovative treatment strategies to counter its diffusion. Pathogen infection prevention is among the most effective strategies to prevent the spread of both disease and AMR. Since their discovery, vaccines have been the strongest prophylactic weapon against infectious diseases, with a multitude of different antigen types and formulative strategies developed over more than a century to protect populations from different pathogens. In this review, we review the main characteristics of vaccine formulations in use and under development against AMR pathogens, focusing on the importance of administering multiple antigens where possible, and the challenges associated with their development and production. The most relevant antigen classes and adjuvant systems are described, highlighting their mechanisms of action and presenting examples of their use in clinical trials against AMR. We also present an overview of the analytical and formulative strategies for multivalent vaccines, in which we discuss the complexities associated with mixing multiple components in a single formulation. This review emphasizes the importance of combining existing knowledge with advanced technologies within a Quality by Design development framework to efficiently develop vaccines against AMR pathogens. Full article
Show Figures

Figure 1

Back to TopTop