ijms-logo

Journal Browser

Journal Browser

Molecular Pathology, Diagnostics and Therapeutics of Nephropathy 3.0

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 4750

Special Issue Editor

Special Issue Information

Dear Colleagues,

This Special Issue is the continuation of our previous Special Issue "Molecular Pathology, Diagnostics and Therapeutics of Nephropathy 2.0”.

Until recently, kidney disease was most frequently diagnosed based exclusively on the histologic examination of kidney biopsy and treated with non-specific immunosuppression. The availability of new diagnostic methods has resulted not only in a better understanding of the molecular pathogenesis of different kidney diseases and more specific and non-invasive diagnostics but also in the identification of new molecular targets for more personalized treatment with putatively better efficacy and safety. This Special Issue invites contributions of both original articles and reviews dedicated to advanced diagnostics and new treatment approaches in chronic kidney disease. Attention is paid not only to glomerular disease but also autosomal dominant polycystic kidney disease and kidney transplantation.

Prof. Dr. Vladimir Tesar
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nephropathy
  • kidney disease
  • glomerulonephritis
  • renal vasculitis
  • lupus nephritis

Related Special Issues

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 2348 KiB  
Communication
Prostaglandin Transporter and Dipeptidyl Peptidase-4 as New Pharmacological Targets in the Prevention of Acute Kidney Injury in Diabetes: An In Vitro Study
by Beatriz Gallego-Tamayo, Ángela Santos-Aparicio, Julia Yago-Ibáñez, Laura Muñoz-Moreno, Francisco Javier Lucio-Cazaña and Ana B. Fernández-Martínez
Int. J. Mol. Sci. 2024, 25(6), 3345; https://doi.org/10.3390/ijms25063345 - 15 Mar 2024
Viewed by 557
Abstract
The probability of acute kidney injury (AKI) is higher in septic diabetic patients, which is associated with, among other factors, proximal tubular cell (PTC) injury induced by the hypoxic/hyperglycemic/inflammatory microenvironment that surrounds PTCs in these patients. Here, we exposed human PTCs (HK-2 cells) [...] Read more.
The probability of acute kidney injury (AKI) is higher in septic diabetic patients, which is associated with, among other factors, proximal tubular cell (PTC) injury induced by the hypoxic/hyperglycemic/inflammatory microenvironment that surrounds PTCs in these patients. Here, we exposed human PTCs (HK-2 cells) to 1% O2/25 mM glucose/inflammatory cytokines with the aim of studying the role of prostaglandin uptake transporter (PGT) and dipeptidyl peptidase-4 (DPP-4, a target of anti-hyperglycemic agents) as pharmacological targets to prevent AKI in septic diabetic patients. Our model reproduced two pathologically relevant mechanisms: (i) pro-inflammatory PTC activation, as demonstrated by the increased secretion of chemokines IL-8 and MCP-1 and the enhanced expression of DPP-4, intercellular leukocyte adhesion molecule-1 and cyclo-oxygenase-2 (COX-2), the latter resulting in a PGT-dependent increase in intracellular prostaglandin E2 (iPGE2); and (ii) epithelial monolayer injury and the consequent disturbance of paracellular permeability, which was related to cell detachment from collagen IV and the alteration of the cell cytoskeleton. Most of these changes were prevented by the antagonism of PGE2 receptors or the inhibition of COX-2, PGT or DPP-4, and further studies suggested that a COX-2/iPGE2/DPP-4 pathway mediates the pathogenic effects of the hypoxic/hyperglycemic/inflammatory conditions on PTCs. Therefore, inhibitors of PGT or DPP-4 ought to undergo testing as a novel therapeutic avenue to prevent proximal tubular damage in diabetic patients at risk of AKI. Full article
(This article belongs to the Special Issue Molecular Pathology, Diagnostics and Therapeutics of Nephropathy 3.0)
Show Figures

Figure 1

13 pages, 7401 KiB  
Article
Beta Blockade Prevents Cardiac Morphological and Molecular Remodelling in Experimental Uremia
by Shanmugakumar Chinnappa, Azhar Maqbool, Hema Viswambharan, Andrew Mooney, Laura Denby and Mark Drinkhill
Int. J. Mol. Sci. 2024, 25(1), 373; https://doi.org/10.3390/ijms25010373 - 27 Dec 2023
Viewed by 732
Abstract
Heart failure and chronic kidney disease (CKD) share several mediators of cardiac pathological remodelling. Akin to heart failure, this remodelling sets in motion a vicious cycle of progressive pathological hypertrophy and myocardial dysfunction in CKD. Several decades of heart failure research have shown [...] Read more.
Heart failure and chronic kidney disease (CKD) share several mediators of cardiac pathological remodelling. Akin to heart failure, this remodelling sets in motion a vicious cycle of progressive pathological hypertrophy and myocardial dysfunction in CKD. Several decades of heart failure research have shown that beta blockade is a powerful tool in preventing cardiac remodelling and breaking this vicious cycle. This phenomenon remains hitherto untested in CKD. Therefore, we set out to test the hypothesis that beta blockade prevents cardiac pathological remodelling in experimental uremia. Wistar rats had subtotal nephrectomy or sham surgery and were followed up for 10 weeks. The animals were randomly allocated to the beta blocker metoprolol (10 mg/kg/day) or vehicle. In vivo and in vitro cardiac assessments were performed. Cardiac tissue was extracted, and protein expression was quantified using immunoblotting. Histological analyses were performed to quantify myocardial fibrosis. Beta blockade attenuated cardiac pathological remodelling in nephrectomised animals. The echocardiographic left ventricular mass and the heart weight to tibial length ratio were significantly lower in nephrectomised animals treated with metoprolol. Furthermore, beta blockade attenuated myocardial fibrosis associated with subtotal nephrectomy. In addition, the Ca++- calmodulin-dependent kinase II (CAMKII) pathway was shown to be activated in uremia and attenuated by beta blockade, offering a potential mechanism of action. In conclusion, beta blockade attenuated hypertrophic signalling pathways and ameliorated cardiac pathological remodelling in experimental uremia. The study provides a strong scientific rationale for repurposing beta blockers, a tried and tested treatment in heart failure, for the benefit of patients with CKD. Full article
(This article belongs to the Special Issue Molecular Pathology, Diagnostics and Therapeutics of Nephropathy 3.0)
Show Figures

Figure 1

11 pages, 3232 KiB  
Article
Efficacy of Mesenchymal-Stromal-Cell-Derived Extracellular Vesicles in Ameliorating Cisplatin Nephrotoxicity, as Modeled Using Three-Dimensional, Gravity-Driven, Two-Layer Tubule-on-a-Chip (3D-MOTIVE Chip)
by Eun-Jeong Kwon, Seong-Hye Hwang, Seungwan Seo, Jaesung Park, Seokwoo Park and Sejoong Kim
Int. J. Mol. Sci. 2023, 24(21), 15726; https://doi.org/10.3390/ijms242115726 - 29 Oct 2023
Cited by 1 | Viewed by 795
Abstract
Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) are known to have a therapeutic effect on nephrotoxicity. As animal models require significant time and resources to evaluate drug effects, there is a need for a new experimental technique that can accurately predict drug effects [...] Read more.
Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) are known to have a therapeutic effect on nephrotoxicity. As animal models require significant time and resources to evaluate drug effects, there is a need for a new experimental technique that can accurately predict drug effects in humans. We evaluated the therapeutic effect of MSC-derived EVs in cisplatin nephrotoxicity using a three-dimensional, gravity-driven, two-layer tubule-on-a-chip (3D-MOTIVE chip). In the 3D-MOTIVE chip, 10 μM cisplatin decreased the number of attached cells compared to the vehicle. Conversely, annexin V and reactive oxygen species (ROS) were increased. Cell viability was increased 2.8-fold and 2.5-fold after treatment with EVs at 4 and 8 µg/mL, respectively, compared to the cisplatin-induced nephrotoxicity group. Cell attachment was increased 2.25-fold by treatment with 4 µg/mL EVs and 2.02-fold by 8 µg/mL EVs. Annexin V and ROS levels were decreased compared to those in the cisplatin-induced nephrotoxicity group. There were no significant differences in annexin V and ROS levels according to EV concentration. In sum, we created a cisplatin-induced nephrotoxicity model on a 3D-MOTIVE chip and found that MSC-derived EVs could restore cell viability. Thus, MSC-derived EVs may have the potential to ameliorate cisplatin-induced nephrotoxicity. Full article
(This article belongs to the Special Issue Molecular Pathology, Diagnostics and Therapeutics of Nephropathy 3.0)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 1178 KiB  
Review
Type I IFN in Glomerular Disease: Scarring beyond the STING
by Alexis Paulina Jimenez-Uribe, Steve Mangos and Eunsil Hahm
Int. J. Mol. Sci. 2024, 25(5), 2497; https://doi.org/10.3390/ijms25052497 - 21 Feb 2024
Viewed by 882
Abstract
The field of nephrology has recently directed a considerable amount of attention towards the stimulator of interferon genes (STING) molecule since it appears to be a potent driver of chronic kidney disease (CKD). STING and its activator, the cyclic GMP-AMP synthase (cGAS), along [...] Read more.
The field of nephrology has recently directed a considerable amount of attention towards the stimulator of interferon genes (STING) molecule since it appears to be a potent driver of chronic kidney disease (CKD). STING and its activator, the cyclic GMP-AMP synthase (cGAS), along with intracellular RIG-like receptors (RLRs) and toll-like receptors (TLRs), are potent inducers of type I interferon (IFN-I) expression. These cytokines have been long recognized as part of the mechanism used by the innate immune system to battle viral infections; however, their involvement in sterile inflammation remains unclear. Mounting evidence pointing to the involvement of the IFN-I pathway in sterile kidney inflammation provides potential insights into the complex interplay between the innate immune system and damage to the most sensitive segment of the nephron, the glomerulus. The STING pathway is often cited as one cause of renal disease not attributed to viral infections. Instead, this pathway can recognize and signal in response to host-derived nucleic acids, which are also recognized by RLRs and TLRs. It is still unclear, however, whether the development of renal diseases depends on subsequent IFN-I induction or other processes involved. This review aims to explore the main endogenous inducers of IFN-I in glomerular cells, to discuss what effects autocrine and paracrine signaling have on IFN-I induction, and to identify the pathways that are implicated in the development of glomerular damage. Full article
(This article belongs to the Special Issue Molecular Pathology, Diagnostics and Therapeutics of Nephropathy 3.0)
Show Figures

Figure 1

19 pages, 2133 KiB  
Review
SCARF Genes in COVID-19 and Kidney Disease: A Path to Comorbidity-Specific Therapies
by Sol Carriazo, Daria Abasheva, Deborah Duarte, Alberto Ortiz and Maria Dolores Sanchez-Niño
Int. J. Mol. Sci. 2023, 24(22), 16078; https://doi.org/10.3390/ijms242216078 - 08 Nov 2023
Cited by 1 | Viewed by 1129
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which has killed ~7 million persons worldwide. Chronic kidney disease (CKD) is the most common risk factor for severe COVID-19 and one that most increases the risk of COVID-19-related death. Moreover, CKD [...] Read more.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which has killed ~7 million persons worldwide. Chronic kidney disease (CKD) is the most common risk factor for severe COVID-19 and one that most increases the risk of COVID-19-related death. Moreover, CKD increases the risk of acute kidney injury (AKI), and COVID-19 patients with AKI are at an increased risk of death. However, the molecular basis underlying this risk has not been well characterized. CKD patients are at increased risk of death from multiple infections, to which immune deficiency in non-specific host defenses may contribute. However, COVID-19-associated AKI has specific molecular features and CKD modulates the local (kidney) and systemic (lung, aorta) expression of host genes encoding coronavirus-associated receptors and factors (SCARFs), which SARS-CoV-2 hijacks to enter cells and replicate. We review the interaction between kidney disease and COVID-19, including the over 200 host genes that may influence the severity of COVID-19, and provide evidence suggesting that kidney disease may modulate the expression of SCARF genes and other key host genes involved in an effective adaptive defense against coronaviruses. Given the poor response of certain CKD populations (e.g., kidney transplant recipients) to SARS-CoV-2 vaccines and their suboptimal outcomes when infected, we propose a research agenda focusing on CKD to develop the concept of comorbidity-specific targeted therapeutic approaches to SARS-CoV-2 infection or to future coronavirus infections. Full article
(This article belongs to the Special Issue Molecular Pathology, Diagnostics and Therapeutics of Nephropathy 3.0)
Show Figures

Figure 1

Back to TopTop