E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Topical Collection "Neuroprotective Strategies"

Editor

Collection Editor
Prof. Dr. Katalin Prokai-Tatrai

Center for Neuroscience Discovery, Department of Pharmaceutical Sciences, University of North Texas; Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
Website | E-Mail
Fax: +1 817 735 2118
Interests: medicinal chemistry: drug design of central nervous system agents; neuropeptides and peptidomimetics; prodrugs for CNS delivery; oxidative stress; estrogens and other phenolic antioxidants; protein carbonylationmedicinal chemistry: drug design of central nervous system agents; neuropeptides and peptidomimetics; prodrugs for CNS delivery; oxidative stress; estrogens and other phenolic antioxidants; protein carbonylation

Topical Collection Information

Dear Colleagues,

We started the “Neuroprotective Strategies” collection jointly with Molecules in 2009. It was a great success; a large number of reviews and original research articles were published in the inaugural volume. Since then, the International Journal of Molecular Sciences has successfully continued this collection covering neuroprotection broadly including, but not limited to, preclinical/basic science assessments of various animal models relevant to diseases and agents with potential or perceived translation values. We open up the “Neuroprotective Strategies” Topical Collection to thought-provoking Comments, Opinions and Perspectives, in addition to our traditional Reviews and Research Articles in this field. We especially encourage submissions that address critical issues having prevented successful clinical translations of promising laboratory data. Limitations of in vitro studies and preclinical animal models to mirror multiple pathologies underlying human neurodegenerative diseases, lack of drug-likeness of experimental agents, the need to consider absorption, distribution, metabolism, elimination, toxicology (ADMET) and pharmacokinetics even in the early stage of drug discovery, as well as obstacles of drug delivery to the CNS are only some of the issues that come to mind regard this matter. Critical reviews on relevant patent literature are also welcome. I give thanks for past contributions and look forward to receiving future contributions on the promising and challenging aspects of the field. The following links: http://www.mdpi.com/journal/ijms/special_issues/Neuroprotective_strategies_collection and http://www.mdpi.com/journal/molecules/special_issues/neuroprotec-strateg point to already published papers within this collection.

Dr. Katalin Prokai-Tatrai
Collection Editor

Manuscript Submission Information

Manuscripts for the topical collection can be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on this website. The topical collection considers regular research articles, short communications and review articles. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page.

Please visit the Instructions for Authors page before submitting a manuscript. The article processing charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs).


Keywords

  • age-related neurodegeneration
  • blood-brain barrier
  • CNS injury
  • cognition and dementia
  • drug delivery and drug-likeness
  • inflammation
  • in silico drug design and disease models
  • ischemia and reperfusion
  • oxidative stress
  • peripheral nervous system
  • stem cell
  • structure-activity relationship
  • translational medicine

Related Special Issues

Published Papers (146 papers)

2017

Jump to: 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009

Open AccessReview Potential Neuroprotective Effects of Adiponectin in Alzheimer’s Disease
Int. J. Mol. Sci. 2017, 18(3), 592; doi:10.3390/ijms18030592
Received: 23 December 2016 / Revised: 20 February 2017 / Accepted: 28 February 2017 / Published: 9 March 2017
PDF Full-text (633 KB) | HTML Full-text | XML Full-text
Abstract
The adipocyte-secreted protein adiponectin (APN) has several protective functions in the peripheral tissues including insulin sensitizing, anti-inflammatory and anti-oxidative effects that may benefit neurodegenerative diseases such as Alzheimer’s disease (AD). In addition, dysregulation of cerebral insulin sensitivities and signaling activities have been implicated
[...] Read more.
The adipocyte-secreted protein adiponectin (APN) has several protective functions in the peripheral tissues including insulin sensitizing, anti-inflammatory and anti-oxidative effects that may benefit neurodegenerative diseases such as Alzheimer’s disease (AD). In addition, dysregulation of cerebral insulin sensitivities and signaling activities have been implicated in AD. Emerging insights into the mechanistic roles of adiponectin and AD highlight the potential therapeutic effects for AD through insulin signaling. Full article
Figures

Open AccessReview Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection
Int. J. Mol. Sci. 2017, 18(3), 490; doi:10.3390/ijms18030490
Received: 24 December 2016 / Revised: 9 February 2017 / Accepted: 15 February 2017 / Published: 24 February 2017
PDF Full-text (233 KB) | HTML Full-text | XML Full-text
Abstract
The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins
[...] Read more.
The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus. Full article
Open AccessArticle Effects of Postnatal Enriched Environment in a Model of Parkinson’s Disease in Adult Rats
Int. J. Mol. Sci. 2017, 18(2), 406; doi:10.3390/ijms18020406
Received: 22 December 2016 / Revised: 1 February 2017 / Accepted: 6 February 2017 / Published: 14 February 2017
Cited by 1 | PDF Full-text (8572 KB) | HTML Full-text | XML Full-text
Abstract
Environmental enrichment is a widespread neuroprotective strategy during development and also in the mature nervous system. Several research groups have described that enriched environment in adult rats has an impact on the progression of Parkinson’s disease (PD). The aim of our present study
[...] Read more.
Environmental enrichment is a widespread neuroprotective strategy during development and also in the mature nervous system. Several research groups have described that enriched environment in adult rats has an impact on the progression of Parkinson’s disease (PD). The aim of our present study was to examine the effects of early, postnatal environmental enrichment after 6-hydroxydopamine-induced (6-OHDA) lesion of the substantia nigra in adulthood. Newborn Wistar rats were divided into control and enriched groups according to their environmental conditions. For environmental enrichment, during the first five postnatal weeks animals were placed in larger cages and exposed to intensive complex stimuli. Dopaminergic cell loss, and hypokinetic and asymmetrical signs were evaluated after inducing PD with unilateral injections of 6-OHDA in three-month-old animals. Treatment with 6-OHDA led to a significant cell loss in the substantia nigra of control animals, however, postnatal enriched circumstances could rescue the dopaminergic cells. Although there was no significant difference in the percentage of surviving cells between 6-OHDA-treated control and enriched groups, the slightly less dopaminergic cell loss in the enriched group compared to control animals resulted in less severe hypokinesia. Our investigation is the first to provide evidence for the neuroprotective effect of postnatal enriched environment in PD later in life. Full article
Figures

Open AccessArticle Identifying the Long-Term Role of Inducible Nitric Oxide Synthase after Contusive Spinal Cord Injury Using a Transgenic Mouse Model
Int. J. Mol. Sci. 2017, 18(2), 245; doi:10.3390/ijms18020245
Received: 5 December 2016 / Revised: 5 January 2017 / Accepted: 15 January 2017 / Published: 25 January 2017
PDF Full-text (2648 KB) | HTML Full-text | XML Full-text
Abstract
Inducible nitric oxide synthase (iNOS) is a potent mediator of oxidative stress during neuroinflammation triggered by neurotrauma or neurodegeneration. We previously demonstrated that acute iNOS inhibition attenuated iNOS levels and promoted neuroprotection and functional recovery after spinal cord injury (SCI). The present study
[...] Read more.
Inducible nitric oxide synthase (iNOS) is a potent mediator of oxidative stress during neuroinflammation triggered by neurotrauma or neurodegeneration. We previously demonstrated that acute iNOS inhibition attenuated iNOS levels and promoted neuroprotection and functional recovery after spinal cord injury (SCI). The present study investigated the effects of chronic iNOS ablation after SCI using inos-null mice. iNOS−/− knockout and wild-type (WT) control mice underwent a moderate thoracic (T8) contusive SCI. Locomotor function was assessed weekly, using the Basso Mouse Scale (BMS), and at the endpoint (six weeks), by footprint analysis. At the endpoint, the volume of preserved white and gray matter, as well as the number of dorsal column axons and perilesional blood vessels rostral to the injury, were quantified. At weeks two and three after SCI, iNOS−/− mice exhibited a significant locomotor improvement compared to WT controls, although a sustained improvement was not observed during later weeks. At the endpoint, iNOS−/− mice showed significantly less preserved white and gray matter, as well as fewer dorsal column axons and perilesional blood vessels, compared to WT controls. While short-term antagonism of iNOS provides histological and functional benefits, its long-term ablation after SCI may be deleterious, blocking protective or reparative processes important for angiogenesis and tissue preservation. Full article
Figures

Figure 1

Open AccessArticle α-Tocopherol at Nanomolar Concentration Protects Cortical Neurons against Oxidative Stress
Int. J. Mol. Sci. 2017, 18(1), 216; doi:10.3390/ijms18010216
Received: 28 September 2016 / Revised: 8 January 2017 / Accepted: 14 January 2017 / Published: 21 January 2017
PDF Full-text (6537 KB) | HTML Full-text | XML Full-text
Abstract
The aim of the present work is to study the mechanism of the α-tocopherol (α-T) protective action at nanomolar and micromolar concentrations against H2O2-induced brain cortical neuron death. The mechanism of α-T action on neurons at its nanomolar concentrations
[...] Read more.
The aim of the present work is to study the mechanism of the α-tocopherol (α-T) protective action at nanomolar and micromolar concentrations against H2O2-induced brain cortical neuron death. The mechanism of α-T action on neurons at its nanomolar concentrations characteristic for brain extracellular space has not been practically studied yet. Preincubation with nanomolar and micromolar α-T for 18 h was found to increase the viability of cortical neurons exposed to H2O2; α-T effect was concentration-dependent in the nanomolar range. However, preincubation with nanomolar α-T for 30 min was not effective. Nanomolar and micromolar α-T decreased the reactive oxygen species accumulation induced in cortical neurons by the prooxidant. Using immunoblotting it was shown that preincubation with α-T at nanomolar and micromolar concentrations for 18 h prevented Akt inactivation and decreased PKCδ activation induced in cortical neurons by H2O2. α-T prevented the ERK1/2 sustained activation during 24 h caused by H2O2. α-T at nanomolar and micromolar concentrations prevented a great increase of the proapoptotic to antiapoptotic proteins (Bax/Bcl-2) ratio, elicited by neuron exposure to H2O2. The similar neuron protection mechanism by nanomolar and micromolar α-T suggests that a “more is better” approach to patients’ supplementation with vitamin E or α-T is not reasonable. Full article
Figures

Open AccessArticle Neuroprotective and Anti-Apoptotic Effects of CSP-1103 in Primary Cortical Neurons Exposed to Oxygen and Glucose Deprivation
Int. J. Mol. Sci. 2017, 18(1), 184; doi:10.3390/ijms18010184
Received: 11 October 2016 / Revised: 3 January 2017 / Accepted: 12 January 2017 / Published: 18 January 2017
PDF Full-text (1857 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
CSP-1103 (formerly CHF5074) has been shown to reverse memory impairment and reduce amyloid plaque as well as inflammatory microglia activation in preclinical models of Alzheimer’s disease. Moreover, it was found to improve cognition and reduce brain inflammation in patients with mild cognitive impairment.
[...] Read more.
CSP-1103 (formerly CHF5074) has been shown to reverse memory impairment and reduce amyloid plaque as well as inflammatory microglia activation in preclinical models of Alzheimer’s disease. Moreover, it was found to improve cognition and reduce brain inflammation in patients with mild cognitive impairment. Recent evidence suggests that CSP-1103 acts through a single molecular target, the amyloid precursor protein intracellular domain (AICD), a transcriptional regulator implicated in inflammation and apoptosis. We here tested the possible anti-apoptotic and neuroprotective activity of CSP-1103 in a cell-based model of post-ischemic injury, wherein the primary mouse cortical neurons were exposed to oxygen-glucose deprivation (OGD). When added after OGD, CSP-1103 prevented the apoptosis cascade by reducing cytochrome c release and caspase-3 activation and the secondary necrosis. Additionally, CSP-1103 limited earlier activation of p38 and nuclear factor κB (NF-κB) pathways. These results demonstrate that CSP-1103 is neuroprotective in a model of post-ischemic brain injury and provide further mechanistic insights as regards its ability to reduce apoptosis and potential production of pro-inflammatory cytokines. In conclusion, these findings suggest a potential use of CSP-1103 for the treatment of brain ischemia. Full article
Figures

Figure 1

Open AccessArticle Hypoxia Inducible Factor 1α Promotes Endogenous Adaptive Response in Rat Model of Chronic Cerebral Hypoperfusion
Int. J. Mol. Sci. 2017, 18(1), 3; doi:10.3390/ijms18010003
Received: 4 October 2016 / Revised: 16 November 2016 / Accepted: 6 December 2016 / Published: 17 January 2017
Cited by 2 | PDF Full-text (13561 KB) | HTML Full-text | XML Full-text
Abstract
Hypoxia inducible factor 1α (HIF-1α), a pivotal regulator of gene expression in response to hypoxia and ischemia, is now considered to regulate both pro-survival and pro-death responses depending on the duration and severity of the stress. We previously showed that chronic
[...] Read more.
Hypoxia inducible factor 1α (HIF-1α), a pivotal regulator of gene expression in response to hypoxia and ischemia, is now considered to regulate both pro-survival and pro-death responses depending on the duration and severity of the stress. We previously showed that chronic global cerebral hypoperfusion (CCH) triggered long-lasting accumulation of HIF-1α protein in the hippocampus of rats. However, the role of the stabilized HIF-1α in CCH is obscure. Here, we knock down endogenous HIF-1α to determine whether and how HIF-1α affects the disease processes and phenotypes of CCH. Lentivirus expressing HIF-1α small hairpin RNA was injected into the bilateral hippocampus and bilateral ventricles to knock down HIF-1α gene expression in the hippocampus and other brain areas. Permanent bilateral common carotid artery occlusions, known as 2-vessel occlusions (2VOs), were used to induce CCH in rats. Angiogenesis, oxidative stress, histopathological changes of the brain, and cognitive function were tested. Knockdown of HIF-1α prior to 2VO significantly exacerbates the impairment of learning and memory after four weeks of CCH. Mechanically, reduced cerebral angiogenesis, increased oxidative damage, and increased density of astrocytes and microglia in the cortex and some subregions of hippocampus are also shown after four weeks of CCH. Furthermore, HIF-1α knockdown also disrupts upregulation of regulated downstream genes. Our findings suggest that HIF-1α-protects the brain from oxidative stress and inflammation response in the disease process of CCH. Accumulated HIF-1α during CCH mediates endogenous adaptive processes to defend against more severe hypoperfusion injury of the brain, which may provide a therapeutic benefit. Full article
Figures

2016

Jump to: 2017, 2015, 2014, 2013, 2012, 2011, 2010, 2009

Open AccessReview Neuroprotection via Reduction in Stress: Altered Menstrual Patterns as a Marker for Stress and Implications for Long-Term Neurologic Health in Women
Int. J. Mol. Sci. 2016, 17(12), 2147; doi:10.3390/ijms17122147
Received: 18 October 2016 / Revised: 7 December 2016 / Accepted: 13 December 2016 / Published: 20 December 2016
PDF Full-text (199 KB) | HTML Full-text | XML Full-text
Abstract
Individuals under chronic psychological stress can be difficult to identify clinically. There is often no outwardly visible phenotype. Chronic stress of sufficient magnitude not only impacts reproductive function, but also concomitantly elicits a constellation of neuroendocrine changes that may accelerate aging in general
[...] Read more.
Individuals under chronic psychological stress can be difficult to identify clinically. There is often no outwardly visible phenotype. Chronic stress of sufficient magnitude not only impacts reproductive function, but also concomitantly elicits a constellation of neuroendocrine changes that may accelerate aging in general and brain aging in particular. Functional hypothalamic amenorrhea, a phenotypically recognizable form of stress, is due to stress-induced suppression of endogenous gonadotropin-releasing hormone secretion. Reversal of functional hypothalamic amenorrhea includes restoration of ovulatory ovarian function and fertility and amelioration of hypercortisolism and hypothyroidism. Taken together, recovery from functional hypothalamic amenorrhea putatively offers neuroprotection and ameliorates stress-induced premature brain aging and possibly syndromic Alzheimer’s disease. Amenorrhea may be viewed as a sentinel indicator of stress. Hypothalamic hypogonadism is less clinically evident in men and the diagnosis is difficult to establish. Whether there are other sex differences in the impact of stress on brain aging remains to be better investigated, but it is likely that both low estradiol from stress-induced anovulation and low testosterone from stress-induced hypogonadism compromise brain health. Full article
Figures

Open AccessArticle Downregulation of Homer1b/c in SOD1 G93A Models of ALS: A Novel Mechanism of Neuroprotective Effect of Lithium and Valproic Acid
Int. J. Mol. Sci. 2016, 17(12), 2129; doi:10.3390/ijms17122129
Received: 25 July 2016 / Revised: 5 December 2016 / Accepted: 9 December 2016 / Published: 17 December 2016
PDF Full-text (2035 KB) | HTML Full-text | XML Full-text
Abstract
Background: Mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). However, the molecular mechanisms have not been elucidated yet. Homer family protein Homer1b/c is expressed widely in the central nervous system and plays important
[...] Read more.
Background: Mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). However, the molecular mechanisms have not been elucidated yet. Homer family protein Homer1b/c is expressed widely in the central nervous system and plays important roles in neurological diseases. In this study, we explored whether Homer1b/c was involved in SOD1 mutation-linked ALS. Results: In vitro studies showed that the SOD1 G93A mutation induced an increase of Homer1b/c expression at both the mRNA and protein levels in NSC34 cells. Knockdown of Homer1b/c expression using its short interfering RNA (siRNA) (si-Homer1) protected SOD1 G93A NSC34 cells from apoptosis. The expressions of Homer1b/c and apoptosis-related protein Bax were also suppressed, while Bcl-2 was increased by lithium and valproic acid (VPA) in SOD1 G93A NSC34 cells. In vivo, both the mRNA and protein levels of Homer1b/c were increased significantly in the lumbar spinal cord in SOD1 G93A transgenic mice compared with wild type (WT) mice. Moreover, lithium and VPA treatment suppressed the expression of Homer1b/c in SOD1 G93A mice. Conclusion: The suppression of SOD1 G93A mutation-induced Homer1b/c upregulation protected ALS against neuronal apoptosis, which is a novel mechanism of the neuroprotective effect of lithium and VPA. This study provides new insights into pathogenesis and treatment of ALS. Full article
Figures

Figure 1

Open AccessReview Oxidative Stress in Hypoxic-Ischemic Encephalopathy: Molecular Mechanisms and Therapeutic Strategies
Int. J. Mol. Sci. 2016, 17(12), 2078; doi:10.3390/ijms17122078
Received: 13 October 2016 / Revised: 2 December 2016 / Accepted: 6 December 2016 / Published: 10 December 2016
Cited by 5 | PDF Full-text (613 KB) | HTML Full-text | XML Full-text
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of morbidity and mortality in neonates. Because of high concentrations of sensitive immature cells, metal-catalyzed free radicals, non-saturated fatty acids, and low concentrations of antioxidant enzymes, the brain requires high levels of oxygen supply
[...] Read more.
Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of morbidity and mortality in neonates. Because of high concentrations of sensitive immature cells, metal-catalyzed free radicals, non-saturated fatty acids, and low concentrations of antioxidant enzymes, the brain requires high levels of oxygen supply and is, thus, extremely sensitive to hypoxia. Strong evidence indicates that oxidative stress plays an important role in pathogenesis and progression. Following hypoxia and ischemia, reactive oxygen species (ROS) production rapidly increases and overwhelms antioxidant defenses. A large excess of ROS will directly modify or degenerate cellular macromolecules, such as membranes, proteins, lipids, and DNA, and lead to a cascading inflammatory response, and protease secretion. These derivatives are involved in a complex interplay of multiple pathways (e.g., inflammation, apoptosis, autophagy, and necrosis) which finally lead to brain injury. In this review, we highlight the molecular mechanism for oxidative stress in HIE, summarize current research on therapeutic strategies utilized in combating oxidative stress, and try to explore novel potential clinical approaches. Full article
Figures

Figure 1

Open AccessArticle Liver Growth Factor (LGF) Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich’s Ataxia Transgenic Mice
Int. J. Mol. Sci. 2016, 17(12), 2066; doi:10.3390/ijms17122066
Received: 31 August 2016 / Revised: 28 November 2016 / Accepted: 6 December 2016 / Published: 9 December 2016
Cited by 1 | PDF Full-text (4932 KB) | HTML Full-text | XML Full-text
Abstract
Friedreich’s ataxia (FA) is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that
[...] Read more.
Friedreich’s ataxia (FA) is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that includes neurological and non-neurological damage. Recent studies have proven the effectiveness of neurotrophic factors in a number of neurodegenerative diseases. Therefore, we intend to determine if liver growth factor (LGF), which has a demonstrated antioxidant and neuroprotective capability, could be a useful therapy for FA. To investigate the potential therapeutic activity of LGF we used transgenic mice of the FXNtm1MknTg (FXN)YG8Pook strain. In these mice, intraperitoneal administration of LGF (1.6 μg/mouse) exerted a neuroprotective effect on neurons of the lumbar spinal cord and improved cardiac hypertrophy. Both events could be the consequence of the increment in frataxin expression induced by LGF in spinal cord (1.34-fold) and heart (1.2-fold). LGF also upregulated by 2.6-fold mitochondrial chain complex IV expression in spinal cord, while in skeletal muscle it reduced the relation oxidized glutathione/reduced glutathione. Since LGF partially restores motor coordination, we propose LGF as a novel factor that may be useful in the treatment of FA. Full article
Figures

Figure 1

Open AccessArticle The Impact of CXCR4 Blockade on the Survival of Rat Brain Cortical Neurons
Int. J. Mol. Sci. 2016, 17(12), 2005; doi:10.3390/ijms17122005
Received: 2 September 2016 / Revised: 16 November 2016 / Accepted: 17 November 2016 / Published: 30 November 2016
PDF Full-text (1673 KB) | HTML Full-text | XML Full-text
Abstract
Background: Chemokine receptor type 4 (CXCR4) plays a role in neuronal survival/cell repair and also contributes to the progression of cancer and neurodegenerative diseases. Chemokine ligand 12 (CXCL12) binds to CXCR4. In this study, we have investigated whether CXCR4 blockade by AMD3100 (a
[...] Read more.
Background: Chemokine receptor type 4 (CXCR4) plays a role in neuronal survival/cell repair and also contributes to the progression of cancer and neurodegenerative diseases. Chemokine ligand 12 (CXCL12) binds to CXCR4. In this study, we have investigated whether CXCR4 blockade by AMD3100 (a CXCR4 antagonist, member of bicyclam family) may affect neuronal survival in the absence of insult. Thus, we have measured the mitochondrial membrane potential (MMP), Bax and Bcl-2 protein translocation, and cytochrome c release in AMD3100-treated brain cortical neurons at 7 DIV (days in vitro). Methods: For this aim, AMD3100 (200 nM) was added to cortical neurons for 24 h, and several biomarkers like cell viability, reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) release, caspase-3/9 activity, proteins Bax and Bcl-2 translocation, and cytochrome c release were analyzed by immunoblot. Results: CXCR4 blockade by AMD3100 (200 nM, 24 h) induces mitochondrial hyperpolarization and increases caspase-3/9 hyperpolarization without affecting LDH release as compared to untreated controls. AMD3100 also increases cytochrome c release and promotes Bax translocation to the mitochondria, whereas it raises cytosolic Bcl-2 levels in brain cortical neurons. Conclusion: CXCR4 blockade induces cellular death via intrinsic apoptosis in rat brain cortical neurons in absence of insult. Full article
Figures

Open AccessReview Towards Clinical Application of Neurotrophic Factors to the Auditory Nerve; Assessment of Safety and Efficacy by a Systematic Review of Neurotrophic Treatments in Humans
Int. J. Mol. Sci. 2016, 17(12), 1981; doi:10.3390/ijms17121981
Received: 1 September 2016 / Revised: 11 November 2016 / Accepted: 21 November 2016 / Published: 26 November 2016
PDF Full-text (450 KB) | HTML Full-text | XML Full-text
Abstract
Animal studies have evidenced protection of the auditory nerve by exogenous neurotrophic factors. In order to assess clinical applicability of neurotrophic treatment of the auditory nerve, the safety and efficacy of neurotrophic therapies in various human disorders were systematically reviewed. Outcomes of our
[...] Read more.
Animal studies have evidenced protection of the auditory nerve by exogenous neurotrophic factors. In order to assess clinical applicability of neurotrophic treatment of the auditory nerve, the safety and efficacy of neurotrophic therapies in various human disorders were systematically reviewed. Outcomes of our literature search included disorder, neurotrophic factor, administration route, therapeutic outcome, and adverse event. From 2103 articles retrieved, 20 randomized controlled trials including 3974 patients were selected. Amyotrophic lateral sclerosis (53%) was the most frequently reported indication for neurotrophic therapy followed by diabetic polyneuropathy (28%). Ciliary neurotrophic factor (50%), nerve growth factor (24%) and insulin-like growth factor (21%) were most often used. Injection site reaction was a frequently occurring adverse event (61%) followed by asthenia (24%) and gastrointestinal disturbances (20%). Eighteen out of 20 trials deemed neurotrophic therapy to be safe, and six out of 17 studies concluded the neurotrophic therapy to be effective. Positive outcomes were generally small or contradicted by other studies. Most non-neurodegenerative diseases treated by targeted deliveries of neurotrophic factors were considered safe and effective. Hence, since local delivery to the cochlea is feasible, translation from animal studies to human trials in treating auditory nerve degeneration seems promising. Full article
Figures

Figure 1

Open AccessReview Neuroprotective Strategies during Cardiac Surgery with Cardiopulmonary Bypass
Int. J. Mol. Sci. 2016, 17(11), 1945; doi:10.3390/ijms17111945
Received: 21 July 2016 / Revised: 2 November 2016 / Accepted: 15 November 2016 / Published: 21 November 2016
Cited by 2 | PDF Full-text (374 KB) | HTML Full-text | XML Full-text
Abstract
Aortocoronary bypass or valve surgery usually require cardiac arrest using cardioplegic solutions. Although, in principle, in a number of cases beating heart surgery (so-called off-pump technique) is possible, aortic or valve surgery or correction of congenital heart diseases mostly require cardiopulmonary arrest. During
[...] Read more.
Aortocoronary bypass or valve surgery usually require cardiac arrest using cardioplegic solutions. Although, in principle, in a number of cases beating heart surgery (so-called off-pump technique) is possible, aortic or valve surgery or correction of congenital heart diseases mostly require cardiopulmonary arrest. During this condition, the heart-lung machine also named cardiopulmonary bypass (CPB) has to take over the circulation. It is noteworthy that the invention of a machine bypassing the heart and lungs enabled complex cardiac operations, but possible negative effects of the CPB on other organs, especially the brain, cannot be neglected. Thus, neuroprotection during CPB is still a matter of great interest. In this review, we will describe the impact of CPB on the brain and focus on pharmacological and non-pharmacological strategies to protect the brain. Full article
Figures

Open AccessArticle Protective Effect of Tempol against Cisplatin-Induced Ototoxicity
Int. J. Mol. Sci. 2016, 17(11), 1931; doi:10.3390/ijms17111931
Received: 9 August 2016 / Revised: 1 November 2016 / Accepted: 15 November 2016 / Published: 18 November 2016
PDF Full-text (1751 KB) | HTML Full-text | XML Full-text
Abstract
One of the major adverse effects of cisplatin chemotherapy is hearing loss. Cisplatin-induced ototoxicity hampers treatment because it often necessitates dose reduction, which decreases cisplatin efficacy. This study was performed to investigate the effect of Tempol on cisplatin-induced ototoxicity in an auditory cell
[...] Read more.
One of the major adverse effects of cisplatin chemotherapy is hearing loss. Cisplatin-induced ototoxicity hampers treatment because it often necessitates dose reduction, which decreases cisplatin efficacy. This study was performed to investigate the effect of Tempol on cisplatin-induced ototoxicity in an auditory cell line, House Ear Institute-Organ of Corti 1 (HEI-OC1). Cultured HEI-OC1 cells were exposed to 30 μM cisplatin for 24 h with or without a 2 h pre-treatment with Tempol. Cell viability was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and apoptotic cells were identified using terminal deoxynucleotidyl transferase dUTP nick end labeling of nuclei (TUNEL) assay and flow cytometry. The effects of Tempol on cisplatin-induced cleaved poly(ADP-ribose) polymerase, cleaved caspase, and mitochondrial inducible nitric oxide synthase expression were evaluated using western blot analysis. Levels of intracellular reactive oxygen species (ROS) were measured to assess the effects of Tempol on cisplatin-induced ROS accumulation. Mitochondria were evaluated by confocal microscopy, and the mitochondrial membrane potential was measured to investigate whether Tempol protected against cisplatin-induced mitochondrial dysfunction. Cisplatin treatment decreased cell viability, and increased apoptotic features and markers, ROS accumulation, and mitochondrial dysfunction. Tempol pre-treatment before cisplatin exposure significantly inhibited all these cisplatin-induced effects. These results demonstrate that Tempol inhibits cisplatin-induced cytotoxicity in HEI-OC1, and could play a preventive role against cisplatin-induced ototoxicity. Full article
Figures

Open AccessArticle Salvianolic Acid B (Sal B) Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1)
Int. J. Mol. Sci. 2016, 17(11), 1835; doi:10.3390/ijms17111835
Received: 14 July 2016 / Revised: 8 October 2016 / Accepted: 31 October 2016 / Published: 3 November 2016
Cited by 4 | PDF Full-text (4071 KB) | HTML Full-text | XML Full-text
Abstract
Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by
[...] Read more.
Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by improving the redox state, especially in times of oxidative stress. However, there is currently no compound that is identified as a Grx1 activator. In this study, we identified and characterized Salvianolic acid B (Sal B), a natural compound, as a Grx1 inducer, which potently protected retinal pigment epithelial (RPE) cells from oxidative injury. Our results showed that treatment with Sal B protected primary human RPE cells from H2O2-induced cell damage. Interestingly, we found Sal B pretreatment upregulated Grx1 expression in RPE cells in a time- and dose-dependent manner. Furthermore, NF-E2-related factor 2 (Nrf2), the key transcription factor that regulates the expression of Grx1, was activated in Sal B treated RPE cells. Further investigation showed that knockdown of Grx1 by small interfering RNA (siRNA) significantly reduced the protective effects of Sal B. We conclude that Sal B protects RPE cells against H2O2-induced cell injury through Grx1 induction by activating Nrf2 pathway, thus preventing lethal accumulation of PSSG and reversing oxidative damage. Full article
Figures

Open AccessArticle The Neuroprotective Properties of Hericium erinaceus in Glutamate-Damaged Differentiated PC12 Cells and an Alzheimer’s Disease Mouse Model
Int. J. Mol. Sci. 2016, 17(11), 1810; doi:10.3390/ijms17111810
Received: 20 August 2016 / Revised: 14 October 2016 / Accepted: 20 October 2016 / Published: 1 November 2016
Cited by 7 | PDF Full-text (4113 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Hericium erinaceus, an edible and medicinal mushroom, displays various pharmacological activities in the prevention of dementia in conditions such as Parkinson’s and Alzheimer’s disease. The present study explored the neuroprotective effects of H. erinaceus mycelium polysaccharide-enriched aqueous extract (HE) on an l
[...] Read more.
Hericium erinaceus, an edible and medicinal mushroom, displays various pharmacological activities in the prevention of dementia in conditions such as Parkinson’s and Alzheimer’s disease. The present study explored the neuroprotective effects of H. erinaceus mycelium polysaccharide-enriched aqueous extract (HE) on an l-glutamic acid (l-Glu)-induced differentiated PC12 (DPC12) cellular apoptosis model and an AlCl3 combined with d-galactose-induced Alzheimer’s disease mouse model. The data revealed that HE successfully induced PC12 cell differentiation. A 3 h HE incubation at doses of 50 and 100 µg/mL before 25 mM of l-Glu effectively reversed the reduction of cell viability and the enhancement of the nuclear apoptosis rate in DPC12 cells. Compared with l-Glu-damaged cells, in PC12 cells, HE suppressed intracellular reactive oxygen species accumulation, blocked Ca2+ overload and prevented mitochondrial membrane potential (MMP) depolarization. In the Alzheimer’s disease mouse model, HE administration enhanced the horizontal and vertical movements in the autonomic activity test, improved the endurance time in the rotarod test, and decreased the escape latency time in the water maze test. It also improved the central cholinergic system function in the Alzheimer’s mice, demonstrated by the fact that it dose-dependently enhanced the acetylcholine (Ach) and choline acetyltransferase (ChAT) concentrations in both the serum and the hypothalamus. Our findings provide experimental evidence that HE may provide neuroprotective candidates for treating or preventing neurodegenerative diseases. Full article
Figures

Figure 1

Open AccessReview The Molecular Pathway of Argon-Mediated Neuroprotection
Int. J. Mol. Sci. 2016, 17(11), 1816; doi:10.3390/ijms17111816
Received: 13 August 2016 / Revised: 17 October 2016 / Accepted: 25 October 2016 / Published: 31 October 2016
PDF Full-text (1487 KB) | HTML Full-text | XML Full-text
Abstract
The noble gas argon has attracted increasing attention in recent years, especially because of its neuroprotective properties. In a variety of models, ranging from oxygen-glucose deprivation in cell culture to complex models of mid-cerebral artery occlusion, subarachnoid hemorrhage or retinal ischemia-reperfusion injury in
[...] Read more.
The noble gas argon has attracted increasing attention in recent years, especially because of its neuroprotective properties. In a variety of models, ranging from oxygen-glucose deprivation in cell culture to complex models of mid-cerebral artery occlusion, subarachnoid hemorrhage or retinal ischemia-reperfusion injury in animals, argon administration after individual injury demonstrated favorable effects, particularly increased cell survival and even improved neuronal function. As an inert molecule, argon did not show signs of adverse effects in the in vitro and in vivo model used, while being comparably cheap and easy to apply. However, the molecular mechanism by which argon is able to exert its protective and beneficial characteristics remains unclear. Although there are many pieces missing to complete the signaling pathway throughout the cell, it is the aim of this review to summarize the known parts of the molecular pathways and to combine them to provide a clear insight into the cellular pathway, starting with the receptors that may be involved in mediating argons effects and ending with the translational response. Full article
Figures

Open AccessArticle Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress
Int. J. Mol. Sci. 2016, 17(10), 1523; doi:10.3390/ijms17101523
Received: 25 July 2016 / Revised: 30 August 2016 / Accepted: 4 September 2016 / Published: 24 October 2016
PDF Full-text (2909 KB) | HTML Full-text | XML Full-text
Abstract
Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS). Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated
[...] Read more.
Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS). Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER) stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress. Full article
Figures

Open AccessArticle Auraptene and Other Prenyloxyphenylpropanoids Suppress Microglial Activation and Dopaminergic Neuronal Cell Death in a Lipopolysaccharide-Induced Model of Parkinson’s Disease
Int. J. Mol. Sci. 2016, 17(10), 1716; doi:10.3390/ijms17101716
Received: 31 August 2016 / Revised: 28 September 2016 / Accepted: 8 October 2016 / Published: 17 October 2016
Cited by 2 | PDF Full-text (4500 KB) | HTML Full-text | XML Full-text
Abstract
In patients with Parkinson’s disease (PD), hyperactivated inflammation in the brain, particularly microglial hyperactivation in the substantia nigra (SN), is reported to be one of the triggers for the delayed loss of dopaminergic neurons and sequential motor functional impairments. We previously reported that
[...] Read more.
In patients with Parkinson’s disease (PD), hyperactivated inflammation in the brain, particularly microglial hyperactivation in the substantia nigra (SN), is reported to be one of the triggers for the delayed loss of dopaminergic neurons and sequential motor functional impairments. We previously reported that (1) auraptene (AUR), a natural prenyloxycoumain, suppressed inflammatory responses including the hyperactivation of microglia in the ischemic brain and inflamed brain, thereby inhibiting neuronal cell death; (2) 7-isopentenyloxycoumarin (7-IP), another natural prenyloxycoumain, exerted anti-inflammatory and neuroprotective effects against excitotoxicity; and (3) 4′-geranyloxyferulic acid (GOFA), a natural prenyloxycinnamic acid, also exerted anti-inflammatory effects. In the present study, using an intranigral lipopolysaccharide (LPS)-induced PD-like mouse model, we investigated whether AUR, 7-IP, and GOFA suppress microglial activation and protect against dopaminergic neuronal cell death in the SN. We successfully showed that these prenyloxyphenylpropanoids exhibited these prospective abilities, suggesting the potential of these compounds as neuroprotective agents for patients with PD. Full article
Figures

Figure 1

Open AccessReview Essential Roles of Natural Products and Gaseous Mediators on Neuronal Cell Death or Survival
Int. J. Mol. Sci. 2016, 17(10), 1652; doi:10.3390/ijms17101652
Received: 31 August 2016 / Revised: 21 September 2016 / Accepted: 22 September 2016 / Published: 29 September 2016
PDF Full-text (2287 KB) | HTML Full-text | XML Full-text
Abstract
Although precise cellular and molecular mechanisms underlying neurodegeneration still remain enigmatic, key factors associated with degenerative disorders, such as glutamate toxicity and oxidative stress, have been recently identified. Accordingly, there has been growing interest in examining the effects of exogenous and endogenous molecules
[...] Read more.
Although precise cellular and molecular mechanisms underlying neurodegeneration still remain enigmatic, key factors associated with degenerative disorders, such as glutamate toxicity and oxidative stress, have been recently identified. Accordingly, there has been growing interest in examining the effects of exogenous and endogenous molecules on neuroprotection and neurodegeneration. In this paper, we review recent studies on neuroprotective and/or neurodegenerative effects of natural products, such as caffeic acid and chlorogenic acid, and gaseous mediators, including hydrogen sulfide and nitric oxide. Furthermore, possible molecular mechanisms of these molecules in relation to glutamate signals are discussed. Insight into the pathophysiological role of these molecules will make progress in our understanding of molecular mechanisms underlying neurodegenerative diseases, and is expected to lead to potential therapeutic approaches. Full article
Figures

Figure 1

Open AccessReview Protein Kinases and Parkinson’s Disease
Int. J. Mol. Sci. 2016, 17(9), 1585; doi:10.3390/ijms17091585
Received: 30 May 2016 / Revised: 9 August 2016 / Accepted: 1 September 2016 / Published: 20 September 2016
Cited by 3 | PDF Full-text (597 KB) | HTML Full-text | XML Full-text
Abstract
Currently, the lack of new drug candidates for the treatment of major neurological disorders such as Parkinson’s disease has intensified the search for drugs that can be repurposed or repositioned for such treatment. Typically, the search focuses on drugs that have been approved
[...] Read more.
Currently, the lack of new drug candidates for the treatment of major neurological disorders such as Parkinson’s disease has intensified the search for drugs that can be repurposed or repositioned for such treatment. Typically, the search focuses on drugs that have been approved and are used clinically for other indications. Kinase inhibitors represent a family of popular molecules for the treatment and prevention of various cancers, and have emerged as strong candidates for such repurposing because numerous serine/threonine and tyrosine kinases have been implicated in the pathobiology of Parkinson’s disease. This review focuses on various kinase-dependent pathways associated with the expression of Parkinson’s disease pathology, and evaluates how inhibitors of these pathways might play a major role as effective therapeutic molecules. Full article
Figures

Figure 1

Open AccessReview The Role of Cyclo(His-Pro) in Neurodegeneration
Int. J. Mol. Sci. 2016, 17(8), 1332; doi:10.3390/ijms17081332
Received: 4 July 2016 / Revised: 4 August 2016 / Accepted: 8 August 2016 / Published: 12 August 2016
PDF Full-text (1139 KB) | HTML Full-text | XML Full-text
Abstract
Neurodegenerative diseases may have distinct genetic etiologies and pathological manifestations, yet share common cellular mechanisms underpinning neuronal damage and dysfunction. These cellular mechanisms include excitotoxicity, calcium dysregulation, oxidative damage, ER stress and neuroinflammation. Recent data have identified a dual role in these events
[...] Read more.
Neurodegenerative diseases may have distinct genetic etiologies and pathological manifestations, yet share common cellular mechanisms underpinning neuronal damage and dysfunction. These cellular mechanisms include excitotoxicity, calcium dysregulation, oxidative damage, ER stress and neuroinflammation. Recent data have identified a dual role in these events for glial cells, such as microglia and astrocytes, which are able both to induce and to protect against damage induced by diverse stresses. Cyclo(His-Pro), a cyclic dipeptide derived from the hydrolytic removal of the amino-terminal pyroglutamic acid residue of the hypothalamic thyrotropin-releasing hormone, may be important in regulating the nature of the glial cell contribution. Cyclo(His-Pro) is ubiquitous in the central nervous system and is a key substrate of organic cation transporters, which are strongly linked to neuroprotection. The cyclic dipeptide can also cross the brain-blood-barrier and, once in the brain, can affect diverse inflammatory and stress responses by modifying the Nrf2-NF-κB signaling axis. For these reasons, cyclo(His-Pro) has striking potential for therapeutic application by both parenteral and oral administration routes and may represent an important new tool in counteracting neuroinflammation-based degenerative pathologies. In this review, we discuss the chemistry and biology of cyclo(His-Pro), how it may interact with the biological mechanisms driving neurodegenerative disease, such as amyotrophic lateral sclerosis, and thereby act to preserve or restore neuronal function. Full article
Figures

Open AccessArticle Cytoprotection against Hypoxic and/or MPP+ Injury: Effect of δ–Opioid Receptor Activation on Caspase 3
Int. J. Mol. Sci. 2016, 17(8), 1179; doi:10.3390/ijms17081179
Received: 5 June 2016 / Revised: 13 July 2016 / Accepted: 13 July 2016 / Published: 9 August 2016
PDF Full-text (2772 KB) | HTML Full-text | XML Full-text
Abstract
The pathological changes of Parkinson’s disease (PD) are, at least partially, associated with the dysregulation of PTEN-induced putative kinase 1 (PINK1) and caspase 3. Since hypoxic and neurotoxic insults are underlying causes of PD, and since δ-opioid receptor (DOR) is neuroprotective against hypoxic/ischemic
[...] Read more.
The pathological changes of Parkinson’s disease (PD) are, at least partially, associated with the dysregulation of PTEN-induced putative kinase 1 (PINK1) and caspase 3. Since hypoxic and neurotoxic insults are underlying causes of PD, and since δ-opioid receptor (DOR) is neuroprotective against hypoxic/ischemic insults, we sought to determine whether DOR activation could protect the cells from damage induced by hypoxia and/or MPP+ by regulating PINK1 and caspase 3 expressions. We exposed PC12 cells to either severe hypoxia (0.5%–1% O2) for 24–48 h or to MPP+ at different concentrations (0.5, 1, 2 mM) and then detected the levels of PINK1 and cleaved caspase 3. Both hypoxia and MPP+ reduced cell viability, progressively suppressed the expression of PINK1 and increased the cleaved caspase 3. DOR activation using UFP-512, effectively protected the cells from hypoxia and/or MPP+ induced injury, reversed the reduction in PINK1 protein and significantly attenuated the increase in the cleaved caspase 3. On the other hand, the application of DOR antagonist, naltrindole, greatly decreased cell viability and increased cleaved caspase 3. These findings suggest that DOR is cytoprotective against both hypoxia and MPP+ through the regulation of PINK1 and caspase 3 pathways. Full article
Figures

Figure 1

Open AccessArticle Neuroprotective Effect of Salvianolic Acids against Cerebral Ischemia/Reperfusion Injury
Int. J. Mol. Sci. 2016, 17(7), 1190; doi:10.3390/ijms17071190
Received: 9 May 2016 / Revised: 18 July 2016 / Accepted: 18 July 2016 / Published: 22 July 2016
Cited by 1 | PDF Full-text (1738 KB) | HTML Full-text | XML Full-text
Abstract
This study investigated the neuroprotective effect of salvianolic acids (SA) against ischemia/reperfusion (I/R) injury, and explored whether the neuroprotection was dependent on mitochondrial connexin43 (mtCx43) via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. In vitro, we measured astrocyte apoptosis, mitochondrial membrane potential, and
[...] Read more.
This study investigated the neuroprotective effect of salvianolic acids (SA) against ischemia/reperfusion (I/R) injury, and explored whether the neuroprotection was dependent on mitochondrial connexin43 (mtCx43) via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. In vitro, we measured astrocyte apoptosis, mitochondrial membrane potential, and also evaluated the morphology of astrocyte mitochondria with transmission electron microscopy. In vivo, we determined the cerebral infarction volume and measured superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. Additionally, mtCx43, p-mtCx43, AKT, and p-AKT levels were determined. In vitro, we found that I/R injury induced apoptosis, decreased cell mitochondrial membrane potential (MMP), and damaged mitochondrial morphology in astrocytes. In vivo, we found that I/R injury resulted in a large cerebral infarction, decreased SOD activity, and increased MDA expression. Additionally, I/R injury reduced both the p-mtCx43/mtCx43 and p-AKT/AKT ratios. We reported that both in vivo and in vitro, SA ameliorated the detrimental outcomes of the I/R. Interestingly, co-administering an inhibitor of the PI3K/AKT pathway blunted the effects of SA. SA represents a potential treatment option for cerebral infarction by up-regulating mtCx43 through the PI3K/AKT pathway. Full article
Open AccessArticle Neuroprotective Effects of Inhibiting Fyn S-Nitrosylation on Cerebral Ischemia/Reperfusion-Induced Damage to CA1 Hippocampal Neurons
Int. J. Mol. Sci. 2016, 17(7), 1100; doi:10.3390/ijms17071100
Received: 1 May 2016 / Revised: 10 June 2016 / Accepted: 4 July 2016 / Published: 12 July 2016
PDF Full-text (3253 KB) | HTML Full-text | XML Full-text
Abstract
Nitric oxide (NO) can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the
[...] Read more.
Nitric oxide (NO) can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the effects of Fyn S-nitrosylation on brain damage. In vitro, Fyn could be S-nitrosylated by S-nitrosoglutathione (GSNO, an exogenous NO donor), and in vivo, endogenous NO synthesized by NO synthases (NOS) could enhance Fyn S-nitrosylation. Application of GSNO, 7-nitroindazole (7-NI, an inhibitor of neuronal NOS) and hydrogen maleate (MK-801, the N-methyl-d-aspartate receptor (NMDAR) antagonist) could decrease the S-nitrosylation and phosphorylation of Fyn induced by cerebral ischemia/reperfusion (I/R). Cresyl violet staining validated that these compounds exerted neuroprotective effects against the cerebral I/R-induced damage to hippocampal CA1 neurons. Taken together, in this study, we demonstrated that Fyn can be S-nitrosylated both in vitro and in vivo and that inhibiting S-nitrosylation can exert neuroprotective effects against cerebral I/R injury, potentially via NMDAR-mediated mechanisms. These findings may lead to a new field of inquiry to investigate the underlying pathogenesis of stroke and the development of novel treatment strategies. Full article
Figures

Open AccessArticle Neuroprotective Effect of Puerarin on Glutamate-Induced Cytotoxicity in Differentiated Y-79 Cells via Inhibition of ROS Generation and Ca2+ Influx
Int. J. Mol. Sci. 2016, 17(7), 1109; doi:10.3390/ijms17071109
Received: 11 May 2016 / Revised: 29 June 2016 / Accepted: 7 July 2016 / Published: 11 July 2016
Cited by 3 | PDF Full-text (3070 KB) | HTML Full-text | XML Full-text
Abstract
Glutamate toxicity is estimated to be the key cause of photoreceptor degeneration in the pathogenesis of retinal degenerative diseases. Oxidative stress and Ca2+ influx induced by glutamate are responsible for the apoptosis process of photoreceptor degeneration. Puerarin, a primary component of Kudzu
[...] Read more.
Glutamate toxicity is estimated to be the key cause of photoreceptor degeneration in the pathogenesis of retinal degenerative diseases. Oxidative stress and Ca2+ influx induced by glutamate are responsible for the apoptosis process of photoreceptor degeneration. Puerarin, a primary component of Kudzu root, has been widely used in the clinical treatment of retinal degenerative diseases in China for decades; however, the detailed molecular mechanism underlying this effect remains unclear. In this study, the neuroprotective effect of puerarin against glutamate-induced cytotoxicity in the differentiated Y-79 cells was first investigated through cytotoxicity assay. Then the molecular mechanism of this effect regarding anti-oxidative stress and Ca2+ hemostasis was further explored with indirect immunofluorescence, flow cytometric analysis and western blot analysis. Our study showed that glutamate induced cell viability loss, excessive reactive oxygen species (ROS) generation, calcium overload and up-regulated cell apoptosis in differentiated Y-79 cells, which effect was significantly attenuated with the pre-treatment of puerarin in a dose-dependent manner. Furthermore, our data indicated that the neuroprotective effect of puerarin was potentially mediated through the inhibition of glutamate-induced activation of mitochondrial-dependent signaling pathway and calmodulin-dependent protein kinase II (CaMKII)-dependent apoptosis signal-regulating kinase 1(ASK-1)/c-Jun N-terminal kinase (JNK)/p38 signaling pathway. The present study supports the notion that puerarin may be a promising neuroprotective agent in the prevention of retinal degenerative diseases. Full article
Open AccessArticle Novel NSAID-Derived Drugs for the Potential Treatment of Alzheimer’s Disease
Int. J. Mol. Sci. 2016, 17(7), 1035; doi:10.3390/ijms17071035
Received: 12 April 2016 / Revised: 13 June 2016 / Accepted: 20 June 2016 / Published: 30 June 2016
Cited by 4 | PDF Full-text (1374 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been suggested for the potential treatment of neurodegenerative diseases, such as Alzheimer’s disease (AD). Prolonged use of NSAIDs, however, produces gastrointestinal (GI) toxicity. To overcome this serious limitation, the aim of this study was to develop novel NSAID-derived
[...] Read more.
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been suggested for the potential treatment of neurodegenerative diseases, such as Alzheimer’s disease (AD). Prolonged use of NSAIDs, however, produces gastrointestinal (GI) toxicity. To overcome this serious limitation, the aim of this study was to develop novel NSAID-derived drug conjugates (Anti-inflammatory-Lipoyl derivatives, AL49) that preserve the beneficial effects of NSAIDS without causing GI problems. As such, we conjugated selected well-known NSAIDs, such as (S)-naproxen and (R)-flurbiprofen, with (R)-α-lipoic acid (LA) through alkylene diamine linkers. The selection of the antioxidant LA was based on the proposed role of oxidative stress in the development and/or progression of AD. Our exploratory studies revealed that AL7 containing the diaminoethylene linker between (R)-flurbiprofen and LA had the most favorable chemical and in vitro enzymatic stability profiles among the synthesized compounds. Upon pretreatment, this compound exhibited excellent antioxidant activity in phorbol 12-miristate 13-acetate (PMA)-stimulated U937 cells (lymphoblast lung from human) and Aβ(25–35)-treated THP-1 cells (leukemic monocytes). Furthermore, AL7 also modulated the expression of COX-2, IL-1β and TNF-α in these cell lines, suggesting anti-inflammatory activity. Taken together, AL7 has emerged as a potential lead worthy of further characterization and testing in suitable in vivo models of AD. Full article
Figures

Open AccessArticle Echinacoside Inhibits Glutamate Release by Suppressing Voltage-Dependent Ca2+ Entry and Protein Kinase C in Rat Cerebrocortical Nerve Terminals
Int. J. Mol. Sci. 2016, 17(7), 1006; doi:10.3390/ijms17071006
Received: 10 May 2016 / Revised: 16 June 2016 / Accepted: 20 June 2016 / Published: 24 June 2016
Cited by 1 | PDF Full-text (1465 KB) | HTML Full-text | XML Full-text
Abstract
The glutamatergic system may be involved in the effects of neuroprotectant therapies. Echinacoside, a phenylethanoid glycoside extracted from the medicinal Chinese herb Herba Cistanche, has neuroprotective effects. This study investigated the effects of echinacoside on 4-aminopyridine-evoked glutamate release in rat cerebrocortical nerve
[...] Read more.
The glutamatergic system may be involved in the effects of neuroprotectant therapies. Echinacoside, a phenylethanoid glycoside extracted from the medicinal Chinese herb Herba Cistanche, has neuroprotective effects. This study investigated the effects of echinacoside on 4-aminopyridine-evoked glutamate release in rat cerebrocortical nerve terminals (synaptosomes). Echinacoside inhibited Ca2+-dependent, but not Ca2+-independent, 4-aminopyridine-evoked glutamate release in a concentration-dependent manner. Echinacoside also reduced the 4-aminopyridine-evoked increase in cytoplasmic free Ca2+ concentration but did not alter the synaptosomal membrane potential. The inhibitory effect of echinacoside on 4-aminopyridine-evoked glutamate release was prevented by ω-conotoxin MVIIC, a wide-spectrum blocker of Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but was insensitive to the intracellular Ca2+ release-inhibitors dantrolene and 7-chloro-5-(2-chloropheny)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP37157). Furthermore, echinacoside decreased the 4-aminopyridine-induced phosphorylation of protein kinase C, and protein kinase C inhibitors abolished the effect of echinacoside on glutamate release. According to these results, we suggest that the inhibitory effect of echinacoside on evoked glutamate release is associated with reduced voltage-dependent Ca2+ entry and subsequent suppression of protein kinase C activity. Full article
Figures

Open AccessReview Neuroprotective and Therapeutic Strategies against Parkinson’s Disease: Recent Perspectives
Int. J. Mol. Sci. 2016, 17(6), 904; doi:10.3390/ijms17060904
Received: 25 April 2016 / Revised: 27 May 2016 / Accepted: 30 May 2016 / Published: 8 June 2016
Cited by 10 | PDF Full-text (334 KB) | HTML Full-text | XML Full-text
Abstract
Parkinsonism is a progressive motor disease that affects 1.5 million Americans and is the second most common neurodegenerative disease after Alzheimer’s. Typical neuropathological features of Parkinson’s disease (PD) include degeneration of dopaminergic neurons located in the pars compacta of the substantia nigra that
[...] Read more.
Parkinsonism is a progressive motor disease that affects 1.5 million Americans and is the second most common neurodegenerative disease after Alzheimer’s. Typical neuropathological features of Parkinson’s disease (PD) include degeneration of dopaminergic neurons located in the pars compacta of the substantia nigra that project to the striatum (nigro-striatal pathway) and depositions of cytoplasmic fibrillary inclusions (Lewy bodies) which contain ubiquitin and α-synuclein. The cardinal motor signs of PD are tremors, rigidity, slow movement (bradykinesia), poor balance, and difficulty in walking (Parkinsonian gait). In addition to motor symptoms, non-motor symptoms that include autonomic and psychiatric as well as cognitive impairments are pressing issues that need to be addressed. Several different mechanisms play an important role in generation of Lewy bodies; endoplasmic reticulum (ER) stress induced unfolded proteins, neuroinflammation and eventual loss of dopaminergic neurons in the substantia nigra of mid brain in PD. Moreover, these diverse processes that result in PD make modeling of the disease and evaluation of therapeutics against this devastating disease difficult. Here, we will discuss diverse mechanisms that are involved in PD, neuroprotective and therapeutic strategies currently in clinical trial or in preclinical stages, and impart views about strategies that are promising to mitigate PD pathology. Full article
Figures

Open AccessArticle Mechanism of Mitochondrial Connexin43′s Protection of the Neurovascular Unit under Acute Cerebral Ischemia-Reperfusion Injury
Int. J. Mol. Sci. 2016, 17(5), 679; doi:10.3390/ijms17050679
Received: 4 April 2016 / Revised: 27 April 2016 / Accepted: 29 April 2016 / Published: 5 May 2016
Cited by 2 | PDF Full-text (3457 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We observed mitochondrial connexin43 (mtCx43) expression under cerebral ischemia-reperfusion (I/R) injury, analyzed its regulation, and explored its protective mechanisms. Wistar rats were divided into groups based on injections received before middle cerebral artery occlusion (MCAO). Cerebral infarction volume was detected by 2,3,5-triphenyltetrazolim chloride
[...] Read more.
We observed mitochondrial connexin43 (mtCx43) expression under cerebral ischemia-reperfusion (I/R) injury, analyzed its regulation, and explored its protective mechanisms. Wistar rats were divided into groups based on injections received before middle cerebral artery occlusion (MCAO). Cerebral infarction volume was detected by 2,3,5-triphenyltetrazolim chloride staining, and cell apoptosis was observed by transferase dUTP nick end labeling. We used transmission electron microscopy to observe mitochondrial morphology and determined superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. MtCx43, p-mtCx43, protein kinase C (PKC), and p-PKC expression were detected by Western blot. Compared with those in the IR group, cerebral infarction volumes in the carbenoxolone (CBX) and diazoxide (DZX) groups were obviously smaller, and the apoptosis indices were down-regulated. Mitochondrial morphology was damaged after I/R, especially in the IR and 5-hydroxydecanoic acid (5-HD) groups. Similarly, decreased SOD activity and increased MDA were observed after MCAO; CBX, DZX, and phorbol-12-myristate-13-acetate (PMA) reduced mitochondrial functional injury. Expression of mtCx43 and p-mtCx43 and the p-Cx43/Cx43 ratio were significantly lower in the IR group than in the sham group. These abnormalities were ameliorated by CBX, DZX, and PMA. MtCx43 may protect the neurovascular unit from acute cerebral IR injury via PKC activation induced by mitoKATP channel agonists. Full article
Figures

Open AccessArticle Anti-Inflammatory and Cytoprotective Effects of TMC-256C1 from Marine-Derived Fungus Aspergillus sp. SF-6354 via up-Regulation of Heme Oxygenase-1 in Murine Hippocampal and Microglial Cell Lines
Int. J. Mol. Sci. 2016, 17(4), 529; doi:10.3390/ijms17040529
Received: 29 February 2016 / Revised: 18 March 2016 / Accepted: 25 March 2016 / Published: 8 April 2016
PDF Full-text (3840 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In the course of searching for bioactive secondary metabolites from marine fungi, TMC-256C1 was isolated from an ethyl acetate extract of the marine-derived fungus Aspergillus sp. SF6354. TMC-256C1 displayed anti-neuroinflammatory effect in BV2 microglial cells induced by lipopolysaccharides (LPS) as well as neuroprotective
[...] Read more.
In the course of searching for bioactive secondary metabolites from marine fungi, TMC-256C1 was isolated from an ethyl acetate extract of the marine-derived fungus Aspergillus sp. SF6354. TMC-256C1 displayed anti-neuroinflammatory effect in BV2 microglial cells induced by lipopolysaccharides (LPS) as well as neuroprotective effect against glutamate-stimulated neurotoxicity in mouse hippocampal HT22 cells. TMC-256C1 was shown to develop a cellular resistance to oxidative damage caused by glutamate-induced cytotoxicity and reactive oxygen species (ROS) generation in HT22 cells, and suppress the inflammation process in LPS-stimulated BV2 cells. Furthermore, the neuroprotective and anti-neuroinflammatory activities of TMC-256C1 were associated with upregulated expression of heme oxygenase (HO)-1 and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in HT22 and BV2 cells. We also found that TMC-256C1 activated p38 mitogen-activated protein kinases (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways in HT22 and BV2 cells. These results demonstrated that TMC-256C1 activates HO-1 protein expression, probably by increasing nuclear Nrf2 levels via the activation of the p38 MAPK and PI3K/Akt pathways. Full article
Figures

Open AccessReview Aneurysmal Subarachnoid Hemorrhage and Neuroinflammation: A Comprehensive Review
Int. J. Mol. Sci. 2016, 17(4), 497; doi:10.3390/ijms17040497
Received: 18 January 2016 / Revised: 8 March 2016 / Accepted: 28 March 2016 / Published: 2 April 2016
Cited by 13 | PDF Full-text (836 KB) | HTML Full-text | XML Full-text
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) can lead to devastating outcomes including vasospasm, cognitive decline, and even death. Currently, treatment options are limited for this potentially life threatening injury. Recent evidence suggests that neuroinflammation plays a critical role in injury expansion and brain damage. Red
[...] Read more.
Aneurysmal subarachnoid hemorrhage (SAH) can lead to devastating outcomes including vasospasm, cognitive decline, and even death. Currently, treatment options are limited for this potentially life threatening injury. Recent evidence suggests that neuroinflammation plays a critical role in injury expansion and brain damage. Red blood cell breakdown products can lead to the release of inflammatory cytokines that trigger vasospasm and tissue injury. Preclinical models have been used successfully to improve understanding about neuroinflammation following aneurysmal rupture. The focus of this review is to provide an overview of how neuroinflammation relates to secondary outcomes such as vasospasm after aneurysmal rupture and to critically discuss pharmaceutical agents that warrant further investigation for the treatment of subarachnoid hemorrhage. We provide a concise overview of the neuroinflammatory pathways that are upregulated following aneurysmal rupture and how these pathways correlate to long-term outcomes. Treatment of aneurysm rupture is limited and few pharmaceutical drugs are available. Through improved understanding of biochemical mechanisms of injury, novel treatment solutions are being developed that target neuroinflammation. In the final sections of this review, we highlight a few of these novel treatment approaches and emphasize why targeting neuroinflammation following aneurysmal subarachnoid hemorrhage may improve patient care. We encourage ongoing research into the pathophysiology of aneurysmal subarachnoid hemorrhage, especially in regards to neuroinflammatory cascades and the translation to randomized clinical trials. Full article
Figures

Open AccessArticle Exploring Erythropoietin and G-CSF Combination Therapy in Chronic Stroke Patients
Int. J. Mol. Sci. 2016, 17(4), 463; doi:10.3390/ijms17040463
Received: 31 December 2015 / Revised: 10 March 2016 / Accepted: 23 March 2016 / Published: 30 March 2016
Cited by 3 | PDF Full-text (774 KB) | HTML Full-text | XML Full-text
Abstract
Erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF) are known to have neuroprotective actions. Based on previous reports showing the synergistic effects of EPO+G-CSF combination therapy in experimental models, we investigated the safety of EPO+G-CSF combination therapy in patients with chronic stroke. In a
[...] Read more.
Erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF) are known to have neuroprotective actions. Based on previous reports showing the synergistic effects of EPO+G-CSF combination therapy in experimental models, we investigated the safety of EPO+G-CSF combination therapy in patients with chronic stroke. In a pilot study, 3 patients were treated with EPO and G-CSF for 5 consecutive days, with follow-up on day 30. In an exploratory double-blind study, 6 patients were allocated to treatment with either EPO+G-CSF or placebo. Treatment was applied once a day for 5 days per month over 3 months. Participants were followed up for 6 months. To substantiate safety, vital signs, adverse events, and hematological values were measured on days 0, 5, and 30 in each cycle and on day 180. Functional outcomes were determined on day 0 and 180. In the laboratory measurements, EPO+G-CSF combination therapy significantly elevated erythropoietin, CD34+ hematopoietic stem cells, white blood cells, and neutrophils on day 5 of each cycle. There were no observations of serious adverse events. In the functional outcomes, the grip power of the dominant hand was increased in the EPO+G-CSF treatment group. In conclusion, this exploratory study suggests a novel strategy of EPO+G-CSF combination therapy for stroke patients. Full article
Figures

Open AccessArticle Long-Term Treatment with Citicoline Prevents Cognitive Decline and Predicts a Better Quality of Life after a First Ischemic Stroke
Int. J. Mol. Sci. 2016, 17(3), 390; doi:10.3390/ijms17030390
Received: 21 January 2016 / Revised: 4 March 2016 / Accepted: 7 March 2016 / Published: 16 March 2016
Cited by 2 | PDF Full-text (912 KB) | HTML Full-text | XML Full-text
Abstract
Stroke, as the leading cause of physical disability and cognitive impairment, has a very significant impact on patients’ quality of life (QoL). The objective of this study is to know the effect of citicoline treatment in Qol and cognitive performance in the long-term
[...] Read more.
Stroke, as the leading cause of physical disability and cognitive impairment, has a very significant impact on patients’ quality of life (QoL). The objective of this study is to know the effect of citicoline treatment in Qol and cognitive performance in the long-term in patients with a first ischemic stroke. This is an open-label, randomized, parallel study of citicoline vs. usual treatment. All subjects were selected 6 weeks after suffering a first ischemic stroke and randomized into parallel arms. Neuropsychological evaluation was performed at 1 month, 6 months, 1 year and 2 years after stroke, and QoL was measured using the EuroQoL-5D questionnaire at 2 years. 163 patients were followed during 2 years. The mean age was 67.5 years-old, and 50.9% were women. Age and absence of citicoline treatment were independent predictors of both utility and poor quality of life. Patients with cognitive impairment had a poorer QoL at 2 years (0.55 vs. 0.66 in utility, p = 0.015). Citicoline treatment improved significantly cognitive status during follow-up (p = 0.005). In conclusion, treatment with long-term citicoline is associated with a better QoL and improves cognitive status 2 years after a first ischemic stroke. Full article
Figures

Open AccessArticle Geranylgeraniol and Neurological Impairment: Involvement of Apoptosis and Mitochondrial Morphology
Int. J. Mol. Sci. 2016, 17(3), 365; doi:10.3390/ijms17030365
Received: 30 December 2015 / Revised: 2 March 2016 / Accepted: 3 March 2016 / Published: 11 March 2016
Cited by 3 | PDF Full-text (939 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Deregulation of the cholesterol pathway is an anomaly observed in human diseases, many of which have in common neurological involvement and unknown pathogenesis. In this study we have used Mevalonate Kinase Deficiency (MKD) as a disease-model in order to investigate the link between
[...] Read more.
Deregulation of the cholesterol pathway is an anomaly observed in human diseases, many of which have in common neurological involvement and unknown pathogenesis. In this study we have used Mevalonate Kinase Deficiency (MKD) as a disease-model in order to investigate the link between the deregulation of the mevalonate pathway and the consequent neurodegeneration. The blocking of the mevalonate pathway in a neuronal cell line (Daoy), using statins or mevalonate, induced an increase in the expression of the inflammasome gene (NLRP3) and programmed cell death related to mitochondrial dysfunction. The morphology of the mitochondria changed, clearly showing the damage induced by oxidative stress and the decreased membrane potential associated with the alterations of the mitochondrial function. The co-administration of geranylgeraniol (GGOH) reduced the inflammatory marker and the damage of the mitochondria, maintaining its shape and components. Our data allow us to speculate about the mechanism by which isoprenoids are able to rescue the inflammatory marker in neuronal cells, independently from the block of the mevalonate pathway, and about the fact that cell death is mitochondria-related. Full article
Figures

Open AccessReview Chemical Conditioning as an Approach to Ischemic Stroke Tolerance: Mitochondria as the Target
Int. J. Mol. Sci. 2016, 17(3), 351; doi:10.3390/ijms17030351
Received: 11 February 2016 / Revised: 26 February 2016 / Accepted: 4 March 2016 / Published: 8 March 2016
Cited by 6 | PDF Full-text (1926 KB) | HTML Full-text | XML Full-text
Abstract
It is well established that the brain can be prepared to resist or tolerate ischemic stroke injury, and mitochondrion is a major target for this tolerance. The preparation of ischemic stroke tolerance can be achieved by three major approaches: ischemic conditioning, hypoxic conditioning
[...] Read more.
It is well established that the brain can be prepared to resist or tolerate ischemic stroke injury, and mitochondrion is a major target for this tolerance. The preparation of ischemic stroke tolerance can be achieved by three major approaches: ischemic conditioning, hypoxic conditioning and chemical conditioning. In each conditioning approach, there are often two strategies that can be used to achieve the conditioning effects, namely preconditioning (Pre-C) and postconditioning (Post-C). In this review, we focus on chemical conditioning of mitochondrial proteins as targets for neuroprotection against ischemic stroke injury. Mitochondrial targets covered include complexes I, II, IV, the ATP-sensitive potassium channel (mitoKATP), adenine dinucleotide translocase (ANT) and the mitochondrial permeability transition pore (mPTP). While numerous mitochondrial proteins have not been evaluated in the context of chemical conditioning and ischemic stroke tolerance, the paradigms and approaches reviewed in this article should provide general guidelines on testing those mitochondrial components that have not been investigated. A deep understanding of mitochondria as the target of chemical conditioning for ischemic stroke tolerance should provide valuable insights into strategies for fighting ischemic stroke, a leading cause of death in the world. Full article
Figures

Open AccessArticle GLP-2 Attenuates LPS-Induced Inflammation in BV-2 Cells by Inhibiting ERK1/2, JNK1/2 and NF-κB Signaling Pathways
Int. J. Mol. Sci. 2016, 17(2), 190; doi:10.3390/ijms17020190
Received: 18 December 2015 / Revised: 22 January 2016 / Accepted: 28 January 2016 / Published: 4 February 2016
Cited by 7 | PDF Full-text (2964 KB) | HTML Full-text | XML Full-text
Abstract
The pathogenesis of Parkinson’s disease (PD) often involves the over-activation of microglia. Over-activated microglia could produce several inflammatory mediators, which trigger excessive inflammation and ultimately cause dopaminergic neuron damage. Anti-inflammatory effects of glucagon-like peptide-2 (GLP-2) in the periphery have been shown. Nonetheless, it
[...] Read more.
The pathogenesis of Parkinson’s disease (PD) often involves the over-activation of microglia. Over-activated microglia could produce several inflammatory mediators, which trigger excessive inflammation and ultimately cause dopaminergic neuron damage. Anti-inflammatory effects of glucagon-like peptide-2 (GLP-2) in the periphery have been shown. Nonetheless, it has not been illustrated in the brain. Thus, in this study, we aimed to understand the role of GLP-2 in microglia activation and to elucidate the underlying mechanisms. BV-2 cells were pretreated with GLP-2 and then stimulated by lipopolysaccharide (LPS). Cells were assessed for the responses of pro-inflammatory enzymes (iNOS and COX-2) and pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α); the related signaling pathways were evaluated by Western blotting. The rescue effect of GLP-2 on microglia-mediated neurotoxicity was also examined. The results showed that GLP-2 significantly reduced LPS-induced production of inducible nitric oxide synthase (iNOS), cyclooxygenase-s (COX-2), IL-1β, IL-6 and TNF-α. Blocking of Gαs by NF449 resulted in a loss of this anti-inflammatory effect in BV-2 cells. Analyses in signaling pathways demonstrated that GLP-2 reduced LPS-induced phosphorylation of ERK1/2, JNK1/2 and p65, while no effect was observed on p38 phosphorylation. In addition, GLP-2 could suppress microglia-mediated neurotoxicity. All results imply that GLP-2 inhibits LPS-induced microglia activation by collectively regulating ERK1/2, JNK1/2 and p65. Full article
Open AccessArticle Ginsenoside-Rd Promotes Neurite Outgrowth of PC12 Cells through MAPK/ERK- and PI3K/AKT-Dependent Pathways
Int. J. Mol. Sci. 2016, 17(2), 177; doi:10.3390/ijms17020177
Received: 28 December 2015 / Revised: 12 January 2016 / Accepted: 22 January 2016 / Published: 29 January 2016
Cited by 6 | PDF Full-text (7281 KB) | HTML Full-text | XML Full-text
Abstract
Panax ginseng is a famous herbal medicine widely used in Asia. Ginsenosides have been identified as the principle active ingredients for Panax ginseng’s biological activity, among which ginsenoside Rd (Rd) attracts extensive attention for its obvious neuroprotective activities. Here we investigated the
[...] Read more.
Panax ginseng is a famous herbal medicine widely used in Asia. Ginsenosides have been identified as the principle active ingredients for Panax ginseng’s biological activity, among which ginsenoside Rd (Rd) attracts extensive attention for its obvious neuroprotective activities. Here we investigated the effect of Rd on neurite outgrowth, a crucial process associated with neuronal repair. PC12 cells, which respond to nerve growth factor (NGF) and serve as a model for neuronal cells, were treated with different concentrations of Rd, and then their neurite outgrowth was evaluated. Our results showed that 10 μM Rd significantly increased the percentages of long neurite- and branching neurite-bearing cells, compared with respective controls. The length of the longest neurites and the total length of neurites in Rd-treated PC12 cells were much longer than that of respective controls. We also showed that Rd activated ERK1/2 and AKT but not PKC signalings, and inhibition of ERK1/2 by PD98059 or/and AKT by LY294002 effectively attenuated Rd-induced neurite outgrowth. Moreover, Rd upregulated the expression of GAP-43, a neuron-specific protein involved in neurite outgrowth, while PD98059 or/and LY294002 decreased Rd-induced increased GAP-43 expression. Taken together, our results provided the first evidence that Rd may promote the neurite outgrowth of PC12 cells by upregulating GAP-43 expression via ERK- and ARK-dependent signaling pathways. Full article
Figures

Open AccessArticle Mitochondria Related Pathway Is Essential for Polysaccharides Purified from Sparassis crispa Mediated Neuro-Protection against Glutamate-Induced Toxicity in Differentiated PC12 Cells
Int. J. Mol. Sci. 2016, 17(2), 133; doi:10.3390/ijms17020133
Received: 30 October 2015 / Revised: 31 December 2015 / Accepted: 12 January 2016 / Published: 26 January 2016
Cited by 6 | PDF Full-text (6955 KB) | HTML Full-text | XML Full-text
Abstract
The present study aims to explore the neuro-protective effects of purified Sparassis crispa polysaccharides against l-glutamic acid (l-Glu)-induced differentiated PC12 (DPC12) cell damages and its underlying mechanisms. The Sparassis crispa water extract was purified by a DEAE-52 cellulose anion exchange
[...] Read more.
The present study aims to explore the neuro-protective effects of purified Sparassis crispa polysaccharides against l-glutamic acid (l-Glu)-induced differentiated PC12 (DPC12) cell damages and its underlying mechanisms. The Sparassis crispa water extract was purified by a DEAE-52 cellulose anion exchange column and a Sepharose G-100 column. A fraction with a molecular weight of 75 kDa and a diameter of 88.9 nm, entitled SCWEA, was obtained. SCWEA was identified with a triple helix with (1→3)-linked Rha in the backbone, and (1→2) linkages and (1→6) linkages in the side bone. Our results indicated that the pre-treatment of DPC12 cells with SCWEA prior to l-Glu exposure effectively reversed the reduction on cell viability (by 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay) and reduced l-Glu-induced apoptosis (by Hoechst staining). SCWEA decreased the accumulation of intracellular reactive oxygen species, blocked Ca2+ influx and prevented depolarization of the mitochondrial membrane potential in DPC12 cells. Furthermore, SCWEA normalized expression of anti-apoptotic proteins in l-Glu-explored DPC12 cells. These results suggested that SCWEA protects against l-Glu-induced neuronal apoptosis in DPC12 cells and may be a promising candidate for treatment against neurodegenerative disease. Full article
Open AccessArticle Genipin Derivatives Protect RGC-5 from Sodium Nitroprusside-Induced Nitrosative Stress
Int. J. Mol. Sci. 2016, 17(1), 117; doi:10.3390/ijms17010117
Received: 20 October 2015 / Revised: 26 November 2015 / Accepted: 8 January 2016 / Published: 19 January 2016
PDF Full-text (3037 KB) | HTML Full-text | XML Full-text
Abstract
CHR20 and CHR21 are a pair of stable diastereoisomers derived from genipin. These stereoisomers are activators of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS). In the rat retinal ganglion (RGC-5) cell model these compounds are non-toxic. Treatment of RGC-5
[...] Read more.
CHR20 and CHR21 are a pair of stable diastereoisomers derived from genipin. These stereoisomers are activators of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS). In the rat retinal ganglion (RGC-5) cell model these compounds are non-toxic. Treatment of RGC-5 with 750 μM of sodium nitroprusside (SNP) produces nitrosative stress. Both genipin derivatives, however, protect these cells against SNP-induced apoptic cell death, although CHR21 is significantly more potent than CHR20 in this regard. With Western blotting we showed that the observed neuroprotection is primarily due to the activation of protein kinase B (Akt)/eNOS and extracellular signal-regulated kinase (ERK1/2) signaling pathways. Therefore, LY294002 (a phosphatidylinositol 3-kinase (PI3K) inhibitor) or PD98059 (a MAPK-activating enzyme inhibitor) abrogated the protective effects of CHR20 and CHR21. Altogether, our results show that in our experimental setup neuroprotection by the diasteromeric pair is mediated through the PI3K/Akt/eNOS and ERK1/2 signaling pathways. Further studies are needed to establish the potential of these compounds to prevent ntric oxide (NO)-induced toxicity commonly seen in many neurodegenerative diseases. Full article
Figures

Open AccessArticle In Vitro and in Vivo Neuroprotective Effects of Walnut (Juglandis Semen) in Models of Parkinson’s Disease
Int. J. Mol. Sci. 2016, 17(1), 108; doi:10.3390/ijms17010108
Received: 1 October 2015 / Revised: 31 December 2015 / Accepted: 5 January 2016 / Published: 15 January 2016
PDF Full-text (2172 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamines including dopamine (DA). MAO expression is elevated in Parkinson’s disease (PD). An increase in MAO activity is closely related to age, and this may induce neuronal degeneration in the brain due to oxidative stress.
[...] Read more.
Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamines including dopamine (DA). MAO expression is elevated in Parkinson’s disease (PD). An increase in MAO activity is closely related to age, and this may induce neuronal degeneration in the brain due to oxidative stress. MAO (and particularly monoamine oxidase B (MAO-B)) participates in the generation of reactive oxygen species (ROS), such as hydrogen peroxide that are toxic to dopaminergic cells and their surroundings. Although the polyphenol-rich aqueous walnut extract (JSE; an extract of Juglandis Semen) has been shown to have various beneficial bioactivities, no study has been dedicated to see if JSE is capable to protect dopaminergic neurons against neurotoxic insults in models of PD. In the present study we investigated the neuroprotective potential of JSE against 1-methyl-4-phenylpyridinium (MPP+)- or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicities in primary mesencephalic cells and in a mouse model of PD. Here we show that JSE treatment suppressed ROS and nitric oxide productions triggered by MPP+ in primary mesencephalic cells. JSE also inhibited depletion of striatal DA and its metabolites in vivo that resulted in significant improvement in PD-like movement impairment. Altogether our results indicate that JSE has neuroprotective effects in PD models and may have potential for the prevention or treatment of PD. Full article
Figures

Open AccessReview Retinal Cell Degeneration in Animal Models
Int. J. Mol. Sci. 2016, 17(1), 110; doi:10.3390/ijms17010110
Received: 23 October 2015 / Revised: 25 December 2015 / Accepted: 8 January 2016 / Published: 15 January 2016
Cited by 4 | PDF Full-text (1207 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient
[...] Read more.
The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage. Full article
Figures

Open AccessReview The Importance of Thrombin in Cerebral Injury and Disease
Int. J. Mol. Sci. 2016, 17(1), 84; doi:10.3390/ijms17010084
Received: 23 November 2015 / Revised: 28 December 2015 / Accepted: 30 December 2015 / Published: 11 January 2016
Cited by 12 | PDF Full-text (1493 KB) | HTML Full-text | XML Full-text
Abstract
There is increasing evidence that prothrombin and its active derivative thrombin are expressed locally in the central nervous system. So far, little is known about the physiological and pathophysiological functions exerted by thrombin in the human brain. Extra-hepatic prothrombin expression has been identified
[...] Read more.
There is increasing evidence that prothrombin and its active derivative thrombin are expressed locally in the central nervous system. So far, little is known about the physiological and pathophysiological functions exerted by thrombin in the human brain. Extra-hepatic prothrombin expression has been identified in neuronal cells and astrocytes via mRNA measurement. The actual amount of brain derived prothrombin is expected to be 1% or less compared to that in the liver. The role in brain injury depends upon its concentration, as higher amounts cause neuroinflammation and apoptosis, while lower concentrations might even be cytoprotective. Its involvement in numerous diseases like Alzheimer’s, multiple sclerosis, cerebral ischemia and haemorrhage is becoming increasingly clear. This review focuses on elucidation of the cerebral thrombin expression, local generation and its role in injury and disease of the central nervous system. Full article
Figures

2015

Jump to: 2017, 2016, 2014, 2013, 2012, 2011, 2010, 2009

Open AccessArticle The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation
Int. J. Mol. Sci. 2016, 17(1), 49; doi:10.3390/ijms17010049
Received: 11 November 2015 / Revised: 23 December 2015 / Accepted: 23 December 2015 / Published: 31 December 2015
Cited by 5 | PDF Full-text (2388 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Well known for its anti-oxidative and anti-inflammation properties, curcumin is a polyphenol found in the rhizome of Curcuma longa. In this study, we evaluated the effects of curcumin on behavioral recovery, glial scar formation, tissue preservation, axonal sprouting, and inflammation after spinal
[...] Read more.
Well known for its anti-oxidative and anti-inflammation properties, curcumin is a polyphenol found in the rhizome of Curcuma longa. In this study, we evaluated the effects of curcumin on behavioral recovery, glial scar formation, tissue preservation, axonal sprouting, and inflammation after spinal cord injury (SCI) in male Wistar rats. The rats were randomized into two groups following a balloon compression injury at the level of T9–T10 of the spinal cord, namely vehicle- or curcumin-treated. Curcumin was applied locally on the surface of the injured spinal cord immediately following injury and then given intraperitoneally daily; the control rats were treated with vehicle in the same manner. Curcumin treatment improved behavioral recovery within the first week following SCI as evidenced by improved Basso, Beattie, and Bresnahan (BBB) test and plantar scores, representing locomotor and sensory performance, respectively. Furthermore, curcumin treatment decreased glial scar formation by decreasing the levels of MIP1α, IL-2, and RANTES production and by decreasing NF-κB activity. These results, therefore, demonstrate that curcumin has a profound anti-inflammatory therapeutic potential in the treatment of spinal cord injury, especially when given immediately after the injury. Full article
Figures

Open AccessArticle Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures
Int. J. Mol. Sci. 2016, 17(1), 25; doi:10.3390/ijms17010025
Received: 1 July 2015 / Revised: 13 November 2015 / Accepted: 18 December 2015 / Published: 28 December 2015
Cited by 5 | PDF Full-text (3199 KB) | HTML Full-text | XML Full-text
Abstract
Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson’s disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures
[...] Read more.
Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson’s disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL) 1 h prior to LPS (50 ng/mL) treatment. LPS induced dopaminergic and non-dopaminergic neuronal loss in VM cultures, VM neuron-enriched cultures, and neuron-microglia co-cultures, but not in neuron-astrocyte co-cultures. IL-10 reduced LPS-induced neuronal loss particularly in single VM neuron cultures. Pro-inflammatory mediators (TNF-α, IL-1β, inducible nitric oxide synthase and cyclooxygenase-2) were upregulated in both neuron-microglia and neuron-astrocyte co-cultures by LPS. In contrast, neurotrophic factors (brain-derived neurotrophic factor, insulin-like growth factor-1 or glial cell-derived neurotrophic factor) were downregulated in neuron-microglia co-cultures, but upregulated in neuron-astrocyte co-cultures by LPS. IL-10 reduced both the increase in production of the pro-inflammatory mediators and the decrease in production of the neurotrophic factors induced by LPS. These results suggest that astrocytes can balance LPS neurotoxicity by releasing more neurotrophic factors and that IL-10 exerts neuroprotective property by an extensive action including direct on neurons and indirect via inhibiting microglial activation. Full article
Open AccessCase Report Brain Recovery after a Plane Crash: Treatment with Growth Hormone (GH) and Neurorehabilitation: A Case Report
Int. J. Mol. Sci. 2015, 16(12), 30470-30482; doi:10.3390/ijms161226244
Received: 28 November 2015 / Revised: 12 December 2015 / Accepted: 16 December 2015 / Published: 21 December 2015
Cited by 6 | PDF Full-text (2011 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this study is to describe the results obtained after growth hormone (GH) treatment and neurorehabilitation in a young man that suffered a very grave traumatic brain injury (TBI) after a plane crash. Methods: Fifteen months after the accident, the patient
[...] Read more.
The aim of this study is to describe the results obtained after growth hormone (GH) treatment and neurorehabilitation in a young man that suffered a very grave traumatic brain injury (TBI) after a plane crash. Methods: Fifteen months after the accident, the patient was treated with GH, 1 mg/day, at three-month intervals, followed by one-month resting, together with daily neurorehabilitation. Blood analysis at admission showed that no pituitary deficits existed. At admission, the patient presented: spastic tetraplegia, dysarthria, dysphagia, very severe cognitive deficits and joint deformities. Computerized tomography scanners (CT-Scans) revealed the practical loss of the right brain hemisphere and important injuries in the left one. Clinical and blood analysis assessments were performed every three months for three years. Feet surgery was needed because of irreducible equinovarus. Results: Clinical and kinesitherapy assessments revealed a prompt improvement in cognitive functions, dysarthria and dysphagia disappeared and three years later the patient was able to live a practically normal life, walking alone and coming back to his studies. No adverse effects were observed during and after GH administration. Conclusions: These results, together with previous results from our group, indicate that GH treatment is safe and effective for helping neurorehabilitation in TBI patients, once the acute phase is resolved, regardless of whether or not they have GH-deficiency (GHD). Full article
Open AccessArticle Synthesis and Evaluation of Neuroprotective Selenoflavanones
Int. J. Mol. Sci. 2015, 16(12), 29574-29582; doi:10.3390/ijms161226188
Received: 1 November 2015 / Revised: 30 November 2015 / Accepted: 4 December 2015 / Published: 10 December 2015
Cited by 1 | PDF Full-text (1239 KB) | HTML Full-text | XML Full-text
Abstract
The physicochemical properties and antioxidant activity of a molecule could be improved by the substitution of an oxygen atom in a molecule with selenium. We synthesized selenoflavanones and flavanones to evaluate their neuroprotective effects. The selenoflavanones showed improved physicochemical properties, suggestive of the
[...] Read more.
The physicochemical properties and antioxidant activity of a molecule could be improved by the substitution of an oxygen atom in a molecule with selenium. We synthesized selenoflavanones and flavanones to evaluate their neuroprotective effects. The selenoflavanones showed improved physicochemical properties, suggestive of the ability to pass through the blood-brain barrier (BBB). They showed in vitro antioxidant effects against hydrogen peroxide, and did not result in severe cytotoxicity. Moreover, infarction volumes in a transient ischemia mouse model were significantly reduced by the selenoflavanone treatments. Full article
Figures

Open AccessArticle Myricetin Attenuates Depressant-Like Behavior in Mice Subjected to Repeated Restraint Stress
Int. J. Mol. Sci. 2015, 16(12), 28377-28385; doi:10.3390/ijms161226102
Received: 15 October 2015 / Revised: 18 November 2015 / Accepted: 20 November 2015 / Published: 30 November 2015
Cited by 5 | PDF Full-text (1060 KB) | HTML Full-text | XML Full-text
Abstract
Increasing evidence has shown that oxidative stress may be implicated in chronic stress-induced depression. Several flavonoids with anti-oxidative effects have been proved to be anti-depressive. Myricetin is a well-defined flavonoid with the anti-oxidative, anti-inflammatory, anti-apoptotic, and neuroprotective properties. The aim of the present
[...] Read more.
Increasing evidence has shown that oxidative stress may be implicated in chronic stress-induced depression. Several flavonoids with anti-oxidative effects have been proved to be anti-depressive. Myricetin is a well-defined flavonoid with the anti-oxidative, anti-inflammatory, anti-apoptotic, and neuroprotective properties. The aim of the present study is to investigate the possible effects of chronic administration of myricetin on depressant-like behaviors in mice subjected to repeated restraint (4 h/day) for 21 days. Our results showed that myricetin administration specifically reduced the immobility time in mice exposed to chronic stress, as tested in both forced swimming test and tail suspension test. Myricetin treatment improved activities of glutathione peroxidase (GSH-PX) in the hippocampus of stressed mice. In addition, myricetin treatment decreased plasma corticosterone levels of those mice subjected to repeated restraint stress. The effects of myricetin on the brain-derived neurotrophic factor (BDNF) levels in hippocampus were also investigated. The results revealed that myricetin normalized the decreased BDNF levels in mice subjected to repeated restraint stress. These findings provided more evidence that chronic administration of myricetin improves helpless behaviors. The protective effects of myricetin might be partially mediated by an influence on BDNF levels and might be attributed to myricetin-mediated anti-oxidative stress in the hippocampus. Full article
Open AccessReview Cytidine 5′-Diphosphocholine (Citicoline) in Glaucoma: Rationale of Its Use, Current Evidence and Future Perspectives
Int. J. Mol. Sci. 2015, 16(12), 28401-28417; doi:10.3390/ijms161226099
Received: 31 October 2015 / Revised: 17 November 2015 / Accepted: 19 November 2015 / Published: 30 November 2015
Cited by 3 | PDF Full-text (561 KB) | HTML Full-text | XML Full-text
Abstract
Cytidine 5′-diphosphocholine or citicoline is an endogenous compound that acts in the biosynthetic pathway of phospholipids of cell membranes, particularly phosphatidylcholine, and it is able to increase neurotrasmitters levels in the central nervous system. Citicoline has shown positive effects in Parkinson’s disease and
[...] Read more.
Cytidine 5′-diphosphocholine or citicoline is an endogenous compound that acts in the biosynthetic pathway of phospholipids of cell membranes, particularly phosphatidylcholine, and it is able to increase neurotrasmitters levels in the central nervous system. Citicoline has shown positive effects in Parkinson’s disease and Alzheimer’s disease, as well as in amblyopia. Glaucoma is a neurodegenerative disease currently considered a disease involving ocular and visual brain structures. Neuroprotection has been proposed as a valid therapeutic option for those patients progressing despite a well-controlled intraocular pressure, the main risk factor for the progression of the disease. The aim of this review is to critically summarize the current evidence about the effect of citicoline in glaucoma. Full article
Figures

Open AccessArticle Transplantation of Human Neural Stem Cells in a Parkinsonian Model Exerts Neuroprotection via Regulation of the Host Microenvironment
Int. J. Mol. Sci. 2015, 16(11), 26473-26492; doi:10.3390/ijms161125966
Received: 1 August 2015 / Revised: 18 October 2015 / Accepted: 22 October 2015 / Published: 5 November 2015
Cited by 8 | PDF Full-text (14316 KB) | HTML Full-text | XML Full-text
Abstract
Parkinson’s disease (PD) is characterized by a progressive loss of dopaminergic neurons and consequent dopamine (DA) deficit, and current treatment still remains a challenge. Although neural stem cells (NSCs) have been evaluated as appealing graft sources, mechanisms underlying the beneficial phenomena are not
[...] Read more.
Parkinson’s disease (PD) is characterized by a progressive loss of dopaminergic neurons and consequent dopamine (DA) deficit, and current treatment still remains a challenge. Although neural stem cells (NSCs) have been evaluated as appealing graft sources, mechanisms underlying the beneficial phenomena are not well understood. Here, we investigate whether human NSCs (hNSCs) transplantation could provide neuroprotection against DA depletion by recruiting endogenous cells to establish a favorable niche. Adult mice subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were transplanted with hNSCs or vehicle into the striatum. Behavioral and histological analyses demonstrated significant neurorescue response observed in hNSCs-treated animals compared with the control mice. In transplanted animals, grafted cells survived, proliferated, and migrated within the astrocytic scaffold. Notably, more local astrocytes underwent de-differentiation, acquiring the properties of NSCs or neural precursor cells (NPCs) in mice given hNSCs. Additionally, we also detected significantly higher expression of host-derived growth factors in hNSCs-transplanted mice compared with the control animals, together with inhibition of local microglia and proinflammatory cytokines. Overall, our results indicate that hNSCs transplantation exerts neuroprotection in MPTP-insulted mice via regulating the host niche. Harnessing synergistic interaction between the grafts and host cells may help optimize cell-based therapies for PD. Full article
Figures

Open AccessArticle Roles of Sestrin2 and Ribosomal Protein S6 in Transient Global Ischemia-Induced Hippocampal Neuronal Injury
Int. J. Mol. Sci. 2015, 16(11), 26406-26416; doi:10.3390/ijms161125963
Received: 16 September 2015 / Revised: 23 October 2015 / Accepted: 23 October 2015 / Published: 4 November 2015
Cited by 4 | PDF Full-text (3642 KB) | HTML Full-text | XML Full-text
Abstract
Recent studies suggested that sestrin2 is a crucial modulator for the production of reactive oxygen species (ROS). In addition, sestrin2 may also regulate ribosomal protein S6 (RpS6), a molecule important for protein synthesis, through the effect of mammalian target of rapamycin (mTOR) complex
[...] Read more.
Recent studies suggested that sestrin2 is a crucial modulator for the production of reactive oxygen species (ROS). In addition, sestrin2 may also regulate ribosomal protein S6 (RpS6), a molecule important for protein synthesis, through the effect of mammalian target of rapamycin (mTOR) complex that is pivotal for longevity. However, the roles of sestrin2 in cerebral ischemia, in which oxidative stress is one of the major pathogenic mechanisms, are still less understood. In this study, we hypothesized that sestrin2 may protect hippocampal CA1 neurons against transient global ischemia (TGI)-induced apoptosis by regulating RpS6 phosphorylation in rats. We found that sestrin2 expression was progressively increased in the hippocampal CA1 subfield 1–48 h after TGI, reaching the maximal level at 24 h, and declined thereafter. Further, an increased extent of RpS6 phosphorylation, but not total RpS6 protein level, was observed in the hippocampal CA1 subfield after TGI. The sestrin2 siRNA, which substantially blocked the expression of TGI-induced sestrin2, also abolished RpS6 phosphorylation. TGI with reperfusion may induce oxidative stress with the resultant formation of 8-hydroxy-deoxyguanosine (8-OHdG). We found that sestrin2 siRNA further augmented the formation of 8-OHdG induced by TGI with reperfusion for 4 h. Consistently, sestrin2 siRNA also enhanced apoptosis induced by TGI with reperfusion for 48 h based on the analysis of DNA fragmentation by agarose gel electrophoresis, DNA fragmentation sandwich ELISA, and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Together these findings indicated that TGI-induced sestrin2 expression contributed to RpS6 phosphorylation and neuroprotection against ischemic injury in the hippocampal CA1 subfield. Full article
Open AccessReview Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism
Int. J. Mol. Sci. 2015, 16(11), 25959-25981; doi:10.3390/ijms161125939
Received: 9 June 2015 / Revised: 27 September 2015 / Accepted: 16 October 2015 / Published: 29 October 2015
Cited by 11 | PDF Full-text (1920 KB) | HTML Full-text | XML Full-text
Abstract
Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to
[...] Read more.
Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation. Full article
Figures

Open AccessReview The Potential of Adaptive Design in Animal Studies
Int. J. Mol. Sci. 2015, 16(10), 24048-24058; doi:10.3390/ijms161024048
Received: 1 September 2015 / Revised: 23 September 2015 / Accepted: 27 September 2015 / Published: 12 October 2015
Cited by 1 | PDF Full-text (638 KB) | HTML Full-text | XML Full-text
Abstract
Clinical trials are the backbone of medical research, and are often the last step in the development of new therapies for use in patients. Prior to human testing, however, preclinical studies using animal subjects are usually performed in order to provide initial data
[...] Read more.
Clinical trials are the backbone of medical research, and are often the last step in the development of new therapies for use in patients. Prior to human testing, however, preclinical studies using animal subjects are usually performed in order to provide initial data on the safety and effectiveness of prospective treatments. These studies can be costly and time consuming, and may also raise concerns about the ethical treatment of animals when potentially harmful procedures are involved. Adaptive design is a process by which the methods used in a study may be altered while it is being conducted in response to preliminary data or other new information. Adaptive design has been shown to be useful in reducing the time and costs associated with clinical trials, and may provide similar benefits in preclinical animal studies. The purpose of this review is to summarize various aspects of adaptive design and evaluate its potential for use in preclinical research. Full article
Open AccessArticle A Novel Ligustrazine Derivative T-VA Prevents Neurotoxicity in Differentiated PC12 Cells and Protects the Brain against Ischemia Injury in MCAO Rats
Int. J. Mol. Sci. 2015, 16(9), 21759-21774; doi:10.3390/ijms160921759
Received: 18 June 2015 / Revised: 24 August 2015 / Accepted: 31 August 2015 / Published: 9 September 2015
Cited by 6 | PDF Full-text (6938 KB) | HTML Full-text | XML Full-text
Abstract
Broad-spectrum drugs appear to be more promising for the treatment of acute ischemic stroke. In our previous work, a new ligustrazine derivative (3,5,6-trimethylpyrazin-2-yl) methyl 3-methoxy-4-[(3,5,6-trimethylpyrazin-2-yl)methoxy]benzoate (T-VA) showed neuroprotective effect on injured PC12 cells (EC50 = 4.249 µM). In the current study, we
[...] Read more.
Broad-spectrum drugs appear to be more promising for the treatment of acute ischemic stroke. In our previous work, a new ligustrazine derivative (3,5,6-trimethylpyrazin-2-yl) methyl 3-methoxy-4-[(3,5,6-trimethylpyrazin-2-yl)methoxy]benzoate (T-VA) showed neuroprotective effect on injured PC12 cells (EC50 = 4.249 µM). In the current study, we show that this beneficial effect was due to the modulation of nuclear transcription factor-κB/p65 (NF-κB/p65) and cyclooxygenase-2 (COX-2) expressions. We also show that T-VA exhibited neuroprotective effect in a rat model of ischemic stroke with concomitant improvement of motor functions. We propose that the protective effect observed in vivo is owing to increased vascular endothelial growth factor (VEGF) expression, decreased oxidative stress, and up-regulation of Ca2+–Mg2+ ATP enzyme activity. Altogether, our results warrant further studies on the utility of T-VA for the potential treatment of ischemic brain injuries, such as stroke. Full article
Open AccessReview Evaluation and Management of Neurogenic Bladder: What Is New in China?
Int. J. Mol. Sci. 2015, 16(8), 18580-18600; doi:10.3390/ijms160818580
Received: 18 June 2015 / Revised: 23 July 2015 / Accepted: 23 July 2015 / Published: 10 August 2015
Cited by 4 | PDF Full-text (2111 KB) | HTML Full-text | XML Full-text
Abstract
Neurogenic bladder (NB) or neurogenic lower urinary tract dysfunction (NLUTD), a dysfunction of the urinary bladder and urethra due to disease of the central nervous system or peripheral nerves, is a major global medical and social problem. Numerous nervous system abnormalities, such as:
[...] Read more.
Neurogenic bladder (NB) or neurogenic lower urinary tract dysfunction (NLUTD), a dysfunction of the urinary bladder and urethra due to disease of the central nervous system or peripheral nerves, is a major global medical and social problem. Numerous nervous system abnormalities, such as: stroke, Alzheimer’s and Parkinson’s diseases, traumatic spinal cord injury, spinal cord tumors, congenital spina bifida, and diabetes, can cause NB/NLUTD. There are two major types of bladder control problems associated with NB/NLUTD: the bladder becomes either overactive or underactive depending on the nature, level, and extent of nerve damage. This review specifically focuses on the diagnosis and management of NB/NLUTD in China as well as on recent efforts to treat this disease. Full article
Figures

Open AccessReview Changing the Face of Kynurenines and Neurotoxicity: Therapeutic Considerations
Int. J. Mol. Sci. 2015, 16(5), 9772-9793; doi:10.3390/ijms16059772
Received: 20 January 2015 / Revised: 9 April 2015 / Accepted: 13 April 2015 / Published: 29 April 2015
Cited by 14 | PDF Full-text (1139 KB) | HTML Full-text | XML Full-text
Abstract
Kynurenines are the products of tryptophan metabolism. Among them, kynurenine and kynurenic acid are generally thought to have neuroprotective properties, while 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid are considered neurotoxic. They participate in immunoregulation and inflammation and possess pro- or anti-excitotoxic properties, and
[...] Read more.
Kynurenines are the products of tryptophan metabolism. Among them, kynurenine and kynurenic acid are generally thought to have neuroprotective properties, while 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid are considered neurotoxic. They participate in immunoregulation and inflammation and possess pro- or anti-excitotoxic properties, and their involvement in oxidative stress has also been suggested. Consequently, it is not surprising that kynurenines have been closely related to neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis and multiple sclerosis. More information about the less-known metabolites, picolinic and cinnabarinic acid, evaluation of new receptorial targets, such as aryl-hydrocarbon receptors, and intensive research on the field of the immunomodulatory function of kynurenines delineated the high importance of this pathway in general homeostasis. Emerging knowledge about the kynurenine pathway provides new target points for the development of therapeutical solutions against neurodegenerative diseases. Full article

2014

Jump to: 2017, 2016, 2015, 2013, 2012, 2011, 2010, 2009

Open AccessArticle Motor, Visual and Emotional Deficits in Mice after Closed-Head Mild Traumatic Brain Injury Are Alleviated by the Novel CB2 Inverse Agonist SMM-189
Int. J. Mol. Sci. 2015, 16(1), 758-787; doi:10.3390/ijms16010758
Received: 29 October 2014 / Accepted: 22 December 2014 / Published: 31 December 2014
Cited by 11 | PDF Full-text (6385 KB) | HTML Full-text | XML Full-text
Abstract
We have developed a focal blast model of closed-head mild traumatic brain injury (TBI) in mice. As true for individuals that have experienced mild TBI, mice subjected to 50–60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation,
[...] Read more.
We have developed a focal blast model of closed-head mild traumatic brain injury (TBI) in mice. As true for individuals that have experienced mild TBI, mice subjected to 50–60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation, but no overt neuron loss. Because microglial activation can worsen brain damage after a concussive event and because microglia can be modulated by their cannabinoid type 2 receptors (CB2), we evaluated the effectiveness of the novel CB2 receptor inverse agonist SMM-189 in altering microglial activation and mitigating deficits after mild TBI. In vitro analysis indicated that SMM-189 converted human microglia from the pro-inflammatory M1 phenotype to the pro-healing M2 phenotype. Studies in mice showed that daily administration of SMM-189 for two weeks beginning shortly after blast greatly reduced the motor, visual, and emotional deficits otherwise evident after 50–60 psi blasts, and prevented brain injury that may contribute to these deficits. Our results suggest that treatment with the CB2 inverse agonist SMM-189 after a mild TBI event can reduce its adverse consequences by beneficially modulating microglial activation. These findings recommend further evaluation of CB2 inverse agonists as a novel therapeutic approach for treating mild TBI. Full article
Figures

Open AccessArticle Effects of Different Sera Conditions on Olfactory Ensheathing Cells in Vitro
Int. J. Mol. Sci. 2015, 16(1), 420-438; doi:10.3390/ijms16010420
Received: 24 June 2014 / Accepted: 17 December 2014 / Published: 26 December 2014
Cited by 2 | PDF Full-text (4155 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Transplantation of olfactory ensheathing cells (OEC) is a promising therapy in spinal cord injury (SCI) treatment. However, the therapeutic efficacy of this method is unstable due to unknown reasons. Considering the alterations in the culture environment that occur during OEC preparation for transplantation,
[...] Read more.
Transplantation of olfactory ensheathing cells (OEC) is a promising therapy in spinal cord injury (SCI) treatment. However, the therapeutic efficacy of this method is unstable due to unknown reasons. Considering the alterations in the culture environment that occur during OEC preparation for transplantation, we hypothesize that these changes may cause variations in the curative effects of this method. In this study, we compared OEC cultured in medium containing different types and concentrations of serum. After purification and passage, the OEC were cultured for 7 days in different media containing 5%, 10%, 15% or 20% fetal bovine serum (FBS) or rat serum (RS), or the cells were cultured in FBS-containing medium first, followed by medium containing RS. In another group, the OEC were first cultured in 10% FBS for 3 days and then cultured with rat spinal cord explants with 10% RS for another 4 days. An MTT assay and P75 neurotrophin receptor immunofluorescence staining were used to examine cell viability and OEC numbers, respectively. The concentration of neurotrophin-3 (NT-3), which is secreted by OEC into the culture supernatant, was detected using the enzyme-linked immunosorbent assay (ELISA). RT-PCR was applied to investigate the NT-3 gene expression in OEC according to different groups. Compared with FBS, RS reduced OEC proliferation in relation to OEC counts (χ2 = 166.279, df = 1, p < 0.01), the optical density (OD) value in the MTT assay (χ2 = 34.730, df = 1, p < 0.01), and NT-3 concentration in the supernatant (χ2 = 242.997, df = 1, p < 0.01). OEC cultured with spinal cord explants secreted less NT-3 than OEC cultured alone (F = 9.611, df = 5.139, p < 0.01). Meanwhile, the order of application of different sera was not influential. There was statistically significant difference in NT-3 gene expression among different groups when the serum concentration was 15% (χ2 = 64.347, df = 1, p < 0.01). In conclusion, different serum conditions may be responsible for the variations in OEC proliferation and function. Full article
Figures

Open AccessArticle TGF-β1 Protection against Aβ1–42-Induced Neuroinflammation and Neurodegeneration in Rats
Int. J. Mol. Sci. 2014, 15(12), 22092-22108; doi:10.3390/ijms151222092
Received: 15 August 2014 / Revised: 31 October 2014 / Accepted: 14 November 2014 / Published: 1 December 2014
Cited by 15 | PDF Full-text (2366 KB) | HTML Full-text | XML Full-text
Abstract
Transforming growth factor (TGF)-β1, a cytokine that can be expressed in the brain, is a key regulator of the brain’s responses to injury and inflammation. Alzheimer’s disease (AD), the most common neurodegenerative disorder, involves inflammatory processes in the brain in addition to the
[...] Read more.
Transforming growth factor (TGF)-β1, a cytokine that can be expressed in the brain, is a key regulator of the brain’s responses to injury and inflammation. Alzheimer’s disease (AD), the most common neurodegenerative disorder, involves inflammatory processes in the brain in addition to the hallmarks, amyloid-β (Aβ) plaques and neurofibrillary tangles. Recently, we have shown that T-helper (Th) 17 cells, a subpopulation of CD4+ T-cells with high proinflammation, also participate in the brain inflammatory process of AD. However, it is poorly known whether TGF-β1 ameliorates the lymphocyte-mediated neuroinflammation and, thereby, alleviates neurodegeneration in AD. Herein, we administered TGF-β1 via the intracerebroventricle (ICV) in AD model rats, by Aβ1–42 injection in both sides of the hippocampus, to show the neuroprotection of TGF-β1. The TGF-β1 administration after the Aβ1–42 injection ameliorated cognitive deficit and neuronal loss and apoptosis, reduced amyloid precursor protein (APP) expression, elevated protein phosphatase (PP)2A expression, attenuated glial activation and alleviated the imbalance of the pro-inflammatory/anti-inflammatory responses of T-lymphocytes, compared to the Aβ1–42 injection alone. These findings demonstrate that TGF-β1 provides protection against AD neurodegeneration and suggest that the TGF-β1 neuroprotection is implemented by the alleviation of glial and T-cell-mediated neuroinflammation. Full article
Open AccessArticle Sterols from Mytilidae Show Anti-Aging and Neuroprotective Effects via Anti-Oxidative Activity
Int. J. Mol. Sci. 2014, 15(12), 21660-21673; doi:10.3390/ijms151221660
Received: 31 July 2014 / Revised: 23 October 2014 / Accepted: 3 November 2014 / Published: 25 November 2014
Cited by 6 | PDF Full-text (5241 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
For screening anti-aging samples from marine natural products, K6001 yeast strain was employed as a bioassay system. The active mussel extract was separated to give an active sterol fraction (SF). SF was further purified, and four sterol compounds were obtained. Their structures were
[...] Read more.
For screening anti-aging samples from marine natural products, K6001 yeast strain was employed as a bioassay system. The active mussel extract was separated to give an active sterol fraction (SF). SF was further purified, and four sterol compounds were obtained. Their structures were determined to be cholesterol (CHOL), brassicasterol, crinosterol, and 24-methylenecholesterol. All compounds showed similar anti-aging activity. To understand the action mechanism involved, anti-oxidative experiments, reactive oxygen species (ROS) assays, and malondialdehyde (MDA) tests were performed on the most abundant compound, CHOL. Results indicated that treatment with CHOL increases the survival rate of yeast under oxidative stress and decreases ROS and MDA levels. In addition, mutations of uth1, skn7, sod1, and sod2, which feature a K6001 background, were employed and the lifespans of the mutations were not affected by CHOL. These results demonstrate that CHOL exerts anti-aging effects via anti-oxidative stress. Based on the connection between neuroprotection and anti-aging, neuroprotective experiments were performed in PC12 cells. Paraquat was used to induce oxidative stress and the results showed that the CHOL and SF protect the PC12 cells from the injury induced by paraquat. In addition, these substance exhibited nerve growth factor (NGF) mimic activities again confirmed their neuroprotective function. Full article
Figures

Open AccessArticle Dexamethasone Improves Heat Stroke-Induced Multiorgan Dysfunction and Damage in Rats
Int. J. Mol. Sci. 2014, 15(11), 21299-21313; doi:10.3390/ijms151121299
Received: 21 July 2014 / Revised: 6 November 2014 / Accepted: 10 November 2014 / Published: 18 November 2014
Cited by 2 | PDF Full-text (3635 KB) | HTML Full-text | XML Full-text
Abstract
Dexamethasone (DXM) is known as an immunosuppressive drug used for inflammation control. In the present study, we attempted to examine whether DXM administration could attenuate the hypercoagulable state and the overproduction of pro-inflammatory cytokines, improve arterial hypotension, cerebral ischemia and damage, and vital
[...] Read more.
Dexamethasone (DXM) is known as an immunosuppressive drug used for inflammation control. In the present study, we attempted to examine whether DXM administration could attenuate the hypercoagulable state and the overproduction of pro-inflammatory cytokines, improve arterial hypotension, cerebral ischemia and damage, and vital organ failure in a rat model of heat stroke. The results indicated that all the rats suffering from heat stroke showed high serum levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), accompanied with increased prothrombin time, activated partial thromboplastin time and D-D dimer, and decreased protein C. During the induction period of heat stroke, plasma levels of blood urea nitrogen (BUN), creatinine, glutamic oxaloacetic transaminase (SGOT), glutamic pyruvic transaminase (SGPT), and alkaline phosphatase (ALP), were consistently increased. High striatal levels of glycerol, glutamate, and lactate/pyruvate were simultaneously detected. On the contrary, the mean arterial pressure, plasma levels of interleukin-10 (IL-10), and local cerebral blood flow at the striatum were all decreased. Importantly, intravenous administration of DXM substantially ameliorated the circulatory dysfunction, systematic inflammation, hypercoagulable state, cerebral ischemia and damage during the induction period of heat stroke. These findings demonstrated that DXM may be an alternative therapy that can ameliorate heat stroke victims by attenuating activated coagulation, systemic inflammation, and vital organ ischemia/injury during heat stroke. Full article
Open AccessArticle Chrysin Protects against Focal Cerebral Ischemia/Reperfusion Injury in Mice through Attenuation of Oxidative Stress and Inflammation
Int. J. Mol. Sci. 2014, 15(11), 20913-20926; doi:10.3390/ijms151120913
Received: 30 July 2014 / Revised: 19 October 2014 / Accepted: 3 November 2014 / Published: 13 November 2014
Cited by 22 | PDF Full-text (829 KB) | HTML Full-text | XML Full-text
Abstract
Inflammation and oxidative stress play an important part in the pathogenesis of focal cerebral ischemia/reperfusion (I/R) injury, resulting in neuronal death. The signaling pathways involved and the underlying mechanisms of these events are not fully understood. Chrysin, which is a naturally occurring flavonoid,
[...] Read more.
Inflammation and oxidative stress play an important part in the pathogenesis of focal cerebral ischemia/reperfusion (I/R) injury, resulting in neuronal death. The signaling pathways involved and the underlying mechanisms of these events are not fully understood. Chrysin, which is a naturally occurring flavonoid, exhibits various biological activities. In this study, we investigated the neuroprotective properties of chrysin in a mouse model of middle cerebral artery occlusion (MCAO). To this end, male C57/BL6 mice were pretreated with chrysin once a day for seven days and were then subjected to 1 h of middle cerebral artery occlusion followed by reperfusion for 24 h. Our data show that chrysin successfully decreased neurological deficit scores and infarct volumes, compared with the vehicle group. The increases in glial cell numbers and proinflammatory cytokine secretion usually caused by ischemia/reperfusion were significantly ameliorated by chrysin pretreatment. Moreover, chrysin also inhibited the MCAO-induced up-regulation of nuclear factor-kappa B (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), compared with the vehicle. These results suggest that chrysin could be a potential prophylactic agent for cerebral ischemia/reperfusion (I/R) injury mediated by its anti-inflammatory and anti-oxidative effects. Full article
Open AccessArticle The Effects of NAD+ on Apoptotic Neuronal Death and Mitochondrial Biogenesis and Function after Glutamate Excitotoxicity
Int. J. Mol. Sci. 2014, 15(11), 20449-20468; doi:10.3390/ijms151120449
Received: 25 August 2014 / Accepted: 3 November 2014 / Published: 7 November 2014
Cited by 8 | PDF Full-text (2089 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and
[...] Read more.
NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke. Full article
Open AccessArticle Long-Term Spinal Ventral Root Reimplantation, but not Bone Marrow Mononuclear Cell Treatment, Positively Influences Ultrastructural Synapse Recovery and Motor Axonal Regrowth
Int. J. Mol. Sci. 2014, 15(11), 19535-19551; doi:10.3390/ijms151119535
Received: 17 July 2014 / Revised: 27 September 2014 / Accepted: 11 October 2014 / Published: 28 October 2014
Cited by 6 | PDF Full-text (2663 KB) | HTML Full-text | XML Full-text
Abstract
We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats
[...] Read more.
We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats (seven weeks old) were subjected to unilateral ventral root avulsion (VRA) at L4, L5 and L6 levels and divided into the following groups (n = 5 for each group): Avulsion, sealant reimplanted roots and sealant reimplanted roots plus MC. After four weeks and 12 weeks post-surgery, the lumbar intumescences were processed by transmission electron microscopy, to analyze synaptic inputs to the repaired α motoneurons. Also, the ipsi and contralateral sciatic nerves were processed for axon counting and morphometry. The ultrastructural results indicated a significant preservation of inhibitory pre-synaptic boutons in the groups repaired with sealant alone and associated with MC therapy. Moreover, the average number of axons was higher in treated groups when compared to avulsion only. Complementary to the fiber counting, the morphometric analysis of axonal diameter and “g” ratio demonstrated that root reimplantation improved the motor component recovery. In conclusion, the data herein demonstrate that root reimplantation at the lesion site may be considered a therapeutic approach, following proximal lesions in the interface of central nervous system (CNS) and peripheral nervous system (PNS), and that MC therapy does not further improve the regenerative recovery, up to 12 weeks post lesion. Full article
Open AccessArticle EAAC1 Gene Deletion Increases Neuronal Death and Blood Brain Barrier Disruption after Transient Cerebral Ischemia in Female Mice
Int. J. Mol. Sci. 2014, 15(11), 19444-19457; doi:10.3390/ijms151119444
Received: 4 July 2014 / Revised: 13 October 2014 / Accepted: 16 October 2014 / Published: 27 October 2014
Cited by 5 | PDF Full-text (6056 KB) | HTML Full-text | XML Full-text
Abstract
EAAC1 is important in modulating brain ischemic tolerance. Mice lacking EAAC1 exhibit increased susceptibility to neuronal oxidative stress in mice after transient cerebral ischemia. EAAC1 was first described as a glutamate transporter but later recognized to also function as a cysteine transporter in
[...] Read more.
EAAC1 is important in modulating brain ischemic tolerance. Mice lacking EAAC1 exhibit increased susceptibility to neuronal oxidative stress in mice after transient cerebral ischemia. EAAC1 was first described as a glutamate transporter but later recognized to also function as a cysteine transporter in neurons. EAAC1-mediated transport of cysteine into neurons contributes to neuronal antioxidant function by providing cysteine substrates for glutathione synthesis. Here we evaluated the effects of EAAC1 gene deletion on hippocampal blood vessel disorganization after transient cerebral ischemia. EAAC1−/− female mice subjected to transient cerebral ischemia by common carotid artery occlusion for 30 min exhibited twice as much hippocampal neuronal death compared to wild-type female mice as well as increased reduction of neuronal glutathione, blood–brain barrier (BBB) disruption and vessel disorganization. Pre-treatment of N-acetyl cysteine, a membrane-permeant cysteine prodrug, increased basal glutathione levels in the EAAC1−/− female mice and reduced ischemic neuronal death, BBB disruption and vessel disorganization. These findings suggest that cysteine uptake by EAAC1 is important for neuronal antioxidant function under ischemic conditions. Full article
Open AccessReview Stem Cell Treatment for Alzheimer’s Disease
Int. J. Mol. Sci. 2014, 15(10), 19226-19238; doi:10.3390/ijms151019226
Received: 6 September 2014 / Revised: 9 October 2014 / Accepted: 10 October 2014 / Published: 23 October 2014
Cited by 12 | PDF Full-text (1231 KB) | HTML Full-text | XML Full-text
Abstract
Alzheimer’s disease (AD) is a progressive and neurodegenerative disorder that induces dementia in older people. It was first reported in 1907 by Alois Alzheimer, who characterized the disease as causing memory loss and cognitive impairment. Pathologic characteristics of AD are β-amyloid plaques, neurofibrillary
[...] Read more.
Alzheimer’s disease (AD) is a progressive and neurodegenerative disorder that induces dementia in older people. It was first reported in 1907 by Alois Alzheimer, who characterized the disease as causing memory loss and cognitive impairment. Pathologic characteristics of AD are β-amyloid plaques, neurofibrillary tangles and neurodegeneration. Current therapies only target the relief of symptoms using various drugs, and do not cure the disease. Recently, stem cell therapy has been shown to be a potential approach to various diseases, including neurodegenerative disorders, and in this review, we focus on stem cell therapies for AD. Full article
Open AccessArticle Neuroprotective Role of Liver Growth Factor “LGF” in an Experimental Model of Cerebellar Ataxia
Int. J. Mol. Sci. 2014, 15(10), 19056-19073; doi:10.3390/ijms151019056
Received: 8 August 2014 / Revised: 30 September 2014 / Accepted: 2 October 2014 / Published: 21 October 2014
Cited by 3 | PDF Full-text (8072 KB) | HTML Full-text | XML Full-text
Abstract
Cerebellar ataxias (CA) comprise a heterogeneous group of neurodegenerative diseases characterized by a lack of motor coordination. They are caused by disturbances in the cerebellum and its associated circuitries, so the major therapeutic goal is to correct cerebellar dysfunction. Neurotrophic factors enhance the
[...] Read more.
Cerebellar ataxias (CA) comprise a heterogeneous group of neurodegenerative diseases characterized by a lack of motor coordination. They are caused by disturbances in the cerebellum and its associated circuitries, so the major therapeutic goal is to correct cerebellar dysfunction. Neurotrophic factors enhance the survival and differentiation of selected types of neurons. Liver growth factor (LGF) is a hepatic mitogen that shows biological activity in neuroregenerative therapies. We investigate the potential therapeutic activity of LGF in the 3-acetylpiridine (3-AP) rat model of CA. This model of CA consists in the lesion of the inferior olive-induced by 3-AP (40 mg/kg). Ataxic rats were treated with 5 µg/rat LGF or vehicle during 3 weeks, analyzing: (a) motor coordination by using the rota-rod test; and (b) the immunohistochemical and biochemical evolution of several parameters related with the olivo-cerebellar function. Motor coordination improved in 3-AP-lesioned rats that received LGF treatment. LGF up-regulated NeuN and Bcl-2 protein levels in the brainstem, and increased calbindin expression and the number of neurons receiving calbindin-positive projections in the cerebellum. LGF also reduced extracellular glutamate and GABA concentrations and microglia activation in the cerebellum. In view of these results, we propose LGF as a potential therapeutic agent in cerebellar ataxias. Full article
Figures

Open AccessArticle Investigation of the Neuroprotective Impact of Nimodipine on Neuro2a Cells by Means of a Surgery-Like Stress Model
Int. J. Mol. Sci. 2014, 15(10), 18453-18465; doi:10.3390/ijms151018453
Received: 4 July 2014 / Revised: 9 September 2014 / Accepted: 23 September 2014 / Published: 14 October 2014
Cited by 6 | PDF Full-text (5823 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Nimodipine is well characterized for the management of SAH (subarachnoid hemorrhage) and has been shown to promote a better outcome and less DIND (delayed ischemic neurological deficits). In rat experiments, enhanced axonal sprouting and higher survival of motoneurons was demonstrated after cutting or
[...] Read more.
Nimodipine is well characterized for the management of SAH (subarachnoid hemorrhage) and has been shown to promote a better outcome and less DIND (delayed ischemic neurological deficits). In rat experiments, enhanced axonal sprouting and higher survival of motoneurons was demonstrated after cutting or crushing the facial nerve by nimodipine. These results were confirmed in clinical trials following vestibular Schwannoma surgery. The mechanism of the protective competence of nimodipine is unknown. Therefore, in this study, we established an in vitro model to examine the survival of Neuro2a cells after different stress stimuli occurring during surgery with or without nimodipine. Nimodipine significantly decreased ethanol-induced cell death of cells up to approximately 9% in all tested concentrations. Heat-induced cell death was diminished by approximately 2.5% by nimodipine. Cell death induced by mechanical treatment was reduced up to 15% by nimodipine. Our findings indicate that nimodipine rescues Neuro2a cells faintly, but significantly, from ethanol-, heat- and mechanically-induced cell death to different extents in a dosage-dependent manner. This model seems suitable for further investigation of the molecular mechanisms involved in the neuroprotective signal pathways influenced by nimodipine. Full article
Open AccessReview Argon: Systematic Review on Neuro- and Organoprotective Properties of an “Inert” Gas
Int. J. Mol. Sci. 2014, 15(10), 18175-18196; doi:10.3390/ijms151018175
Received: 14 August 2014 / Revised: 12 September 2014 / Accepted: 23 September 2014 / Published: 10 October 2014
Cited by 14 | PDF Full-text (746 KB) | HTML Full-text | XML Full-text
Abstract
Argon belongs to the group of noble gases, which are regarded as chemically inert. Astonishingly some of these gases exert biological properties and during the last decades more and more reports demonstrated neuroprotective and organoprotective effects. Recent studies predominately use in vivo or
[...] Read more.
Argon belongs to the group of noble gases, which are regarded as chemically inert. Astonishingly some of these gases exert biological properties and during the last decades more and more reports demonstrated neuroprotective and organoprotective effects. Recent studies predominately use in vivo or in vitro models for ischemic pathologies to investigate the effect of argon treatment. Promising data has been published concerning pathologies like cerebral ischemia, traumatic brain injury and hypoxic ischemic encephalopathy. However, models applied and administration of the therapeutic gas vary. Here we provide a systematic review to summarize the available data on argon’s neuro- and organoprotective effects and discuss its possible mechanism of action. We aim to provide a summary to allow further studies with a more homogeneous setting to investigate possible clinical applications of argon. Full article
Open AccessArticle Sildenafil Attenuates Inflammation and Oxidative Stress in Pelvic Ganglia Neurons after Bilateral Cavernosal Nerve Damage
Int. J. Mol. Sci. 2014, 15(10), 17204-17220; doi:10.3390/ijms151017204
Received: 13 July 2014 / Revised: 9 September 2014 / Accepted: 16 September 2014 / Published: 26 September 2014
Cited by 13 | PDF Full-text (2612 KB) | HTML Full-text | XML Full-text
Abstract
Erectile dysfunction is a common complication for patients undergoing surgeries for prostate, bladder, and colorectal cancers, due to damage of the nerves associated with the major pelvic ganglia (MPG). Functional re-innervation of target organs depends on the capacity of the neurons to survive
[...] Read more.
Erectile dysfunction is a common complication for patients undergoing surgeries for prostate, bladder, and colorectal cancers, due to damage of the nerves associated with the major pelvic ganglia (MPG). Functional re-innervation of target organs depends on the capacity of the neurons to survive and switch towards a regenerative phenotype. PDE5 inhibitors (PDE5i) have been successfully used in promoting the recovery of erectile function after cavernosal nerve damage (BCNR) by up-regulating the expression of neurotrophic factors in MPG. However, little is known about the effects of PDE5i on markers of neuronal damage and oxidative stress after BCNR. This study aimed to investigate the changes in gene and protein expression profiles of inflammatory, anti-inflammatory cytokines and oxidative stress related-pathways in MPG neurons after BCNR and subsequent treatment with sildenafil. Our results showed that BCNR in Fisher-344 rats promoted up-regulation of cytokines (interleukin- 1 (IL-1) β, IL-6, IL-10, transforming growth factor β 1 (TGFβ1), and oxidative stress factors (Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, Myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), TNF receptor superfamily member 5 (CD40) that were normalized by sildenafil treatment given in the drinking water. In summary, PDE5i can attenuate the production of damaging factors and can up-regulate the expression of beneficial factors in the MPG that may ameliorate neuropathic pain, promote neuroprotection, and favor nerve regeneration. Full article
Open AccessArticle p62/Sequestosome 1 Regulates Aggresome Formation of Pathogenic Ataxin-3 with Expanded Polyglutamine
Int. J. Mol. Sci. 2014, 15(9), 14997-15010; doi:10.3390/ijms150914997
Received: 10 June 2014 / Revised: 2 July 2014 / Accepted: 9 July 2014 / Published: 25 August 2014
Cited by 3 | PDF Full-text (4808 KB) | HTML Full-text | XML Full-text
Abstract
The cellular protein quality control system in association with aggresome formation contributes to protecting cells against aggregation-prone protein-induced toxicity. p62/Sequestosome 1 (p62) is a multifunctional protein which plays an important role in protein degradation and aggregation. Although poly-ubiquitination is usually required for p62-mediated
[...] Read more.
The cellular protein quality control system in association with aggresome formation contributes to protecting cells against aggregation-prone protein-induced toxicity. p62/Sequestosome 1 (p62) is a multifunctional protein which plays an important role in protein degradation and aggregation. Although poly-ubiquitination is usually required for p62-mediated protein degradation and aggresome formation, several p62 substrates are processed to form aggregate in an ubiquitination-independent manner. In this study we demonstrate that p62 directly interacts with pathogenic Machado Joseph Disease (MJD)-associated protein ataxin-3 with polyglutamine (polyQ) expansion. Moreover, p62 could regulate the aggresome formation of pathogenic ataxin-3 and protect cells against pathogenic ataxin-3-induced cell death. Full article
Open AccessArticle Water-Soluble Coenzyme Q10 Inhibits Nuclear Translocation of Apoptosis Inducing Factor and Cell Death Caused by Mitochondrial Complex I Inhibition
Int. J. Mol. Sci. 2014, 15(8), 13388-13400; doi:10.3390/ijms150813388
Received: 20 May 2014 / Revised: 23 June 2014 / Accepted: 1 July 2014 / Published: 31 July 2014
Cited by 5 | PDF Full-text (2036 KB) | HTML Full-text | XML Full-text
Abstract
The objectives of the study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of water-soluble Coenzyme Q10 (CoQ10) on the toxic effects of rotenone. Murine hippocampal HT22 cells were cultured with mitochondrial complex I inhibitor rotenone.
[...] Read more.
The objectives of the study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of water-soluble Coenzyme Q10 (CoQ10) on the toxic effects of rotenone. Murine hippocampal HT22 cells were cultured with mitochondrial complex I inhibitor rotenone. Water-soluble CoQ10 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by alamar blue, reactive oxygen species (ROS) production by dihydroethidine (DHE) and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM). Cytochrome c, caspase-9 and apoptosis-inducing factor (AIF) were measured using Western blotting after 24 h rotenone incubation. Rotenone caused more than 50% of cell death, increased ROS production, AIF nuclear translocation and reduction in mitochondrial membrane potential, but failed to cause mitochondrial cytochrome c release and caspase-9 activation. Pretreatment with water-soluble CoQ10 enhanced cell viability, decreased ROS production, maintained mitochondrial membrane potential and prevented AIF nuclear translocation. The results suggest that rotenone activates a mitochondria-initiated, caspase-independent cell death pathway. Water-soluble CoQ10 reduces ROS accumulation, prevents the fall of mitochondrial membrane potential, and inhibits AIF translocation and subsequent cell death. Full article
Open AccessReview Receptor for Advanced Glycation End Products (RAGE) and Its Ligands: Focus on Spinal Cord Injury
Int. J. Mol. Sci. 2014, 15(8), 13172-13191; doi:10.3390/ijms150813172
Received: 5 June 2014 / Revised: 7 July 2014 / Accepted: 21 July 2014 / Published: 25 July 2014
Cited by 3 | PDF Full-text (1194 KB) | HTML Full-text | XML Full-text
Abstract
Spinal cord injury (SCI) results in neuronal and glial death and the loss of axons at the injury site. Inflammation after SCI leads to the inhibition of tissue regeneration and reduced neuronal survival. In addition, the loss of axons after SCI results in
[...] Read more.
Spinal cord injury (SCI) results in neuronal and glial death and the loss of axons at the injury site. Inflammation after SCI leads to the inhibition of tissue regeneration and reduced neuronal survival. In addition, the loss of axons after SCI results in functional loss below the site of injury accompanied by neuronal cell body’s damage. Consequently, reducing inflammation and promoting axonal regeneration after SCI is a worthy therapeutic goal. The receptor for advanced glycation end products (RAGE) is a transmembrane protein and receptor of the immunoglobulin superfamily. RAGE is implicated in inflammation and neurodegeneration. Several recent studies demonstrated an association between RAGE and central nervous system disorders through various mechanisms. However, the relationship between RAGE and SCI has not been shown. It is imperative to elucidate the association between RAGE and SCI, considering that RAGE relates to inflammation and axonal degeneration following SCI. Hence, the present review highlights recent research regarding RAGE as a compelling target for the treatment of SCI. Full article
Open AccessArticle Physical Exercise Promotes Recovery of Neurological Function after Ischemic Stroke in Rats
Int. J. Mol. Sci. 2014, 15(6), 10974-10988; doi:10.3390/ijms150610974
Received: 23 February 2014 / Revised: 12 June 2014 / Accepted: 13 June 2014 / Published: 18 June 2014
Cited by 8 | PDF Full-text (1521 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Although physical exercise is an effective strategy for treatment of ischemic stroke, the underlying protective mechanisms are still not well understood. It has been recently demonstrated that neural progenitor cells play a vital role in the recovery of neurological function (NF) through differentiation
[...] Read more.
Although physical exercise is an effective strategy for treatment of ischemic stroke, the underlying protective mechanisms are still not well understood. It has been recently demonstrated that neural progenitor cells play a vital role in the recovery of neurological function (NF) through differentiation into mature neurons. In the current study, we observed that physical exercise significantly reduced the infarct size and improved damaged neural functional recovery after an ischemic stroke. Furthermore, we found that the treatment not only exhibited a significant increase in the number of neural progenitor cells and neurons but also decreased the apoptotic cells in the peri-infarct region, compared to a control in the absence of exercise. Importantly, the insulin-like growth factor-1 (IGF-1)/Akt signaling pathway was dramatically activated in the peri-infarct region of rats after physical exercise training. Therefore, our findings suggest that physical exercise directly influences the NF recovery process by increasing neural progenitor cell count via activation of the IGF-1/Akt signaling pathway. Full article
Open AccessReview Carriers in Cell-Based Therapies for Neurological Disorders
Int. J. Mol. Sci. 2014, 15(6), 10669-10723; doi:10.3390/ijms150610669
Received: 14 March 2014 / Revised: 19 May 2014 / Accepted: 30 May 2014 / Published: 13 June 2014
Cited by 8 | PDF Full-text (886 KB) | HTML Full-text | XML Full-text
Abstract
There is a pressing need for long-term neuroprotective and neuroregenerative therapies to promote full function recovery of injuries in the human nervous system resulting from trauma, stroke or degenerative diseases. Although cell-based therapies are promising in supporting repair and regeneration, direct introduction to
[...] Read more.
There is a pressing need for long-term neuroprotective and neuroregenerative therapies to promote full function recovery of injuries in the human nervous system resulting from trauma, stroke or degenerative diseases. Although cell-based therapies are promising in supporting repair and regeneration, direct introduction to the injury site is plagued by problems such as low transplanted cell survival rate, limited graft integration, immunorejection, and tumor formation. Neural tissue engineering offers an integrative and multifaceted approach to tackle these complex neurological disorders. Synergistic therapeutic effects can be obtained from combining customized biomaterial scaffolds with cell-based therapies. Current scaffold-facilitated cell transplantation strategies aim to achieve structural and functional rescue via offering a three-dimensional permissive and instructive environment for sustainable neuroactive factor production for prolonged periods and/or cell replacement at the target site. In this review, we intend to highlight important considerations in biomaterial selection and to review major biodegradable or non-biodegradable scaffolds used for cell transplantation to the central and peripheral nervous system in preclinical and clinical trials. Expanded knowledge in biomaterial properties and their prolonged interaction with transplanted and host cells have greatly expanded the possibilities for designing suitable carrier systems and the potential of cell therapies in the nervous system. Full article
Open AccessArticle Damage of Neuroblastoma Cell SH-SY5Y Mediated by MPP+ Inhibits Proliferation of T-Cell Leukemia Jurkat by Co-Culture System
Int. J. Mol. Sci. 2014, 15(6), 10738-10750; doi:10.3390/ijms150610738
Received: 3 January 2014 / Revised: 19 May 2014 / Accepted: 3 June 2014 / Published: 13 June 2014
Cited by 4 | PDF Full-text (814 KB) | HTML Full-text | XML Full-text
Abstract
The adaptive immune system has implications in pathology of Parkinson’s disease (PD). Research data demonstrated that the peripheral CD4+ T-cell population decreased in pathogenesis of PD. The effect of damaged dopaminergic neurons on peripheral T cells of PD is still unknown. In
[...] Read more.
The adaptive immune system has implications in pathology of Parkinson’s disease (PD). Research data demonstrated that the peripheral CD4+ T-cell population decreased in pathogenesis of PD. The effect of damaged dopaminergic neurons on peripheral T cells of PD is still unknown. In this study, we constructed a neuronal and glial cells co-culture model by using human neuroblastoma cells SH-SY5Y and gliomas cells U87. After the co-culture cells were treated with neurotoxin 1-methyl-4-phenylpyridinium (MPP+) for 24 h, the conditioned media was harvested and used to cultivate T-cell leukemia Jurkat cells for another 24 h. We then analyzed the cell proliferation, cell cycle and necrosis effect of Jurkat cells. The results showed that co-culture medium of SH-SY5Y and U87 cells with MPP+ treatment inhibited the proliferation of Jurkat cells compared to control medium without MPP+, even though the same concentration of MPP+ had very little toxicity to the Jurkat cell. Furthermore, co-culture medium with low concentration of MPP+ (100 µM) arrested Jurkat cells cycle in G2/M phase through increasing cell cycle division 2 (CDC2) and CyclinB1 expression level, whereas co-culture medium with high concentration of MPP+ (500 µM) induced Jurkat cell necrosis through cellular swelling and membrane breakage. Our data implies that damaged dopamine neurons with glial cells can lead to the reduced number or inhibited proliferation activity of peripheral T cells. Full article
Open AccessArticle Ginsenoside Rd Attenuates Mitochondrial Permeability Transition and Cytochrome c Release in Isolated Spinal Cord Mitochondria: Involvement of Kinase-Mediated Pathways
Int. J. Mol. Sci. 2014, 15(6), 9859-9877; doi:10.3390/ijms15069859
Received: 25 April 2014 / Revised: 8 May 2014 / Accepted: 21 May 2014 / Published: 3 June 2014
Cited by 6 | PDF Full-text (1555 KB) | HTML Full-text | XML Full-text
Abstract
Ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, has multifunctional activity via different mechanisms and neuroprotective effects that are exerted probably via its antioxidant or free radical scavenger action. However, the effects of Rd on spinal cord mitochondrial dysfunction
[...] Read more.
Ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, has multifunctional activity via different mechanisms and neuroprotective effects that are exerted probably via its antioxidant or free radical scavenger action. However, the effects of Rd on spinal cord mitochondrial dysfunction and underlying mechanisms are still obscure. In this study, we sought to investigate the in vitro effects of Rd on mitochondrial integrity and redox balance in isolated spinal cord mitochondria. We verified that Ca2+ dissipated the membrane potential, provoked mitochondrial swelling and decreased NAD(P)H matrix content, which were all attenuated by Rd pretreatment in a dose-dependent manner. In contrast, Rd was not able to inhibit Ca2+ induced mitochondrial hydrogen peroxide generation. The results of Western blot showed that Rd significantly increased the expression of p-Akt and p-ERK, but had no effects on phosphorylation of PKC and p38. In addition, Rd treatment significantly attenuated Ca2+ induced cytochrome c release, which was partly reversed by antagonists of Akt and ERK, but not p-38 inhibitor. The effects of bisindolylmaleimide, a PKC inhibitor, on Rd-induced inhibition of cytochrome c release seem to be at the level of its own detrimental activity on mitochondrial function. Furthermore, we also found that pretreatment with Rd in vivo (10 and 50 mg/kg) protected spinal cord mitochondria against Ca2+ induced mitochondrial membrane potential dissipation and cytochrome c release. It is concluded that Rd regulate mitochondrial permeability transition pore formation and cytochrome c release through protein kinases dependent mechanism involving activation of intramitochondrial Akt and ERK pathways. Full article
Open AccessArticle Neuroprotective Effects of Citicoline in in Vitro Models of Retinal Neurodegeneration
Int. J. Mol. Sci. 2014, 15(4), 6286-6297; doi:10.3390/ijms15046286
Received: 12 February 2014 / Revised: 11 March 2014 / Accepted: 25 March 2014 / Published: 14 April 2014
Cited by 7 | PDF Full-text (2745 KB) | HTML Full-text | XML Full-text
Abstract
In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration.
[...] Read more.
In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration. Primary retinal cultures, obtained from rat embryos, were first treated with increasing concentrations of citicoline (up to 1000 µM) and analyzed in terms of apoptosis and caspase activation and characterized by immunocytochemistry to identify neuronal and glial cells. Subsequently, excitotoxic concentration of glutamate or High Glucose-containing cell culture medium (HG) was administered as well-known conditions modeling neurodegeneration. Glutamate or HG treatments were performed in the presence or not of citicoline. Neuronal degeneration was evaluated in terms of apoptosis and loss of synapses. The results showed that citicoline did not cause any damage to the retinal neuroglial population up to 1000 µM. At the concentration of 100 µM, it was able to counteract neuronal cell damage both in glutamate- and HG-treated retinal cultures by decreasing proapoptotic effects and contrasting synapse loss. These data confirm that citicoline can efficiently exert a neuroprotective activity. In addition, the results suggest that primary retinal cultures, under conditions inducing neurodegeneration, may represent a useful system to investigate citicoline neuroprotective mechanisms. Full article
Open AccessArticle Neuroprotective Effect of Melatonin against Kainic Acid-Induced Oxidative Injury in Hippocampal Slice Culture of Rats
Int. J. Mol. Sci. 2014, 15(4), 5940-5951; doi:10.3390/ijms15045940
Received: 25 December 2013 / Revised: 24 March 2014 / Accepted: 31 March 2014 / Published: 9 April 2014
Cited by 7 | PDF Full-text (2441 KB) | HTML Full-text | XML Full-text
Abstract
Endogenous melatonin is a known free radical scavenger that removes reactive oxygen species (ROS), thus, alleviating oxidative stress. The purpose of this study was to demonstrate its effect against kainic acid (KA)-induced oxidative stress in organotypic hippocampal slice cultures (OHSCs). To observe neuroprotective
[...] Read more.
Endogenous melatonin is a known free radical scavenger that removes reactive oxygen species (ROS), thus, alleviating oxidative stress. The purpose of this study was to demonstrate its effect against kainic acid (KA)-induced oxidative stress in organotypic hippocampal slice cultures (OHSCs). To observe neuroprotective effects of melatonin, different concentrations (0.01, 0.1 and 1 mM) of melatonin were administrated after KA treatment for 18 h in OHSCs of rat pups. Dose-response studies showed that neuronal cell death was significantly reduced after 0.1 and 1 mΜ melatonin treatments based on propidium iodide (PI) uptake and cresyl violet staining. The dichlorofluorescein (DCF) fluorescence which indicates ROS formation decreased more in the melatonin-treated group than in the KA group. The expression of 5-lipoxigenase (5-LO) and caspase-3 were reduced in the melatonin-treated groups compared to the KA group. These results suggest that melatonin may be an effective agent against KA-induced oxidative stress in the OHSC model. Full article
Open AccessArticle Cystatin C Has a Dual Role in Post-Traumatic Brain Injury Recovery
Int. J. Mol. Sci. 2014, 15(4), 5807-5820; doi:10.3390/ijms15045807
Received: 18 January 2014 / Revised: 13 March 2014 / Accepted: 25 March 2014 / Published: 4 April 2014
Cited by 4 | PDF Full-text (1226 KB) | HTML Full-text | XML Full-text
Abstract
Cathepsin B is one of the major lysosomal cysteine proteases involved in neuronal protein catabolism. This cathepsin is released after traumatic injury and increases neuronal death; however, release of cystatin C, a cathepsin inhibitor, appears to be a self-protective brain response. Here we
[...] Read more.
Cathepsin B is one of the major lysosomal cysteine proteases involved in neuronal protein catabolism. This cathepsin is released after traumatic injury and increases neuronal death; however, release of cystatin C, a cathepsin inhibitor, appears to be a self-protective brain response. Here we describe the effect of cystatin C intracerebroventricular administration in rats prior to inducing a traumatic brain injury. We observed that cystatin C injection caused a dual response in post-traumatic brain injury recovery: higher doses (350 fmoles) increased bleeding and mortality, whereas lower doses (3.5 to 35 fmoles) decreased bleeding, neuronal damage and mortality. We also analyzed the expression of cathepsin B and cystatin C in the brains of control rats and of rats after a traumatic brain injury. Cathepsin B was detected in the brain stem, cerebellum, hippocampus and cerebral cortex of control rats. Cystatin C was localized to the choroid plexus, brain stem and cerebellum of control rats. Twenty-four hours after traumatic brain injury, we observed changes in both the expression and localization of both proteins in the cerebral cortex, hippocampus and brain stem. An early increase and intralysosomal expression of cystatin C after brain injury was associated with reduced neuronal damage. Full article
Open AccessReview Nanomedicine-Based Neuroprotective Strategies in Patient Specific-iPSC and Personalized Medicine
Int. J. Mol. Sci. 2014, 15(3), 3904-3925; doi:10.3390/ijms15033904
Received: 25 December 2013 / Revised: 7 February 2014 / Accepted: 19 February 2014 / Published: 4 March 2014
Cited by 6 | PDF Full-text (263 KB) | HTML Full-text | XML Full-text
Abstract
In recent decades, nanotechnology has attracted major interests in view of drug delivery systems and therapies against diseases, such as cancer, neurodegenerative diseases, and many others. Nanotechnology provides the opportunity for nanoscale particles or molecules (so called “Nanomedicine”) to be delivered to the
[...] Read more.
In recent decades, nanotechnology has attracted major interests in view of drug delivery systems and therapies against diseases, such as cancer, neurodegenerative diseases, and many others. Nanotechnology provides the opportunity for nanoscale particles or molecules (so called “Nanomedicine”) to be delivered to the targeted sites, thereby, reducing toxicity (or side effects) and improving drug bioavailability. Nowadays, a great deal of nano-structured particles/vehicles has been discovered, including polymeric nanoparticles, lipid-based nanoparticles, and mesoporous silica nanoparticles. Nanomedical utilizations have already been well developed in many different aspects, including disease treatment, diagnostic, medical devices designing, and visualization (i.e., cell trafficking). However, while quite a few successful progressions on chemotherapy using nanotechnology have been developed, the implementations of nanoparticles on stem cell research are still sparsely populated. Stem cell applications and therapies are being considered to offer an outstanding potential in the treatment for numbers of maladies. Human induced pluripotent stem cells (iPSCs) are adult cells that have been genetically reprogrammed to an embryonic stem cell-like state. Although the exact mechanisms underlying are still unclear, iPSCs are already being considered as useful tools for drug development/screening and modeling of diseases. Recently, personalized medicines have drawn great attentions in biological and pharmaceutical studies. Generally speaking, personalized medicine is a therapeutic model that offers a customized healthcare/cure being tailored to a specific patient based on his own genetic information. Consequently, the combination of nanomedicine and iPSCs could actually be the potent arms for remedies in transplantation medicine and personalized medicine. This review will focus on current use of nanoparticles on therapeutical applications, nanomedicine-based neuroprotective manipulations in patient specific-iPSCs and personalized medicine. Full article
Open AccessArticle Inhibition of Acetylcholinesterase Modulates NMDA Receptor Antagonist Mediated Alterations in the Developing Brain
Int. J. Mol. Sci. 2014, 15(3), 3784-3798; doi:10.3390/ijms15033784
Received: 17 December 2013 / Revised: 20 February 2014 / Accepted: 21 February 2014 / Published: 3 March 2014
Cited by 2 | PDF Full-text (489 KB) | HTML Full-text | XML Full-text
Abstract
Exposure to N-methyl-d-aspartate (NMDA) receptor antagonists has been demonstrated to induce neurodegeneration in newborn rats. However, in clinical practice the use of NMDA receptor antagonists as anesthetics and sedatives cannot always be avoided. The present study investigated the effect of the indirect
[...] Read more.
Exposure to N-methyl-d-aspartate (NMDA) receptor antagonists has been demonstrated to induce neurodegeneration in newborn rats. However, in clinical practice the use of NMDA receptor antagonists as anesthetics and sedatives cannot always be avoided. The present study investigated the effect of the indirect cholinergic agonist physostigmine on neurotrophin expression and the extracellular matrix during NMDA receptor antagonist induced injury to the immature rat brain. The aim was to investigate matrix metalloproteinase (MMP)-2 activity, as well as expression of tissue inhibitor of metalloproteinase (TIMP)-2 and brain-derived neurotrophic factor (BDNF) after co-administration of the non-competitive NMDA receptor antagonist MK801 (dizocilpine) and the acetylcholinesterase (AChE) inhibitor physostigmine. The AChE inhibitor physostigmine ameliorated the MK801-induced reduction of BDNF mRNA and protein levels, reduced MK801-triggered MMP-2 activity and prevented decreased TIMP-2 mRNA expression. Our results indicate that AChE inhibition may prevent newborn rats from MK801-mediated brain damage by enhancing neurotrophin-associated signaling pathways and by modulating the extracellular matrix. Full article
Open AccessReview Notes on the Epidemiology of Multiple Sclerosis, with Special Reference to Dietary Habits
Int. J. Mol. Sci. 2014, 15(3), 3533-3545; doi:10.3390/ijms15033533
Received: 25 December 2013 / Revised: 30 January 2014 / Accepted: 13 February 2014 / Published: 26 February 2014
Cited by 7 | PDF Full-text (208 KB) | HTML Full-text | XML Full-text
Abstract
A hypothesis, based primarily on the occurrence of multiple sclerosis (MS) in the Faroe Islands and supported by numerous analytical epidemiological studies, is described. It proposes that MS is caused by the interaction of a virus disease with intestinal pathology, e.g., infectious mononucleosis,
[...] Read more.
A hypothesis, based primarily on the occurrence of multiple sclerosis (MS) in the Faroe Islands and supported by numerous analytical epidemiological studies, is described. It proposes that MS is caused by the interaction of a virus disease with intestinal pathology, e.g., infectious mononucleosis, and application of smoked and nitrate/nitrite-cured meat products in the diet during circumscribed time intervals. The biological mechanisms might involve a break of tolerance by an alteration of self within the central nervous system, by nitrophenylated compounds conjugated to animal tissue, in particular to proteins occurring in the central nervous system. Further research is needed. Full article
Open AccessArticle Expression of PHB2 in Rat Brain Cortex Following Traumatic Brain Injury
Int. J. Mol. Sci. 2014, 15(2), 3299-3318; doi:10.3390/ijms15023299
Received: 13 November 2013 / Revised: 31 January 2014 / Accepted: 13 February 2014 / Published: 21 February 2014
Cited by 5 | PDF Full-text (1898 KB) | HTML Full-text | XML Full-text
Abstract
Prohibitin2 (PHB2) is a ubiquitous, evolutionarily strongly conserved protein. It is one of the components of the prohibitin complex, which comprises two highly homologous subunits, PHB1 and PHB2. PHB2 is present in various cellular compartments including the nucleus and mitochondria. Recent studies have
[...] Read more.
Prohibitin2 (PHB2) is a ubiquitous, evolutionarily strongly conserved protein. It is one of the components of the prohibitin complex, which comprises two highly homologous subunits, PHB1 and PHB2. PHB2 is present in various cellular compartments including the nucleus and mitochondria. Recent studies have identified PHB2 as a multifunctional protein that controls cell proliferation, apoptosis, cristae morphogenesis and the functional integrity of mitochondria. However its distribution and function in the central nervous system (CNS) are not well understood. In this study, we examined PHB2 expression and cellular localization in rats after acute traumatic brain injury (TBI). Western Blot analysis showed PHB2 level was significantly enhanced at five days after injury compared to control, and then declined during the following days. The protein expression of PHB2 was further analyzed by immunohistochemistry. In comparison to contralateral cerebral cortex, we observed a highly significant accumulation of PHB2 at the ipsilateral brain. Immunofluorescence double-labeling showed that PHB2 was co-expressed with NeuN, GFAP. Besides, PHB2 also colocalized with activated caspase-3 and PCNA. To further investigate the function of PHB2, primary cultured astrocytes and the neuronal cell line PC12 were employed to establish a proliferation model and an apoptosis model, respectively, to simulate the cell activity after TBI to a certain degree. Knocking down PHB2 by siRNA partly increased the apoptosis level of PC12 stimulated by H2O2. While the PHB2 was interrupted by siRNA, the proliferation level of primary cultured astrocytes was inhibited notably than that in the control group. Together with our data, we hypothesized that PHB2 might play an important role in CNS pathophysiology after TBI. Full article
Open AccessArticle Interplay between Endothelin and Erythropoietin in Astroglia: The Role in Protection against Hypoxia
Int. J. Mol. Sci. 2014, 15(2), 2858-2875; doi:10.3390/ijms15022858
Received: 9 November 2013 / Revised: 27 January 2014 / Accepted: 13 February 2014 / Published: 19 February 2014
Cited by 4 | PDF Full-text (1051 KB) | HTML Full-text | XML Full-text
Abstract
We show that, under in vitro conditions, the vulnerability of astroglia to hypoxia is reflected by alterations in endothelin (ET)-1 release and capacity of erythropoietin (EPO) to regulate ET-1 levels. Exposure of cells to 24 h hypoxia did not induce changes in ET-1
[...] Read more.
We show that, under in vitro conditions, the vulnerability of astroglia to hypoxia is reflected by alterations in endothelin (ET)-1 release and capacity of erythropoietin (EPO) to regulate ET-1 levels. Exposure of cells to 24 h hypoxia did not induce changes in ET-1 release, while 48–72 h hypoxia resulted in increase of ET-1 release from astrocytes that could be abolished by EPO. The endothelin receptor type A (ETA) antagonist BQ123 increased extracellular levels of ET-1 in human fetal astroglial cell line (SV-FHAS). The survival and proliferation of rat primary astrocytes, neural precursors, and neurons upon hypoxic conditions were increased upon administration of BQ123. Hypoxic injury and aging affected the interaction between the EPO and ET systems. Under hypoxia EPO decreased ET-1 release from astrocytes, while ETA receptor blockade enhanced the expression of EPO mRNA and EPO receptor in culture-aged rat astroglia. The blockade of ETA receptor can increase the availability of ET-1 to the ETB receptor and can potentiate the neuroprotective effects of EPO. Thus, the new therapeutic use of combined administration of EPO and ETA receptor antagonists during hypoxia-associated neurodegenerative disorders of the central nervous system (CNS) can be suggested. Full article
Open AccessArticle Antioxidant and Protective Mechanisms against Hypoxia and Hypoglycaemia in Cortical Neurons in Vitro
Int. J. Mol. Sci. 2014, 15(2), 2475-2493; doi:10.3390/ijms15022475
Received: 11 December 2013 / Revised: 15 January 2014 / Accepted: 20 January 2014 / Published: 12 February 2014
Cited by 6 | PDF Full-text (355 KB) | HTML Full-text | XML Full-text
Abstract
In the present work, we have studied whether cell death could be induced in cortical neurons from rats subjected to different period of O2 deprivation and low glucose (ODLG). This “in vitro” model is designed to emulate the penumbra area
[...] Read more.
In the present work, we have studied whether cell death could be induced in cortical neurons from rats subjected to different period of O2 deprivation and low glucose (ODLG). This “in vitro” model is designed to emulate the penumbra area under ischemia. In these conditions, cortical neurons displayed loss of mitochondrial respiratory ability however, nor necrosis neither apoptosis occurred despite ROS production. The absence of cellular death could be a consequence of increased antioxidant responses such as superoxide dismutase-1 (SOD1) and GPX3. In addition, the levels of reduced glutathione were augmented and HIF-1/3α overexpressed. After long periods of ODLG (12–24 h) cortical neurons showed cellular and mitochondrial membrane alterations and did not recuperate cellular viability during reperfusion. This could mean that therapies directed toward prevention of cellular and mitochondrial membrane imbalance or cell death through mechanisms other than necrosis or apoptosis, like authophagy, may be a way to prevent ODLG damage. Full article
Figures

Open AccessArticle Beneficial Effects of Melatonin Combined with Exercise on Endogenous Neural Stem/Progenitor Cells Proliferation after Spinal Cord Injury
Int. J. Mol. Sci. 2014, 15(2), 2207-2222; doi:10.3390/ijms15022207
Received: 18 November 2013 / Revised: 16 January 2014 / Accepted: 24 January 2014 / Published: 30 January 2014
Cited by 13 | PDF Full-text (889 KB) | HTML Full-text | XML Full-text
Abstract
Endogenous neural stem/progenitor cells (eNSPCs) proliferate and differentiate into neurons and glial cells after spinal cord injury (SCI). We have previously shown that melatonin (MT) plus exercise (Ex) had a synergistic effect on functional recovery after SCI. Thus, we hypothesized that combined therapy
[...] Read more.
Endogenous neural stem/progenitor cells (eNSPCs) proliferate and differentiate into neurons and glial cells after spinal cord injury (SCI). We have previously shown that melatonin (MT) plus exercise (Ex) had a synergistic effect on functional recovery after SCI. Thus, we hypothesized that combined therapy including melatonin and exercise might exert a beneficial effect on eNSPCs after SCI. Melatonin was administered twice a day and exercise was performed on a treadmill for 15 min, six days per week for 3 weeks after SCI. Immunohistochemistry and RT-PCR analysis were used to determine cell population for late response, in conjunction with histological examination and motor function test. There was marked improvement in hindlimb function in SCI+MT+Ex group at day 14 and 21 after injury, as documented by the reduced size of the spinal lesion and a higher density of dendritic spines and axons; such functional improvements were associated with increased numbers of BrdU-positive cells. Furthermore, MAP2 was increased in the injured thoracic segment, while GFAP was increased in the cervical segment, along with elevated numbers of BrdU-positive nestin-expressing eNSPCs in the SCI+MT+Ex group. The dendritic spine density was augmented markedly in SCI+MT and SCI+MT+Ex groups.These results suggest a synergistic effect of SCI+MT+Ex might create a microenvironment to facilitate proliferation of eNSPCs to effectively replace injured cells and to improve regeneration in SCI. Full article
Open AccessReview Apoptosis Signal Regulating Kinase 1 (ASK1): Potential as a Therapeutic Target for Alzheimer’s Disease
Int. J. Mol. Sci. 2014, 15(2), 2119-2129; doi:10.3390/ijms15022119
Received: 27 November 2013 / Revised: 20 January 2014 / Accepted: 21 January 2014 / Published: 29 January 2014
Cited by 22 | PDF Full-text (640 KB) | HTML Full-text | XML Full-text
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, characterized by a decline in memory and cognitive function. Clinical manifestations of AD are closely associated with the formation of senile plaques and neurofibrillary tangles, neuronal loss and cognitive decline. Apoptosis signal regulating
[...] Read more.
Alzheimer’s disease (AD) is the most common form of dementia, characterized by a decline in memory and cognitive function. Clinical manifestations of AD are closely associated with the formation of senile plaques and neurofibrillary tangles, neuronal loss and cognitive decline. Apoptosis signal regulating kinase 1 (ASK1) is a mediator of the MAPK pathway, which regulates various cellular responses such as apoptosis, cell survival, and differentiation. Accumulating evidence indicates that ASK1 plays a key role in the pathogenesis of neurodegenerative disorders such as Huntington’s disease and AD. Of particular interest, ASK1 is associated with many signaling pathways, which include endoplasmic reticulum (ER) stress-mediated apoptosis, Aβ-induced neurotoxicity, tau protein phosphorylation, and insulin signal transduction. Here, we review experimental evidence that links ASK1 signaling and AD pathogenesis and propose that ASK1 might be a new point of therapeutic intervention to prevent or treat AD. Full article
Open AccessReview Antioxidant Drug Therapy Approaches for Neuroprotection in Chronic Diseases of the Retina
Int. J. Mol. Sci. 2014, 15(2), 1865-1886; doi:10.3390/ijms15021865
Received: 12 November 2013 / Revised: 18 January 2014 / Accepted: 21 January 2014 / Published: 27 January 2014
Cited by 23 | PDF Full-text (257 KB) | HTML Full-text | XML Full-text
Abstract
The molecular pathways contributing to visual signal transduction in the retina generate a high energy demand that has functional and structural consequences such as vascularization and high metabolic rates contributing to oxidative stress. Multiple signaling cascades are involved to actively regulate the redox
[...] Read more.
The molecular pathways contributing to visual signal transduction in the retina generate a high energy demand that has functional and structural consequences such as vascularization and high metabolic rates contributing to oxidative stress. Multiple signaling cascades are involved to actively regulate the redox state of the retina. Age-related processes increase the oxidative load, resulting in chronically elevated levels of oxidative stress and reactive oxygen species, which in the retina ultimately result in pathologies such as glaucoma or age-related macular degeneration, as well as the neuropathic complications of diabetes in the eye. Specifically, oxidative stress results in deleterious changes to the retina through dysregulation of its intracellular physiology, ultimately leading to neurodegenerative and potentially also vascular dysfunction. Herein we will review the evidence for oxidative stress-induced contributions to each of the three major ocular pathologies, glaucoma, age-related macular degeneration, and diabetic retinopathy. The premise for neuroprotective strategies for these ocular disorders will be discussed in the context of recent clinical and preclinical research pursuing novel therapy development approaches. Full article
Open AccessArticle Regulation of an Autoimmune Model for Multiple Sclerosis in Th2-Biased GATA3 Transgenic Mice
Int. J. Mol. Sci. 2014, 15(2), 1700-1718; doi:10.3390/ijms15021700
Received: 1 November 2013 / Revised: 11 January 2014 / Accepted: 14 January 2014 / Published: 23 January 2014
Cited by 16 | PDF Full-text (2244 KB) | HTML Full-text | XML Full-text
Abstract
T helper (Th)2 cells have been proposed to play a neuroprotective role in multiple sclerosis (MS). This is mainly based on “loss-of-function” studies in an animal model for MS, experimental autoimmune encephalomyelitis (EAE), using blocking antibodies against Th2 related cytokines, and knockout mice
[...] Read more.
T helper (Th)2 cells have been proposed to play a neuroprotective role in multiple sclerosis (MS). This is mainly based on “loss-of-function” studies in an animal model for MS, experimental autoimmune encephalomyelitis (EAE), using blocking antibodies against Th2 related cytokines, and knockout mice lacking Th2-related molecules. We tested whether an increase of Th2 responses (“gain-of-function” approach) could alter EAE, the approach of novel GATA binding protein 3 (GATA3)-transgenic (tg) mice that overexpress GATA3, a transcription factor required for Th2 differentiation. In EAE induced with myelin oligodendrocyte glycoprotein (MOG)35−55 peptide, GATA3-tg mice had a significantly delayed onset of disease and a less severe maximum clinical score, compared with wild-type C57BL/6 mice. Histologically, GATA3-tg mice had decreased levels of meningitis and demyelination in the spinal cord, and anti-inflammatory cytokine profiles immunologically, however both groups developed similar levels of MOG-specific lymphoproliferative responses. During the early stage, we detected higher levels of interleukin (IL)-4 and IL-10, with MOG and mitogen stimulation of regional lymph node cells in GATA3-tg mice. During the late stage, only mitogen stimulation induced higher IL-4 and lower interferon-γ and IL-17 production in GATA3-tg mice. These results suggest that a preexisting bias toward a Th2 immune response may reduce the severity of inflammatory demyelinating diseases, including MS. Full article
Figures

Open AccessArticle Resveratrol Partially Prevents Rotenone-Induced Neurotoxicity in Dopaminergic SH-SY5Y Cells through Induction of Heme Oxygenase-1 Dependent Autophagy
Int. J. Mol. Sci. 2014, 15(1), 1625-1646; doi:10.3390/ijms15011625
Received: 11 November 2013 / Revised: 8 January 2014 / Accepted: 14 January 2014 / Published: 22 January 2014
Cited by 51 | PDF Full-text (1283 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Parkinson disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons. Mitochondrial dysfunction, oxidative stress or protein misfolding and aggregation may underlie this process. Autophagy is an intracellular catabolic mechanism responsible for protein degradation and recycling of damaged
[...] Read more.
Parkinson disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons. Mitochondrial dysfunction, oxidative stress or protein misfolding and aggregation may underlie this process. Autophagy is an intracellular catabolic mechanism responsible for protein degradation and recycling of damaged proteins and cytoplasmic organelles. Autophagic dysfunction may hasten the progression of neuronal degeneration. In this study, resveratrol promoted autophagic flux and protected dopaminergic neurons against rotenone-induced apoptosis. In an in vivo PD model, rotenone induced loss of dopaminergic neurons, increased oxidation of mitochondrial proteins and promoted autophagic vesicle development in brain tissue. The natural phytoalexin resveratrol prevented rotenone-induced neuronal apoptosis in vitro, and this pro-survival effect was abolished by an autophagic inhibitor. Although both rotenone and resveratrol promoted LC3-II accumulation, autophagic flux was inhibited by rotenone and augmented by resveratrol. Further, rotenone reduced heme oxygenase-1 (HO-1) expression, whereas resveratrol increased HO-1 expression. Pharmacological inhibition of HO-1 abolished resveratrol-mediated autophagy and neuroprotection. Notably, the effects of a pharmacological inducer of HO-1 were similar to those of resveratrol, and protected against rotenone-induced cell death in an autophagy-dependent manner, validating the hypothesis of HO-1 dependent autophagy in preventing neuronal death in the in vitro PD model. Collectively, our findings suggest that resveratrol induces HO-1 expression and prevents dopaminergic cell death by regulating autophagic flux; thus protecting against rotenone-induced neuronal apoptosis. Full article
Open AccessArticle Phosphorylation of Histone H2AX in the Mouse Brain from Development to Senescence
Int. J. Mol. Sci. 2014, 15(1), 1554-1573; doi:10.3390/ijms15011554
Received: 12 November 2013 / Revised: 30 December 2013 / Accepted: 10 January 2014 / Published: 21 January 2014
Cited by 5 | PDF Full-text (2771 KB) | HTML Full-text | XML Full-text
Abstract
Phosphorylation of the histone H2AX (γH2AX form) is an early response to DNA damage and a marker of aging and disease in several cells and tissues outside the nervous system. Little is known about in vivo phosphorylation of H2AX in neurons, although it
[...] Read more.
Phosphorylation of the histone H2AX (γH2AX form) is an early response to DNA damage and a marker of aging and disease in several cells and tissues outside the nervous system. Little is known about in vivo phosphorylation of H2AX in neurons, although it was suggested that γH2AX is an early marker of neuronal endangerment thus opening the possibility to target it as a neuroprotective strategy. After experimental labeling of DNA-synthesizing cells with 5-bromo-2-deoxyuridine (BrdU), we studied the brain occurrence of γH2AX in developing, postnatal, adult and senescent (2 years) mice by light and electron microscopic immunocytochemistry and Western blotting. Focal and/or diffuse γH2AX immunostaining appears in interkinetic nuclei, mitotic chromosomes, and apoptotic nuclei. Immunoreactivity is mainly associated with neurogenetic areas, i.e., the subventricular zone (SVZ) of telencephalon, the cerebellar cortex, and, albeit to a much lesser extent, the subgranular zone of the hippocampal dentate gyrus. In addition, γH2AX is highly expressed in the adult and senescent cerebral cortex, particularly the piriform cortex. Double labeling experiments demonstrate that γH2AX in neurogenetic brain areas is temporally and functionally related to proliferation and apoptosis of neuronal precursors, i.e., the type C transit amplifying cells (SVZ) and the granule cell precursors (cerebellum). Conversely, γH2AX-immunoreactive cortical neurons incorporating the S phase-label BrdU do not express the proliferation marker phosphorylated histone H3, indicating that these postmitotic cells undergo a significant DNA damage response. Our study paves the way for a better comprehension of the role of H2AX phosphorylation in the normal brain, and offers additional data to design novel strategies for the protection of neuronal precursors and mature neurons in central nervous system (CNS) degenerative diseases. Full article
Open AccessArticle Phenoxybenzamine Is Neuroprotective in a Rat Model of Severe Traumatic Brain Injury
Int. J. Mol. Sci. 2014, 15(1), 1402-1417; doi:10.3390/ijms15011402
Received: 25 November 2013 / Revised: 1 January 2014 / Accepted: 14 January 2014 / Published: 20 January 2014
Cited by 2 | PDF Full-text (471 KB) | HTML Full-text | XML Full-text
Abstract
Phenoxybenzamine (PBZ) is an FDA approved α-1 adrenergic receptor antagonist that is currently used to treat symptoms of pheochromocytoma. However, it has not been studied as a neuroprotective agent for traumatic brain injury (TBI). While screening neuroprotective candidates, we found that phenoxybenzamine reduced
[...] Read more.
Phenoxybenzamine (PBZ) is an FDA approved α-1 adrenergic receptor antagonist that is currently used to treat symptoms of pheochromocytoma. However, it has not been studied as a neuroprotective agent for traumatic brain injury (TBI). While screening neuroprotective candidates, we found that phenoxybenzamine reduced neuronal death in rat hippocampal slice cultures following exposure to oxygen glucose deprivation (OGD). Using this system, we found that phenoxybenzamine reduced neuronal death over a broad dose range (0.1 µM–1 mM) and provided efficacy when delivered up to 16 h post-OGD. We further tested phenoxybenzamine in the rat lateral fluid percussion model of TBI. When administered 8 h after TBI, phenoxybenzamine improved neurological severity scoring and foot fault assessments. At 25 days post injury, phenoxybenzamine treated TBI animals also showed a significant improvement in both learning and memory compared to saline treated controls. We further examined gene expression changes within the cortex following TBI. At 32 h post-TBI phenoxybenzamine treated animals had significantly lower expression of pro-inflammatory signaling proteins CCL2, IL1β, and MyD88, suggesting that phenoxybenzamine may exert a neuroprotective effect by reducing neuroinflammation after TBI. These data suggest that phenonxybenzamine may have application in the treatment of TBI. Full article
Open AccessReview Neuroprotective Strategies for Traumatic Brain Injury: Improving Clinical Translation
Int. J. Mol. Sci. 2014, 15(1), 1216-1236; doi:10.3390/ijms15011216
Received: 11 December 2013 / Revised: 7 January 2014 / Accepted: 13 January 2014 / Published: 17 January 2014
Cited by 50 | PDF Full-text (234 KB) | HTML Full-text | XML Full-text
Abstract
Traumatic brain injury (TBI) induces secondary biochemical changes that contribute to delayed neuroinflammation, neuronal cell death, and neurological dysfunction. Attenuating such secondary injury has provided the conceptual basis for neuroprotective treatments. Despite strong experimental data, more than 30 clinical trials of neuroprotection in
[...] Read more.
Traumatic brain injury (TBI) induces secondary biochemical changes that contribute to delayed neuroinflammation, neuronal cell death, and neurological dysfunction. Attenuating such secondary injury has provided the conceptual basis for neuroprotective treatments. Despite strong experimental data, more than 30 clinical trials of neuroprotection in TBI patients have failed. In part, these failures likely reflect methodological differences between the clinical and animal studies, as well as inadequate pre-clinical evaluation and/or trial design problems. However, recent changes in experimental approach and advances in clinical trial methodology have raised the potential for successful clinical translation. Here we critically analyze the current limitations and translational opportunities for developing successful neuroprotective therapies for TBI. Full article

2013

Jump to: 2017, 2016, 2015, 2014, 2012, 2011, 2010, 2009

Open AccessArticle Alteration of Dynein Function Affects α-Synuclein Degradation via the Autophagosome-Lysosome Pathway
Int. J. Mol. Sci. 2013, 14(12), 24242-24254; doi:10.3390/ijms141224242
Received: 11 September 2013 / Revised: 26 November 2013 / Accepted: 3 December 2013 / Published: 13 December 2013
Cited by 6 | PDF Full-text (1937 KB) | HTML Full-text | XML Full-text
Abstract
Growing evidence suggests that dynein dysfunction may be implicated in the pathogenesis of neurodegeneration. It plays a central role in aggresome formation, the delivery of autophagosome to lysosome for fusion and degradation, which is a pro-survival mechanism essential for the bulk degradation of
[...] Read more.
Growing evidence suggests that dynein dysfunction may be implicated in the pathogenesis of neurodegeneration. It plays a central role in aggresome formation, the delivery of autophagosome to lysosome for fusion and degradation, which is a pro-survival mechanism essential for the bulk degradation of misfolded proteins and damaged organells. Previous studies reported that dynein dysfuntion was associated with aberrant aggregation of α-synuclein, which is a major component of inclusion bodies in Parkinson’s disease (PD). However, it remains unclear what roles dynein plays in α-synuclein degradation. Our study demonstrated a decrease of dynein expression in neurotoxin-induced PD models in vitro and in vivo, accompanied by an increase of α-synuclein protein level. Dynein down-regulation induced by siRNA resulted in a prolonged half-life of α-synuclein and its over-accumulation in A53T overexpressing PC12 cells. Dynein knockdown also prompted the increase of microtubule-associated protein 1 light chain 3 (LC3-II) and sequestosome 1 (SQSTM1, p62) expression, and the accumulation of autophagic vacuoles. Moreover, dynein suppression impaired the autophagosome fusion with lysosome. In summary, our findings indicate that dynein is critical for the clearance of aberrant α-synuclein via autophagosome-lysosome pathway. Full article
Open AccessArticle Neuritogenic Monoglyceride Derived from the Constituent of a Marine Fish for Activating the PI3K/ERK/CREB Signalling Pathways in PC12 Cells
Int. J. Mol. Sci. 2013, 14(12), 24200-24210; doi:10.3390/ijms141224200
Received: 16 September 2013 / Revised: 20 November 2013 / Accepted: 20 November 2013 / Published: 12 December 2013
Cited by 5 | PDF Full-text (688 KB) | HTML Full-text | XML Full-text
Abstract
A neuritogenic monoglyceride, 1-O-(myristoyl) glycerol (MG), was isolated from the head of Ilisha elongate using a PC12 cell bioassay system, and its chemical structure was elucidated using spectroscopic methods. MG significantly induced 42% of the neurite outgrowth of PC12 cells at
[...] Read more.
A neuritogenic monoglyceride, 1-O-(myristoyl) glycerol (MG), was isolated from the head of Ilisha elongate using a PC12 cell bioassay system, and its chemical structure was elucidated using spectroscopic methods. MG significantly induced 42% of the neurite outgrowth of PC12 cells at a concentration of 10 μM. To study the structure-activity relationships of MG, a series of monoglycerides was designed and synthesised. Bioassay results indicated that the alkyl chain length plays a key role in the neuritogenic activity of the monoglycerides. The groups that link the propane-1,2-diol and alkyl chain were also investigated. An ester linkage, rather than an amido one, was found to be optimal for neuritogenic activity. Therefore, 1-O-(stearoyl) glycerol (SG), which induces 57% of the neurite outgrowth of PC12 cells at 10 μM, was determined to be a lead compound for neuritogenic activity. We then investigated the mechanism of action of neurite outgrowth induced by SG on PC12 cells using protein specific inhibitors and Western blot analysis. The mitogen-activated kinase/ERK kinase (MEK) inhibitor U0126 and the phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002 significantly decreased neurite outgrowth. At the same time, SG increased phosphorylation of CREB in protein level. Thus, SG-induced neuritogenic activity depends on the activation of the extracellular-regulated protein kinase (ERK), cAMP responsive element-binding protein (CREB) and PI3K signalling pathways in PC12 cells. Full article
Open AccessArticle Does the Neuroprotective Role of Anandamide Display Diurnal Variations?
Int. J. Mol. Sci. 2013, 14(12), 23341-23355; doi:10.3390/ijms141223341
Received: 3 October 2013 / Revised: 17 November 2013 / Accepted: 19 November 2013 / Published: 27 November 2013
Cited by 9 | PDF Full-text (736 KB) | HTML Full-text | XML Full-text
Abstract
The endocannabinoid system is a component of the neuroprotective mechanisms that an organism displays after traumatic brain injury (TBI). A diurnal variation in several components of this system has been reported. This variation may influence the recovery and survival rate after TBI. We
[...] Read more.
The endocannabinoid system is a component of the neuroprotective mechanisms that an organism displays after traumatic brain injury (TBI). A diurnal variation in several components of this system has been reported. This variation may influence the recovery and survival rate after TBI. We have previously reported that the recovery and survival rate of rats is higher if TBI occurs at 1:00 than at 13:00. This could be explained by a diurnal variation of the endocannabinoid system. Here, we describe the effects of anandamide administration in rats prior to the induction of TBI at two different times of the day: 1:00 and 13:00. We found that anandamide reduced the neurological damage at both times. Nevertheless, its effects on bleeding, survival, food intake, and body weight were dependent on the time of TBI. In addition, we analyzed the diurnal variation of the expression of the cannabinoid receptors CB1R and CB2R in the cerebral cortex of both control rats and rats subjected to TBI. We found that CB1R protein was expressed more during the day, whereas its mRNA level was higher during the night. We did not find a diurnal variation for the CB2R. In addition, we also found that TBI increased CB1R and CB2R in the contralateral hemisphere and disrupted the CB1R diurnal cycle. Full article
Open AccessTechnical Note An Exploratory Evaluation of Tyrosine Hydroxylase Inhibition in Planaria as a Model for Parkinsonism
Int. J. Mol. Sci. 2013, 14(12), 23289-23296; doi:10.3390/ijms141223289
Received: 11 October 2013 / Revised: 18 November 2013 / Accepted: 19 November 2013 / Published: 26 November 2013
Cited by 2 | PDF Full-text (677 KB) | HTML Full-text | XML Full-text
Abstract
Planaria are the simplest organisms with bilateral symmetry and a central nervous system (CNS) with cephalization; therefore, they could be useful as model organisms to investigate mechanistic aspects of parkinsonism and to screen potential therapeutic agents. Taking advantage of the organism’s anti-tropism towards
[...] Read more.
Planaria are the simplest organisms with bilateral symmetry and a central nervous system (CNS) with cephalization; therefore, they could be useful as model organisms to investigate mechanistic aspects of parkinsonism and to screen potential therapeutic agents. Taking advantage of the organism’s anti-tropism towards light, we measured a significantly reduced locomotor velocity in planaria after exposure to 3-iodo-L-tyrosine, an inhibitor of tyrosine hydroxylase that is an enzyme catalyzing the first and rate-limiting step in the biosynthesis of catecholamines. A simple semi-automatic assay using videotaped experiments and subsequent evaluation by tracking software was also implemented to increase throughput. The dopaminergic regulation of locomotor velocity was confirmed by bromocriptine, a drug whose mechanisms of action to treat Parkinson’s disease is believed to be through the stimulation of nerves that control movement. Full article
Open AccessReview Neuroprotective Effects of Psychotropic Drugs in Huntington’s Disease
Int. J. Mol. Sci. 2013, 14(11), 22558-22603; doi:10.3390/ijms141122558
Received: 19 August 2013 / Revised: 16 October 2013 / Accepted: 16 October 2013 / Published: 15 November 2013
Cited by 29 | PDF Full-text (365 KB) | HTML Full-text | XML Full-text
Abstract
Psychotropics (antipsychotics, mood stabilizers, antidepressants, anxiolytics, etc.) are commonly prescribed to treat Huntington’s disease (HD). In HD preclinical models, while no psychotropic has convincingly affected huntingtin gene, HD modifying gene, or huntingtin protein expression, psychotropic neuroprotective effects include upregulated huntingtin autophagy (lithium),
[...] Read more.
Psychotropics (antipsychotics, mood stabilizers, antidepressants, anxiolytics, etc.) are commonly prescribed to treat Huntington’s disease (HD). In HD preclinical models, while no psychotropic has convincingly affected huntingtin gene, HD modifying gene, or huntingtin protein expression, psychotropic neuroprotective effects include upregulated huntingtin autophagy (lithium), histone acetylation (lithium, valproate, lamotrigine), miR-222 (lithium-plus-valproate), mitochondrial protection (haloperidol, trifluoperazine, imipramine, desipramine, nortriptyline, maprotiline, trazodone, sertraline, venlafaxine, melatonin), neurogenesis (lithium, valproate, fluoxetine, sertraline), and BDNF (lithium, valproate, sertraline) and downregulated AP-1 DNA binding (lithium), p53 (lithium), huntingtin aggregation (antipsychotics, lithium), and apoptosis (trifluoperazine, loxapine, lithium, desipramine, nortriptyline, maprotiline, cyproheptadine, melatonin). In HD live mouse models, delayed disease onset (nortriptyline, melatonin), striatal preservation (haloperidol, tetrabenazine, lithium, sertraline), memory preservation (imipramine, trazodone, fluoxetine, sertraline, venlafaxine), motor improvement (tetrabenazine, lithium, valproate, imipramine, nortriptyline, trazodone, sertraline, venlafaxine), and extended survival (lithium, valproate, sertraline, melatonin) have been documented. Upregulated CREB binding protein (CBP; valproate, dextromethorphan) and downregulated histone deacetylase (HDAC; valproate) await demonstration in HD models. Most preclinical findings await replication and their limitations are reviewed. The most promising findings involve replicated striatal neuroprotection and phenotypic disease modification in transgenic mice for tetrabenazine and for sertraline. Clinical data consist of an uncontrolled lithium case series (n = 3) suggesting non-progression and a primarily negative double-blind, placebo-controlled clinical trial of lamotrigine. Full article
Open AccessArticle Onjisaponin B Derived from Radix Polygalae Enhances Autophagy and Accelerates the Degradation of Mutant α-Synuclein and Huntingtin in PC-12 Cells
Int. J. Mol. Sci. 2013, 14(11), 22618-22641; doi:10.3390/ijms141122618
Received: 3 September 2013 / Revised: 28 October 2013 / Accepted: 30 October 2013 / Published: 15 November 2013
Cited by 34 | PDF Full-text (1452 KB) | HTML Full-text | XML Full-text
Abstract
Emerging evidence indicates important protective roles being played by autophagy in neurodegenerative disorders through clearance of aggregate-prone or mutant proteins. In the current study, we aimed to identify autophagy inducers from Chinese medicinal herbs as a potential neuroprotective agent that enhances the clearance
[...] Read more.
Emerging evidence indicates important protective roles being played by autophagy in neurodegenerative disorders through clearance of aggregate-prone or mutant proteins. In the current study, we aimed to identify autophagy inducers from Chinese medicinal herbs as a potential neuroprotective agent that enhances the clearance of mutant huntingtin and α-synuclein in PC-12 cells. Through intensive screening using the green fluorescent protein-light chain 3 (GFP-LC3) autophagy detection platform, we found that the ethanol extracts of Radix Polygalae (Yuan Zhi) were capable of inducing autophagy. Further investigation showed that among three single components derived from Radix Polygalaei.e., polygalacic acid, senegenin and onjisaponin B—onjisaponin B was able to induce autophagy and accelerate both the removal of mutant huntingtin and A53T α-synuclein, which are highly associated with Huntington disease and Parkinson disease, respectively. Our study further demonstrated that onjisaponin B induces autophagy via the AMPK-mTOR signaling pathway. Therefore, findings in the current study provide detailed insights into the protective mechanism of a novel autophagy inducer, which is valuable for further investigation as a new candidate agent for modulating neurodegenerative disorders through the reduction of toxicity and clearance of mutant proteins in the cellular level. Full article
Figures

Open AccessArticle Environmental Enrichment Decreases Asphyxia-Induced Neurobehavioral Developmental Delay in Neonatal Rats
Int. J. Mol. Sci. 2013, 14(11), 22258-22273; doi:10.3390/ijms141122258
Received: 14 September 2013 / Revised: 18 October 2013 / Accepted: 28 October 2013 / Published: 13 November 2013
Cited by 11 | PDF Full-text (534 KB) | HTML Full-text | XML Full-text
Abstract
Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim
[...] Read more.
Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia. Full article
Open AccessArticle Neuroprotective Effect of Arctigenin via Upregulation of P-CREB in Mouse Primary Neurons and Human SH-SY5Y Neuroblastoma Cells
Int. J. Mol. Sci. 2013, 14(9), 18657-18669; doi:10.3390/ijms140918657
Received: 10 May 2013 / Revised: 22 July 2013 / Accepted: 23 August 2013 / Published: 10 September 2013
Cited by 18 | PDF Full-text (2350 KB) | HTML Full-text | XML Full-text
Abstract
Arctigenin (Arc) has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and
[...] Read more.
Arctigenin (Arc) has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ) production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1) protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN) expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB) induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB. Full article
Open AccessArticle Neuroprotective Effects of α-Tocotrienol on Kainic Acid-Induced Neurotoxicity in Organotypic Hippocampal Slice Cultures
Int. J. Mol. Sci. 2013, 14(9), 18256-18268; doi:10.3390/ijms140918256
Received: 26 July 2013 / Revised: 21 August 2013 / Accepted: 23 August 2013 / Published: 5 September 2013
Cited by 6 | PDF Full-text (553 KB) | HTML Full-text | XML Full-text
Abstract
Vitamin E, such as alpha-tocopherol (ATPH) and alpha-tocotrienol (ATTN), is a chain-breaking antioxidant that prevents the chain propagation step during lipid peroxidation. In the present study, we investigated the effects of ATTN on KA-induced neuronal death using organotypic hippocampal slice culture (OHSC) and
[...] Read more.
Vitamin E, such as alpha-tocopherol (ATPH) and alpha-tocotrienol (ATTN), is a chain-breaking antioxidant that prevents the chain propagation step during lipid peroxidation. In the present study, we investigated the effects of ATTN on KA-induced neuronal death using organotypic hippocampal slice culture (OHSC) and compared the neuroprotective effects of ATTN and ATPH. After 15 h KA (5 µM) treatment, delayed neuronal death was detected in the CA3 region and reactive oxygen species (ROS) formation and lipid peroxidation were also increased. Both co-treatment and post-treatment of ATPH (100 µM) or ATTN (100 µM) significantly increased the cell survival and reduced the number of TUNEL-positive cells in the CA3 region. Increased dichlorofluorescein (DCF) fluorescence and levels of thiobarbiturate reactive substances (TBARS) were decreased by ATPH and ATTN treatment. These data suggest that ATPH and ATTN treatment have protective effects on KA-induced cell death in OHSC. ATTN treatment tended to be more effective than ATPH treatment, even though there was no significant difference between ATPH and ATTN in co-treatment or post-treatment. Full article
Open AccessArticle Endogenous Protease Nexin-1 Protects against Cerebral Ischemia
Int. J. Mol. Sci. 2013, 14(8), 16719-16731; doi:10.3390/ijms140816719
Received: 1 July 2013 / Revised: 31 July 2013 / Accepted: 1 August 2013 / Published: 14 August 2013
Cited by 6 | PDF Full-text (382 KB) | HTML Full-text | XML Full-text
Abstract
The serine protease thrombin plays a role in signalling ischemic neuronal death in the brain. Paradoxically, endogenous neuroprotective mechanisms can be triggered by preconditioning with thrombin (thrombin preconditioning, TPC), leading to tolerance to cerebral ischemia. Here we studied the role of thrombin’s endogenous
[...] Read more.
The serine protease thrombin plays a role in signalling ischemic neuronal death in the brain. Paradoxically, endogenous neuroprotective mechanisms can be triggered by preconditioning with thrombin (thrombin preconditioning, TPC), leading to tolerance to cerebral ischemia. Here we studied the role of thrombin’s endogenous potent inhibitor, protease nexin-1 (PN-1), in ischemia and in tolerance to cerebral ischemia induced by TPC. Cerebral ischemia was modelled in vitro in organotypic hippocampal slice cultures from rats or genetically engineered mice lacking PN-1 or with the reporter gene lacZ knocked into the PN-1 locus PN-1HAPN-1-lacZ/HAPN-1-lacZ (PN-1 KI) exposed to oxygen and glucose deprivation (OGD). We observed increased thrombin enzyme activity in culture homogenates 24 h after OGD. Lack of PN-1 increased neuronal death in the CA1, suggesting that endogenous PN-1 inhibits thrombin-induced neuronal damage after ischemia. OGD enhanced β-galactosidase activity, reflecting PN-1 expression, at one and 24 h, most strikingly in the stratum radiatum, a glial cell layer adjacent to the CA1 layer of ischemia sensitive neurons. TPC, 24 h before OGD, additionally increased PN-1 expression 1 h after OGD, compared to OGD alone. TPC failed to induce tolerance in cultures from PN-1−/− mice confirming PN-1 as an important TPC target. PN-1 upregulation after TPC was blocked by the c-Jun N-terminal kinase (JNK) inhibitor, L-JNKI1, known to block TPC. This work suggests that PN-1 is an endogenous neuroprotectant in cerebral ischemia and a potential target for neuroprotection. Full article
Figures

Open AccessArticle Gender-Dependent Effects of Enriched Environment and Social Isolation in Ischemic Retinal Lesion in Adult Rats
Int. J. Mol. Sci. 2013, 14(8), 16111-16123; doi:10.3390/ijms140816111
Received: 6 June 2013 / Revised: 10 July 2013 / Accepted: 17 July 2013 / Published: 5 August 2013
Cited by 7 | PDF Full-text (1080 KB) | HTML Full-text | XML Full-text
Abstract
Exposure to an enriched environment has been shown to have many positive effects on brain structure and function. Numerous studies have proven that enriched environment can reduce the lesion induced by toxic and traumatic injuries. Impoverished environment, on the other hand, can have
[...] Read more.
Exposure to an enriched environment has been shown to have many positive effects on brain structure and function. Numerous studies have proven that enriched environment can reduce the lesion induced by toxic and traumatic injuries. Impoverished environment, on the other hand, can have deleterious effects on the outcome of neuronal injuries. We have previously shown that enriched conditions have protective effects in retinal injury in newborn rats. It is well-known that the efficacy of neuroprotective strategies can depend on age and gender. The aim of the present study, therefore, was to examine the effects of environmental enrichment and social isolation in retinal ischemia. We used bilateral common carotid artery occlusion to induce retinal hypoperfusion in adult Wistar rats of both genders. Groups were housed in standard, enriched or impoverished conditions. Impoverished environment was induced by social isolation. Retinas were processed for histological analysis after two weeks of survival. In the present study, we show that (1) enriched environment has protective effects in adult ischemic retinal lesion, while (2) impoverished environment further increases the degree of ischemic injury, and (3) that these environmental effects are gender-dependent: females are less responsive to the positive effects of environmental enrichment and more vulnerable to retinal ischemia in social isolation. In summary, our present study shows that the effects of both positive and negative environmental stimuli are gender-dependent in ischemic retinal lesions. Full article
Open AccessArticle Dose-Dependent Protective Effect of Bisperoxovanadium against Acute Cerebral Ischemia in a Rat Model of Ischemia/Reperfusion Injury
Int. J. Mol. Sci. 2013, 14(6), 12013-12022; doi:10.3390/ijms140612013
Received: 7 April 2013 / Revised: 20 May 2013 / Accepted: 24 May 2013 / Published: 5 June 2013
Cited by 5 | PDF Full-text (1498 KB) | HTML Full-text | XML Full-text
Abstract
PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a dual-specificity lipid and protein phosphatase. The loss of PTEN was originally discovered in numerous human cancers. PTEN inhibition by bisperoxovanadium (bpV) reduces neurological damage after ischemic brain injury. The purpose of this
[...] Read more.
PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a dual-specificity lipid and protein phosphatase. The loss of PTEN was originally discovered in numerous human cancers. PTEN inhibition by bisperoxovanadium (bpV) reduces neurological damage after ischemic brain injury. The purpose of this study was to identify the optimal neuroprotective dose of bpV when administrated after focal ischemia/reperfusion (I/R) injury in rats. Focal I/R injury was induced using the middle cerebral artery occlusion method. bpV at doses of 0.25, 0.50 and 1.0 mg/kg were injected intraperitoneally just after reperfusion, with saline serving as a vehicle control. A maximal reduction in brain injury was observed with 1.0 mg/kg bpV. This dose of bpV also significantly blocked apoptosis in the penumbral cortex of rats. This beneficial effect was associated with the increasing levels of Akt phosphorylation in the penumbral cortex. These results demonstrate that the pharmacological inhibition of PTEN protects against I/R injury in a dose-dependent manner and the protective effect might be induced through upregulation of the phosphoinositide-3 kinase/Akt pro-survival pathway, suggesting a new therapeutic strategy to combat ischemic brain injury. Full article
Open AccessArticle Early Exercise Protects the Blood-Brain Barrier from Ischemic Brain Injury via the Regulation of MMP-9 and Occludin in Rats
Int. J. Mol. Sci. 2013, 14(6), 11096-11112; doi:10.3390/ijms140611096
Received: 3 April 2013 / Revised: 5 May 2013 / Accepted: 16 May 2013 / Published: 24 May 2013
Cited by 18 | PDF Full-text (1818 KB) | HTML Full-text | XML Full-text
Abstract
Early exercise within 24 h after stroke can reduce neurological deficits after ischemic brain injury. However, the mechanisms underlying this neuroprotection remain poorly understood. Ischemic brain injury disrupts the blood-brain barrier (BBB) and then triggers a cascade of events, leading to secondary brain
[...] Read more.
Early exercise within 24 h after stroke can reduce neurological deficits after ischemic brain injury. However, the mechanisms underlying this neuroprotection remain poorly understood. Ischemic brain injury disrupts the blood-brain barrier (BBB) and then triggers a cascade of events, leading to secondary brain injury and poor long-term outcomes. This study verified the hypothesis that early exercise protected the BBB after ischemia. Adult rats were randomly assigned to sham, early exercise (EE) or non-exercise (NE) groups. The EE and NE groups were subjected to ischemia induced by middle cerebral artery occlusion (MCAO). The EE group ran on a treadmill beginning 24 h after ischemia, 30 min per day for three days. After three-days’ exercise, EB extravasation and electron microscopy were used to evaluate the integrity of the BBB. Neurological deficits, cerebral infarct volume and the expression of MMP-9, the tissue inhibitors of metalloproteinase-1 (TIMP-1), and occludin were determined. The data indicated that early exercise significantly inhibited the ischemia-induced reduction of occludin, and an increase in MMP-9 promoted TIMP-1 expression (p < 0.01), attenuated the BBB disruption (p < 0.05) and neurological deficits (p < 0.01) and diminished the infarct volume (p < 0.01). Our results suggest that the neuroprotection conferred by early exercise was likely achieved by improving the function of the BBB via the regulation of MMP-9 and occludin. Full article
Open AccessArticle Ischemic Preconditioning Protects against Spinal Cord Ischemia-Reperfusion Injury in Rabbits by Attenuating Blood Spinal Cord Barrier Disruption
Int. J. Mol. Sci. 2013, 14(5), 10343-10354; doi:10.3390/ijms140510343
Received: 25 February 2013 / Revised: 24 April 2013 / Accepted: 2 May 2013 / Published: 17 May 2013
Cited by 24 | PDF Full-text (1992 KB) | HTML Full-text | XML Full-text
Abstract
Ischemic preconditioning has been reported to protect against spinal cord ischemia-reperfusion (I-R) injury, but the underlying mechanisms are not fully understood. To investigate this, Japanese white rabbits underwent I-R (30 min aortic occlusion followed by reperfusion), ischemic preconditioning (three cycles of 5 min
[...] Read more.
Ischemic preconditioning has been reported to protect against spinal cord ischemia-reperfusion (I-R) injury, but the underlying mechanisms are not fully understood. To investigate this, Japanese white rabbits underwent I-R (30 min aortic occlusion followed by reperfusion), ischemic preconditioning (three cycles of 5 min aortic occlusion plus 5 min reperfusion) followed by I-R, or sham surgery. At 4 and 24 h following reperfusion, neurological function was assessed using Tarlov scores, blood spinal cord barrier permeability was measured by Evan’s Blue extravasation, spinal cord edema was evaluated using the wet-dry method, and spinal cord expression of zonula occluden-1 (ZO-1), matrix metalloproteinase-9 (MMP-9), and tumor necrosis factor-α (TNF-α) were measured by Western blot and a real-time polymerase chain reaction. ZO-1 was also assessed using immunofluorescence. Spinal cord I-R injury reduced neurologic scores, and ischemic preconditioning treatment ameliorated this effect. Ischemic preconditioning inhibited I-R-induced increases in blood spinal cord barrier permeability and water content, increased ZO-1 mRNA and protein expression, and reduced MMP-9 and TNF-α mRNA and protein expression. These findings suggest that ischemic preconditioning attenuates the increase in blood spinal cord barrier permeability due to spinal cord I-R injury by preservation of tight junction protein ZO-1 and reducing MMP-9 and TNF-α expression. Full article
Open AccessArticle Induction of Neuronal Differentiation of Rat Muscle-Derived Stem Cells in Vitro Using Basic Fibroblast Growth Factor and Ethosuximide
Int. J. Mol. Sci. 2013, 14(4), 6614-6623; doi:10.3390/ijms14046614
Received: 11 January 2013 / Revised: 5 March 2013 / Accepted: 7 March 2013 / Published: 25 March 2013
Cited by 5 | PDF Full-text (939 KB) | HTML Full-text | XML Full-text
Abstract
Several studies have demonstrated that basic fibroblast growth factor (bFGF) can induce neural differentiation of mesenchymal stem cells. In this study, we investigated the neural differentiation of muscle-derived stem cells (MDSCs) following treatment with bFGF and ethosuximide, a small molecule used as an
[...] Read more.
Several studies have demonstrated that basic fibroblast growth factor (bFGF) can induce neural differentiation of mesenchymal stem cells. In this study, we investigated the neural differentiation of muscle-derived stem cells (MDSCs) following treatment with bFGF and ethosuximide, a small molecule used as an anticonvulsant in humans. Stem cells isolated from rat skeletal muscle (rMDSCs) were pre-induced by culturing with 25 ng/mL bFGF for 24 h and then were transferred to a medium supplemented with or without 4 mM ethosuximide. Neuronal differentiation was assessed by immunocytochemical and western blotting analyses of marker expression. Immunocytochemistry of rMDSCs treated with bFGF and ethosuximide identified abundant cells expressing neuronal markers (TuJ1, neuron-specific class III β-tubulin; NeuN, neuronal nuclear antigen; and NF-MH; neurofilament M and H). Olig2 (oligodendrocyte transcription factor 2)-positive cells were also observed, indicating the presence of oligodendrocyte lineage cells. These findings were substantiated by western blotting analysis of marker proteins. In particular, the expression of NeuN and TuJ1 was significantly higher in rMDSCs treated with ethosuximide and bFGF than in cells stimulated with bFGF alone (NeuN, p < 0.05 and TuJ1, p < 0.001). Expression of the astrocyte marker GFAP (glial fibrillary acidic protein) was not detected in this study. Collectively, the results showed that treatment with bFGF and ethosuximide induced effective transdifferentiation of rMDSCs into cells with a neural-like phenotype. Notably, rMDSCs treated with a combination of bFGF plus ethosuximide showed enhanced differentiation compared with cells treated with bFGF alone, implying that ethosuximide may stimulate neuronal differentiation. Full article
Open AccessReview Neurodegeneration and Neuroprotection in Diabetic Retinopathy
Int. J. Mol. Sci. 2013, 14(2), 2559-2572; doi:10.3390/ijms14022559
Received: 29 September 2012 / Revised: 12 January 2013 / Accepted: 17 January 2013 / Published: 28 January 2013
Cited by 35 | PDF Full-text (195 KB) | HTML Full-text | XML Full-text
Abstract
Diabetic retinopathy is widely considered to be a neurovascular disease. This is in contrast to its previous identity as solely a vascular disease. Early in the disease progression of diabetes, the major cells in the neuronal component of the retina consist of retinal
[...] Read more.
Diabetic retinopathy is widely considered to be a neurovascular disease. This is in contrast to its previous identity as solely a vascular disease. Early in the disease progression of diabetes, the major cells in the neuronal component of the retina consist of retinal ganglion cells and glial cells, both of which have been found to be compromised. A number of retinal function tests also indicated a functional deficit in diabetic retina, which further supports dysfunction of neuronal cells. As an endocrinological disorder, diabetes alters metabolism both systemically and locally in several body organs, including the retina. A growing body of evidences indicates increased levels of excitotoxic metabolites, including glutamate, branched chain amino acids and homocysteine in cases of diabetic retinopathy. Also present, early in the disease, are decreased levels of folic acid and vitamin-B12, which are potential metabolites capable of damaging neurons. These altered levels of metabolites are found to activate several metabolic pathways, leading to increases in oxidative stress and decreases in the level of neurotrophic factors. As a consequence, they may damage retinal neurons in diabetic patients. In this review, we have discussed those potential excitotoxic metabolites and their implications in neuronal damage. Possible therapeutic targets to protect neurons are also discussed. However, further research is needed to understand the exact molecular mechanism of neurodegeneration so that effective neuroprotection strategies can be developed. By protecting retinal neurons early in diabetic retinopathy cases, damage of retinal vessels can be protected, thereby helping to ameliorate the progression of diabetic retinopathy, a leading cause of blindness worldwide. Full article
Open AccessArticle Quantitative Structure-Activity Relationships Predicting the Antioxidant Potency of 17β-Estradiol-Related Polycyclic Phenols to Inhibit Lipid Peroxidation
Int. J. Mol. Sci. 2013, 14(1), 1443-1454; doi:10.3390/ijms14011443
Received: 13 December 2012 / Revised: 3 January 2013 / Accepted: 5 January 2013 / Published: 11 January 2013
Cited by 4 | PDF Full-text (323 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The antioxidant potency of 17β-estradiol and related polycyclic phenols has been well established. This property is an important component of the complex events by which these types of agents are capable to protect neurons against the detrimental consequences of oxidative stress. In order
[...] Read more.
The antioxidant potency of 17β-estradiol and related polycyclic phenols has been well established. This property is an important component of the complex events by which these types of agents are capable to protect neurons against the detrimental consequences of oxidative stress. In order to relate their molecular structure and properties with their capacity to inhibit lipid peroxidation, a marker of oxidative stress, quantitative structure-activity relationship (QSAR) studies were conducted. The inhibition of Fe3+-induced lipid peroxidation in rat brain homogenate, measured through an assay detecting thiobarbituric acid reactive substances for about seventy compounds were correlated with various molecular descriptors. We found that lipophilicity (modeled by the logarithm of the n-octanol/water partition coefficient, logP) was the property that influenced most profoundly the potency of these compounds to inhibit lipid peroxidation in the biological medium studied. Additionally, the important contribution of the bond dissociation enthalpy of the phenolic O-H group, a shape index, the solvent-accessible surface area and the energy required to remove an electron from the highest occupied molecular orbital were also confirmed. Several QSAR equations were validated as potentially useful exploratory tools for identifying or designing novel phenolic antioxidants incorporating the structural backbone of 17β-estradiol to assist therapy development against oxidative stress-associated neurodegeneration. Full article

2012

Jump to: 2017, 2016, 2015, 2014, 2013, 2011, 2010, 2009

Open AccessReview Peripheral Nerve Injuries and Transplantation of Olfactory Ensheathing Cells for Axonal Regeneration and Remyelination: Fact or Fiction?
Int. J. Mol. Sci. 2012, 13(10), 12911-12924; doi:10.3390/ijms131012911
Received: 2 August 2012 / Revised: 7 September 2012 / Accepted: 7 September 2012 / Published: 10 October 2012
Cited by 6 | PDF Full-text (1270 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Successful nerve regeneration after nerve trauma is not only important for the restoration of motor and sensory functions, but also to reduce the potential for abnormal sensory impulse generation that can occur following neuroma formation. Satisfying functional results after severe lesions are difficult
[...] Read more.
Successful nerve regeneration after nerve trauma is not only important for the restoration of motor and sensory functions, but also to reduce the potential for abnormal sensory impulse generation that can occur following neuroma formation. Satisfying functional results after severe lesions are difficult to achieve and the development of interventional methods to achieve optimal functional recovery after peripheral nerve injury is of increasing clinical interest. Olfactory ensheathing cells (OECs) have been used to improve axonal regeneration and functional outcome in a number of studies in spinal cord injury models. The rationale is that the OECs may provide trophic support and a permissive environment for axonal regeneration. The experimental transplantation of OECs to support and enhance peripheral nerve regeneration is much more limited. This chapter reviews studies using OECs as an experimental cell therapy to improve peripheral nerve regeneration. Full article
Open AccessArticle Erythropoietin Modulates Autophagy Signaling in the Developing Rat Brain in an In Vivo Model of Oxygen-Toxicity
Int. J. Mol. Sci. 2012, 13(10), 12939-12951; doi:10.3390/ijms131012939
Received: 19 July 2012 / Revised: 28 August 2012 / Accepted: 21 September 2012 / Published: 10 October 2012
Cited by 17 | PDF Full-text (836 KB) | HTML Full-text | XML Full-text
Abstract
Autophagy is a self-degradative process that involves turnover and recycling of cytoplasmic components in healthy and diseased tissue. Autophagy has been shown to be protective at the early stages of programmed cell death but it can also promote apoptosis under certain conditions. Earlier
[...] Read more.
Autophagy is a self-degradative process that involves turnover and recycling of cytoplasmic components in healthy and diseased tissue. Autophagy has been shown to be protective at the early stages of programmed cell death but it can also promote apoptosis under certain conditions. Earlier we demonstrated that oxygen contributes to the pathogenesis of neonatal brain damage, which can be ameliorated by intervention with recombinant human erythropoietin (rhEpo). Extrinsic- and intrinsic apoptotic pathways are involved in oxygen induced neurotoxicity but the role of autophagy in this model is unclear. We analyzed the expression of autophagy activity markers in the immature rodent brain after exposure to elevated oxygen concentrations. We observed a hyperoxia-exposure dependent regulation of autophagy-related gene (Atg) proteins Atg3, 5, 12, Beclin-1, microtubule-associated protein 1 light chain 3 (LC3), LC3A-II, and LC3B-II which are all key autophagy activity proteins. Interestingly, a single injection with rhEpo at the onset of hyperoxia counteracted these oxygen-mediated effects. Our results indicate that rhEpo generates its protective effect by modifying the key autophagy activity proteins. Full article
Open AccessReview The Role of Glucose Transporters in Brain Disease: Diabetes and Alzheimer’s Disease
Int. J. Mol. Sci. 2012, 13(10), 12629-12655; doi:10.3390/ijms131012629
Received: 1 August 2012 / Revised: 19 September 2012 / Accepted: 24 September 2012 / Published: 3 October 2012
Cited by 61 | PDF Full-text (632 KB) | HTML Full-text | XML Full-text
Abstract
The occurrence of altered brain glucose metabolism has long been suggested in both diabetes and Alzheimer’s diseases. However, the preceding mechanism to altered glucose metabolism has not been well understood. Glucose enters the brain via glucose transporters primarily present at the blood-brain barrier.
[...] Read more.
The occurrence of altered brain glucose metabolism has long been suggested in both diabetes and Alzheimer’s diseases. However, the preceding mechanism to altered glucose metabolism has not been well understood. Glucose enters the brain via glucose transporters primarily present at the blood-brain barrier. Any changes in glucose transporter function and expression dramatically affects brain glucose homeostasis and function. In the brains of both diabetic and Alzheimer’s disease patients, changes in glucose transporter function and expression have been observed, but a possible link between the altered glucose transporter function and disease progress is missing. Future recognition of the role of new glucose transporter isoforms in the brain may provide a better understanding of brain glucose metabolism in normal and disease states. Elucidation of clinical pathological mechanisms related to glucose transport and metabolism may provide common links to the etiology of these two diseases. Considering these facts, in this review we provide a current understanding of the vital roles of a variety of glucose transporters in the normal, diabetic and Alzheimer’s disease brain. Full article
Figures

Open AccessReview Neuroprotection for Stroke: Current Status and Future Perspectives
Int. J. Mol. Sci. 2012, 13(9), 11753-11772; doi:10.3390/ijms130911753
Received: 29 July 2012 / Revised: 6 September 2012 / Accepted: 7 September 2012 / Published: 18 September 2012
Cited by 64 | PDF Full-text (203 KB) | HTML Full-text | XML Full-text
Abstract
Neuroprotection aims to prevent salvageable neurons from dying. Despite showing efficacy in experimental stroke studies, the concept of neuroprotection has failed in clinical trials. Reasons for the translational difficulties include a lack of methodological agreement between preclinical and clinical studies and the heterogeneity
[...] Read more.
Neuroprotection aims to prevent salvageable neurons from dying. Despite showing efficacy in experimental stroke studies, the concept of neuroprotection has failed in clinical trials. Reasons for the translational difficulties include a lack of methodological agreement between preclinical and clinical studies and the heterogeneity of stroke in humans compared to homogeneous strokes in animal models. Even when the international recommendations for preclinical stroke research, the Stroke Academic Industry Roundtable (STAIR) criteria, were followed, we have still seen limited success in the clinic, examples being NXY-059 and haematopoietic growth factors which fulfilled nearly all the STAIR criteria. However, there are a number of neuroprotective treatments under investigation in clinical trials such as hypothermia and ebselen. Moreover, promising neuroprotective treatments based on a deeper understanding of the complex pathophysiology of ischemic stroke such as inhibitors of NADPH oxidases and PSD-95 are currently evaluated in preclinical studies. Further concepts to improve translation include the investigation of neuroprotectants in multicenter preclinical Phase III-type studies, improved animal models, and close alignment between clinical trial and preclinical methodologies. Future successful translation will require both new concepts for preclinical testing and innovative approaches based on mechanistic insights into the ischemic cascade. Full article
Open AccessReview Mechanisms of Oxidative Damage in Multiple Sclerosis and Neurodegenerative Diseases: Therapeutic Modulation via Fumaric Acid Esters
Int. J. Mol. Sci. 2012, 13(9), 11783-11803; doi:10.3390/ijms130911783
Received: 7 August 2012 / Revised: 5 September 2012 / Accepted: 7 September 2012 / Published: 18 September 2012
Cited by 53 | PDF Full-text (737 KB) | HTML Full-text | XML Full-text
Abstract
Oxidative stress plays a crucial role in many neurodegenerative conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s as well as Huntington’s disease. Inflammation and oxidative stress are also thought to promote tissue damage in multiple sclerosis (MS). Recent data point at
[...] Read more.
Oxidative stress plays a crucial role in many neurodegenerative conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s as well as Huntington’s disease. Inflammation and oxidative stress are also thought to promote tissue damage in multiple sclerosis (MS). Recent data point at an important role of anti-oxidative pathways for tissue protection in chronic-progressive MS, particularly involving the transcription factor nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2). Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for MS treatment. Here, fumaric acid esters (FAE) are a new, orally available treatment option which had already been tested in phase II/III MS trials demonstrating beneficial effects on relapse rates and magnetic resonance imaging markers. In vitro, application of dimethylfumarate (DMF) leads to stabilization of Nrf2, activation of Nrf2-dependent transcriptional activity and abundant synthesis of detoxifying proteins. Furthermore, application of FAE involves direct modification of the inhibitor of Nrf2, Kelch-like ECH-associated protein 1. On cellular levels, the application of FAE enhances neuronal survival and protects astrocytes against oxidative stress. Increased levels of Nrf2 are detected in the central nervous system of DMF treated mice suffering from experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In EAE, DMF ameliorates the disease course and improves preservation of myelin, axons and neurons. Finally, Nrf2 is also up-regulated in the spinal cord of autopsy specimens from untreated patients with MS, probably as part of a naturally occurring anti-oxidative response. In summary, oxidative stress and anti-oxidative pathways are important players in MS pathophysiology and constitute a promising target for future MS therapies like FAE. Full article
Open AccessArticle α-Tocopherol at Nanomolar Concentration Protects PC12 Cells from Hydrogen Peroxide-Induced Death and Modulates Protein Kinase Activities
Int. J. Mol. Sci. 2012, 13(9), 11543-11568; doi:10.3390/ijms130911543
Received: 9 July 2012 / Revised: 23 August 2012 / Accepted: 4 September 2012 / Published: 14 September 2012
Cited by 8 | PDF Full-text (1058 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this work was to compare protective and anti-apoptotic effects of α-tocopherol at nanomolar and micromolar concentrations against 0.2 mM H2O2-induced toxicity in the PC12 neuronal cell line and to reveal protein kinases that contribute to α-tocopherol
[...] Read more.
The aim of this work was to compare protective and anti-apoptotic effects of α-tocopherol at nanomolar and micromolar concentrations against 0.2 mM H2O2-induced toxicity in the PC12 neuronal cell line and to reveal protein kinases that contribute to α-tocopherol protective action. The protection by 100 nM α-tocopherol against H2O2-induced PC12 cell death was pronounced if the time of pre-incubation with α-tocopherol was 3–18 h. For the first time, the protective effect of α-tocopherol was shown to depend on its concentration in the nanomolar range (1 nM < 10 nM < 100 nM), if the pre-incubation time was 18 h. Nanomolar and micromolar α-tocopherol decreased the number of PC12 cells in late apoptosis induced by H2O2 to the same extent if pre-incubation time was 18 h. Immunoblotting data showed that α-tocopherol markedly diminished the time of maximal activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and protein kinase B (Akt)-induced in PC12 cells by H2O2. Inhibitors of MEK 1/2, PI 3-kinase and protein kinase C (PKC) diminished the protective effect of α-tocopherol against H2O2-initiated toxicity if the pre-incubation time was long. The modulation of ERK 1/2, Akt and PKC activities appears to participate in the protection by α-tocopherol against H2O2-induced death of PC12 cells. The data obtained suggest that inhibition by α-tocopherol in late stage ERK 1/2 and Akt activation induced by H2O2 in PC12 cells makes contribution to its protective effect, while total inhibition of these enzymes is not protective. Full article
Open AccessReview Possible Alterations in β-Synuclein, the Non-Amyloidogenic Homologue of α-Synuclein, during Progression of Sporadic α-Synucleinopathies
Int. J. Mol. Sci. 2012, 13(9), 11584-11592; doi:10.3390/ijms130911584
Received: 1 August 2012 / Revised: 10 September 2012 / Accepted: 11 September 2012 / Published: 14 September 2012
Cited by 3 | PDF Full-text (253 KB) | HTML Full-text | XML Full-text
Abstract
α-Synucleinopathies are neurodegenerative disorders that are characterized by progressive decline of motor and non-motor dysfunctions. α-Synuclein (αS) has been shown to play a causative role in neurodegeneration, but the pathogenic mechanisms are still unclear. Thus, there are no radical therapies that can halt
[...] Read more.
α-Synucleinopathies are neurodegenerative disorders that are characterized by progressive decline of motor and non-motor dysfunctions. α-Synuclein (αS) has been shown to play a causative role in neurodegeneration, but the pathogenic mechanisms are still unclear. Thus, there are no radical therapies that can halt or reverse the disease’s progression. β-Synuclein (βS), the non-amyloidogenic homologue of αS, ameliorates the neurodegeneration phenotype of αS in transgenic (tg) mouse models, as well as in cell free and cell culture systems, which suggests that βS might be a negative regulator of neurodegeneration caused by αS, and that “loss of function” of βS might be involved in progression of α-synucleinopathies. Alternatively, it is possible that “toxic gain of function” of wild type βS occurs during the pathogenesis of sporadic α-synucleinopathies, since tg mice expressing dementia with Lewy bodies-linked P123H βS develop progressive neurodegeneration phenotypes, such as axonal pathology and dementia. In this short review, we emphasize the aspects of “toxic gain of function” of wild type βS during the pathogenesis of sporadic α-synucleinopathies. Full article
Open AccessReview Erythropoietin: New Directions for the Nervous System
Int. J. Mol. Sci. 2012, 13(9), 11102-11129; doi:10.3390/ijms130911102
Received: 11 July 2012 / Revised: 16 August 2012 / Accepted: 30 August 2012 / Published: 6 September 2012
Cited by 34 | PDF Full-text (279 KB) | HTML Full-text | XML Full-text
Abstract
New treatment strategies with erythropoietin (EPO) offer exciting opportunities to prevent the onset and progression of neurodegenerative disorders that currently lack effective therapy and can progress to devastating disability in patients. EPO and its receptor are present in multiple systems of the body
[...] Read more.
New treatment strategies with erythropoietin (EPO) offer exciting opportunities to prevent the onset and progression of neurodegenerative disorders that currently lack effective therapy and can progress to devastating disability in patients. EPO and its receptor are present in multiple systems of the body and can impact disease progression in the nervous, vascular, and immune systems that ultimately affect disorders such as Alzheimer’s disease, Parkinson’s disease, retinal injury, stroke, and demyelinating disease. EPO relies upon wingless signaling with Wnt1 and an intimate relationship with the pathways of phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Modulation of these pathways by EPO can govern the apoptotic cascade to control b-catenin, glycogen synthase kinase-3b, mitochondrial permeability, cytochrome c release, and caspase activation. Yet, EPO and each of these downstream pathways require precise biological modulation to avert complications associated with the vascular system, tumorigenesis, and progression of nervous system disorders. Further understanding of the intimate and complex relationship of EPO and the signaling pathways of Wnt, PI 3-K, Akt, and mTOR are critical for the effective clinical translation of these cell pathways into robust treatments for neurodegenerative disorders. Full article
Open AccessArticle Neuroprotective Effects of Erucin against 6-Hydroxydopamine-Induced Oxidative Damage in a Dopaminergic-like Neuroblastoma Cell Line
Int. J. Mol. Sci. 2012, 13(9), 10899-10910; doi:10.3390/ijms130910899
Received: 1 August 2012 / Revised: 20 August 2012 / Accepted: 22 August 2012 / Published: 30 August 2012
Cited by 12 | PDF Full-text (472 KB) | HTML Full-text | XML Full-text
Abstract
Oxidative stress (OS) contributes to the cascade leading to the dysfunction or death of dopaminergic neurons during Parkinson’s disease (PD). A strategy to prevent the OS of dopaminergic neurons may be the use of phytochemicals as inducers of endogenous antioxidants and phase 2
[...] Read more.
Oxidative stress (OS) contributes to the cascade leading to the dysfunction or death of dopaminergic neurons during Parkinson’s disease (PD). A strategy to prevent the OS of dopaminergic neurons may be the use of phytochemicals as inducers of endogenous antioxidants and phase 2 enzymes. In this study, we demonstrated that treatment of the dopaminergic-like neuroblastoma SH-SY5Y cell line with isothiocyanate erucin (ER), a compound of cruciferous vegetables, resulted in significant increases of both total glutathione (GSH) levels and total antioxidant capacity at the cytosolic level. The increase of GSH levels was associated with an increase in the resistance of SH-SY5Y cells to neuronal death, in terms of apoptosis, induced by 6-hydroxydopamine (6-OHDA). The pretreatment of SH-SY5Y cells with ER was also shown to prevent the redox status impairment, in terms of intracellular ROS and O2•− formation, and loss of mitochondrial membrane potential, early events that are initiators of the apoptotic process, induced by 6-OHDA. Last, the antiapoptotic and antioxidant effects of ER were abolished by buthionine sulfoximine, supporting the main role of GSH in the neuroprotective effects recorded by ER. These results suggest that ER may prevent the oxidative damage induced by 6-OHDA. Full article
Figures

Open AccessReview Recent Advances on the Neuroprotective Potential of Antioxidants in Experimental Models of Parkinson’s Disease
Int. J. Mol. Sci. 2012, 13(8), 10608-10629; doi:10.3390/ijms130810608
Received: 26 July 2012 / Revised: 13 August 2012 / Accepted: 14 August 2012 / Published: 23 August 2012
Cited by 24 | PDF Full-text (285 KB) | HTML Full-text | XML Full-text
Abstract
Parkinson’s disease (PD), a neurodegenerative movement disorder of the central nervous system (CNS) is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain. Although the etiology of PD is not completely understood and is
[...] Read more.
Parkinson’s disease (PD), a neurodegenerative movement disorder of the central nervous system (CNS) is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain. Although the etiology of PD is not completely understood and is believed to be multifactorial, oxidative stress and mitochondrial dysfunction are widely considered major consequences, which provide important clues to the disease mechanisms. Studies have explored the role of free radicals and oxidative stress that contributes to the cascade of events leading to dopamine cell degeneration in PD. In general, in-built protective mechanisms consisting of enzymatic and non-enzymatic antioxidants in the CNS play decisive roles in preventing neuronal cell loss due to free radicals. But the ability to produce these antioxidants decreases with aging. Therefore, antioxidant therapy alone or in combination with current treatment methods may represent an attractive strategy for treating or preventing the neurodegeneration seen in PD. Here we summarize the recent discoveries of potential antioxidant compounds for modulating free radical mediated oxidative stress leading to neurotoxicity in PD. Full article
Open AccessArticle Monocyte Chemotactic Protein-1 as a Potential Biomarker for Early Anti-Thrombotic Therapy after Ischemic Stroke
Int. J. Mol. Sci. 2012, 13(7), 8670-8678; doi:10.3390/ijms13078670
Received: 7 May 2012 / Revised: 21 June 2012 / Accepted: 3 July 2012 / Published: 12 July 2012
Cited by 7 | PDF Full-text (291 KB) | HTML Full-text | XML Full-text
Abstract
Inflammation following ischemic brain injury is correlated with adverse outcome. Preclinical studies indicate that treatment with acetylsalicylic acid + extended-release dipyridamole (ASA + ER-DP) has anti-inflammatory and thereby neuroprotective effects by inhibition of monocyte chemotactic protein-1 (MCP-1) expression. We hypothesized that early treatment
[...] Read more.
Inflammation following ischemic brain injury is correlated with adverse outcome. Preclinical studies indicate that treatment with acetylsalicylic acid + extended-release dipyridamole (ASA + ER-DP) has anti-inflammatory and thereby neuroprotective effects by inhibition of monocyte chemotactic protein-1 (MCP-1) expression. We hypothesized that early treatment with ASA + ER-DP will reduce levels of MCP-1 also in patients with ischemic stroke. The EARLY trial randomized patients with ischemic stroke or TIA to either ASA + ER-DP treatment or ASA monotherapy within 24 h following the event. After 7 days, all patients were treated for up to 90 days with ASA + ER-DP. MCP-1 was determined from blood samples taken from 425 patients on admission and day 8. The change in MCP-1 from admission to day 8 did not differ between patients treated with ASA + ER-DP and ASA monotherapy (p > 0.05). Comparisons within MCP-1 baseline quartiles indicated that patients in the highest quartile (>217–973 pg/mL) showed improved outcome at 90 days if treated with ASA + ER-DP in comparison to treatment with ASA alone (p = 0.004). Our data does not provide any evidence that treatment with ASA + ER-DP lowers MCP-1 in acute stroke patients. However, MCP-1 may be a useful biomarker for deciding on early stroke therapy, as patients with high MCP-1 at baseline appear to benefit from early treatment with ASA + ER-DP. Full article
Open AccessReview Effect of PACAP in Central and Peripheral Nerve Injuries
Int. J. Mol. Sci. 2012, 13(7), 8430-8448; doi:10.3390/ijms13078430
Received: 11 May 2012 / Revised: 25 June 2012 / Accepted: 26 June 2012 / Published: 6 July 2012
Cited by 31 | PDF Full-text (145 KB) | HTML Full-text | XML Full-text
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a bioactive peptide with diverse effects in the nervous system. In addition to its more classic role as a neuromodulator, PACAP functions as a neurotrophic factor. Several neurotrophic factors have been shown to play an important
[...] Read more.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a bioactive peptide with diverse effects in the nervous system. In addition to its more classic role as a neuromodulator, PACAP functions as a neurotrophic factor. Several neurotrophic factors have been shown to play an important role in the endogenous response following both cerebral ischemia and traumatic brain injury and to be effective when given exogenously. A number of studies have shown the neuroprotective effect of PACAP in different models of ischemia, neurodegenerative diseases and retinal degeneration. The aim of this review is to summarize the findings on the neuroprotective potential of PACAP in models of different traumatic nerve injuries. Expression of endogenous PACAP and its specific PAC1 receptor is elevated in different parts of the central and peripheral nervous system after traumatic injuries. Some experiments demonstrate the protective effect of exogenous PACAP treatment in different traumatic brain injury models, in facial nerve and optic nerve trauma. The upregulation of endogenous PACAP and its receptors and the protective effect of exogenous PACAP after different central and peripheral nerve injuries show the important function of PACAP in neuronal regeneration indicating that PACAP may also be a promising therapeutic agent in injuries of the nervous system. Full article
Open AccessReview Clinical Neuroprotective Drugs for Treatment and Prevention of Stroke
Int. J. Mol. Sci. 2012, 13(6), 7739-7761; doi:10.3390/ijms13067739
Received: 15 May 2012 / Revised: 15 June 2012 / Accepted: 19 June 2012 / Published: 21 June 2012
Cited by 6 | PDF Full-text (170 KB) | HTML Full-text | XML Full-text
Abstract
Stroke is an enormous public health problem with an imperative need for more effective therapies. In therapies for ischemic stroke, tissue plasminogen activators, antiplatelet agents and anticoagulants are used mainly for their antithrombotic effects. However, free radical scavengers, minocycline and growth factors have
[...] Read more.
Stroke is an enormous public health problem with an imperative need for more effective therapies. In therapies for ischemic stroke, tissue plasminogen activators, antiplatelet agents and anticoagulants are used mainly for their antithrombotic effects. However, free radical scavengers, minocycline and growth factors have shown neuroprotective effects in the treatment of stroke, while antihypertensive drugs, lipid-lowering drugs and hypoglycemic drugs have shown beneficial effects for the prevention of stroke. In the present review, we evaluate the treatment and prevention of stroke in light of clinical studies and discuss new anti-stroke effects other than the main effects of drugs, focusing on optimal pharmacotherapy. Full article
Open AccessReview Dietary Supplementations as Neuroprotective Therapies: Focus on NT-020 Diet Benefits in a Rat Model of Stroke
Int. J. Mol. Sci. 2012, 13(6), 7424-7444; doi:10.3390/ijms13067424
Received: 9 March 2012 / Revised: 4 June 2012 / Accepted: 5 June 2012 / Published: 15 June 2012
Cited by 3 | PDF Full-text (433 KB) | HTML Full-text | XML Full-text
Abstract
Stroke remains the number one cause of disability in the adult population. Despite scientific progress in our understanding of stroke pathology, only one treatment (tissue plasminogen activator or tPA) is able to afford benefits but to less than 3% of ischemic stroke patients.
[...] Read more.
Stroke remains the number one cause of disability in the adult population. Despite scientific progress in our understanding of stroke pathology, only one treatment (tissue plasminogen activator or tPA) is able to afford benefits but to less than 3% of ischemic stroke patients. The development of experimental dietary supplement therapeutics designed to stimulate endogenous mechanisms that confer neuroprotection is likely to open new avenues for exploring stroke therapies. The present review article evaluates the recent literature supporting the benefits of dietary supplementation for the therapy of ischemic stroke. This article focuses on discussing the medical benefits of NT-020 as an adjunct agent for stroke therapy. Based on our preliminary data, a pre-stroke treatment with dietary supplementation promotes neuroprotection by decreasing inflammation and enhancing neurogenesis. However, we recognize that a pre-stroke treatment holds weak clinical relevance. Thus, the main goal of this article is to provide information about recent data that support the assumption of natural compounds as neuroprotective and to evaluate the therapeutic effects of a dietary supplement called NT-020 as in a stroke model. We focus on a systematic assessment of practical treatment parameters so that NT-020 and other dietary supplementations can be developed as an adjunct agent for the prevention or treatment of chronic diseases. We offer rationale for determining the optimal dosage, therapeutic window, and mechanism of action of NT-020 as a dietary supplement to produce neuroprotection when administered immediately after stroke onset. We highlight our long-standing principle in championing both translational and basic science approaches in an effort to fully reveal the therapeutic potential of NT-020 as dietary supplementation in the treatment of stroke. We envision dietary supplementation as an adjunct therapy for stroke at acute, subacute, and even chronic periods. Full article
Open AccessReview Neuroglobin, a Novel Target for Endogenous Neuroprotection against Stroke and Neurodegenerative Disorders
Int. J. Mol. Sci. 2012, 13(6), 6995-7014; doi:10.3390/ijms13066995
Received: 28 April 2012 / Revised: 25 May 2012 / Accepted: 31 May 2012 / Published: 7 June 2012
Cited by 28 | PDF Full-text (248 KB) | HTML Full-text | XML Full-text
Abstract
Brain neurons and tissues respond to sublethal injury by activating endogenous protective pathways. Recently, following the failure of a large number of clinical trials for protective strategies against stroke that aim to inhibit a specific ischemia response pathway, endogenous neuroprotection has emerged as
[...] Read more.
Brain neurons and tissues respond to sublethal injury by activating endogenous protective pathways. Recently, following the failure of a large number of clinical trials for protective strategies against stroke that aim to inhibit a specific ischemia response pathway, endogenous neuroprotection has emerged as a more promising and hopeful strategy for development of therapeutics against stroke and neurodegenerative disorders. Neuroglobin (Ngb) is an oxygen-binding globin protein that is highly and specifically expressed in brain neurons. Accumulating evidence have clearly demonstrated that Ngb is an endogenous neuroprotective molecule against hypoxic/ischemic and oxidative stress-related insults in cultured neurons and animals, as well as neurodegenerative disorders such as Alzheimer’s disease, thus any pharmacological strategy that can up-regulate endogenous Ngb expression may lead to novel therapeutics against these brain disorders. In this review, we summarize recent studies about the biological function, regulation of gene expression, and neuroprotective mechanisms of Ngb. Furthermore, strategies for identification of chemical compounds that can up-regulate endogenous Ngb expression for neuroprotection against stroke and neurodegenerative disorders are discussed. Full article
Figures

Open AccessArticle Deleterious Effects of High Dose Connexin 43 Mimetic Peptide Infusion After Cerebral Ischaemia in Near-Term Fetal Sheep
Int. J. Mol. Sci. 2012, 13(5), 6303-6319; doi:10.3390/ijms13056303
Received: 9 April 2012 / Revised: 8 May 2012 / Accepted: 14 May 2012 / Published: 22 May 2012
Cited by 12 | PDF Full-text (763 KB) | HTML Full-text | XML Full-text
Abstract
Hypoxic-ischaemic brain injury at birth is associated with 1–3/1000 cases of moderate to severe encephalopathy. Previously, we have shown that connexin 43 hemichannel blockade, with a specific mimetic peptide, reduced the occurrence of seizures, improved recovery of EEG power and sleep state cycling,
[...] Read more.
Hypoxic-ischaemic brain injury at birth is associated with 1–3/1000 cases of moderate to severe encephalopathy. Previously, we have shown that connexin 43 hemichannel blockade, with a specific mimetic peptide, reduced the occurrence of seizures, improved recovery of EEG power and sleep state cycling, and improved cell survival following global cerebral ischaemia. In the present study, we examined the dose response for intracerebroventricular mimetic peptide infusion (50 µmol/kg/h for 1 h, followed by 50 µmol/kg/24 h (low dose) or 50 µmol/kg/h for 25 h (high dose) or vehicle only (control group), starting 90 min after the end of ischaemia), following global cerebral ischaemia, induced by 30 min bilateral carotid artery occlusion, in near-term fetal sheep (128 ± 1 days gestation). Both peptide infusion groups were associated with a transient significant increase in EEG power between 2–12 h after ischaemia. The ischaemia-low dose group showed a significant recovery of EEG power from day five compared to the ischaemia-vehicle and -high dose groups. In contrast, the high dose infusion was associated with greater secondary increase in impedance (brain cell swelling), as well as a trend towards a greater increase in lactate concentration and mortality. These data suggest that higher doses of connexin mimetic peptide are not beneficial and may be associated with adverse outcomes, most likely attributable to uncoupling of connexin 43 gap junctions leading to dysfunction of the astrocytic syncytium. Full article

2011

Jump to: 2017, 2016, 2015, 2014, 2013, 2012, 2010, 2009

Open AccessReview Mechanisms of Estrogens’ Dose-Dependent Neuroprotective and Neurodamaging Effects in Experimental Models of Cerebral Ischemia
Int. J. Mol. Sci. 2011, 12(3), 1533-1562; doi:10.3390/ijms12031533
Received: 17 August 2010 / Revised: 10 February 2011 / Accepted: 22 February 2011 / Published: 25 February 2011
Cited by 33 | PDF Full-text (446 KB) | HTML Full-text | XML Full-text
Abstract
Ever since the hypothesis was put forward that estrogens could protect against cerebral ischemia, numerous studies have investigated the mechanisms of their effects. Despite initial studies showing ameliorating effects, later trials in both humans and animals have yielded contrasting results regarding the fundamental
[...] Read more.
Ever since the hypothesis was put forward that estrogens could protect against cerebral ischemia, numerous studies have investigated the mechanisms of their effects. Despite initial studies showing ameliorating effects, later trials in both humans and animals have yielded contrasting results regarding the fundamental issue of whether estrogens are neuroprotective or neurodamaging. Therefore, investigations of the possible mechanisms of estrogen actions in brain ischemia have been difficult to assess. A recently published systematic review from our laboratory indicates that the dichotomy in experimental rat studies may be caused by the use of insufficiently validated estrogen administration methods resulting in serum hormone concentrations far from those intended, and that physiological estrogen concentrations are neuroprotective while supraphysiological concentrations augment the damage from cerebral ischemia. This evidence offers a new perspective on the mechanisms of estrogens’ actions in cerebral ischemia, and also has a direct bearing on the hormone replacement therapy debate. Estrogens affect their target organs by several different pathways and receptors, and the mechanisms proposed for their effects on stroke probably prevail in different concentration ranges. In the current article, previously suggested neuroprotective and neurodamaging mechanisms are reviewed in a hormone concentration perspective in an effort to provide a mechanistic framework for the dose-dependent paradoxical effects of estrogens in stroke. It is concluded that five protective mechanisms, namely decreased apoptosis, growth factor regulation, vascular modulation, indirect antioxidant properties and decreased inflammation, and the proposed damaging mechanism of increased inflammation, are currently supported by experiments performed in optimal biological settings. Full article
Open AccessArticle In Silico Theoretical Molecular Modeling for Alzheimer’s Disease: The Nicotine-Curcumin Paradigm in Neuroprotection and Neurotherapy
Int. J. Mol. Sci. 2011, 12(1), 694-724; doi:10.3390/ijms12010694
Received: 2 December 2010 / Revised: 14 January 2011 / Accepted: 15 January 2011 / Published: 19 January 2011
Cited by 35 | PDF Full-text (1440 KB) | HTML Full-text | XML Full-text
Abstract
The aggregation of the amyloid-β-peptide (AβP) into well-ordered fibrils has been considered as the key pathological marker of Alzheimer’s disease. Molecular attributes related to the specific binding interactions, covalently and non-covalently, of a library of compounds targeting of conformational scaffolds were computed employing
[...] Read more.
The aggregation of the amyloid-β-peptide (AβP) into well-ordered fibrils has been considered as the key pathological marker of Alzheimer’s disease. Molecular attributes related to the specific binding interactions, covalently and non-covalently, of a library of compounds targeting of conformational scaffolds were computed employing static lattice atomistic simulations and array constructions. A combinatorial approach using isobolographic analysis was stochastically modeled employing Artificial Neural Networks and a Design of Experiments approach, namely an orthogonal Face-Centered Central Composite Design for small molecules, such as curcumin and glycosylated nornicotine exhibiting concentration-dependent behavior on modulating AβP aggregation and oligomerization. This work provides a mathematical and in silico approach that constitutes a new frontier in providing neuroscientists with a template for in vitro and in vivo experimentation. In future this could potentially allow neuroscientists to adopt this in silico approach for the development of novel therapeutic interventions in the neuroprotection and neurotherapy of Alzheimer’s disease. In addition, the neuroprotective entities identified in this study may also be valuable in this regard. Full article
Open AccessReview The Biochemical and Cellular Basis for Nutraceutical Strategies to Attenuate Neurodegeneration in Parkinson’s Disease
Int. J. Mol. Sci. 2011, 12(1), 506-569; doi:10.3390/ijms12010506
Received: 18 November 2010 / Revised: 5 January 2011 / Accepted: 14 January 2011 / Published: 17 January 2011
Cited by 17 | PDF Full-text (979 KB) | HTML Full-text | XML Full-text
Abstract
Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc
[...] Read more.
Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc dopaminergic (DAergic) neurons and decay of the striatal tract. While genetic mutations or environmental toxins can precipitate pathology, progressive degenerative succession involves a gradual decline in DA neurotransmission/synaptic uptake, impaired oxidative glucose consumption, a rise in striatal lactate and chronic inflammation. Nutraceuticals play a fundamental role in energy metabolism and signaling transduction pathways that control neurotransmission and inflammation. However, the use of nutritional supplements to slow the progression of PD has met with considerable challenge and has thus far proven unsuccessful. This review re-examines precipitating factors and insults involved in PD and how nutraceuticals can affect each of these biological targets. Discussed are disease dynamics (Sections 1 and 2) and natural substances, vitamins and minerals that could impact disease processes (Section 3). Topics include nutritional influences on α-synuclein aggregation, ubiquitin proteasome function, mTOR signaling/lysosomal-autophagy, energy failure, faulty catecholamine trafficking, DA oxidation, synthesis of toxic DA-quinones, o-semiquinones, benzothiazolines, hyperhomocyseinemia, methylation, inflammation and irreversible oxidation of neuromelanin. In summary, it is clear that future research will be required to consider the multi-faceted nature of this disease and re-examine how and why the use of nutritional multi-vitamin-mineral and plant-based combinations could be used to slow the progression of PD, if possible. Full article

2010

Jump to: 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2009

Open AccessArticle Neuroprotective Properties of Picroside II in a Rat Model of Focal Cerebral Ischemia
Int. J. Mol. Sci. 2010, 11(11), 4580-4590; doi:10.3390/ijms11114580
Received: 6 October 2010 / Revised: 30 October 2010 / Accepted: 30 October 2010 / Published: 16 November 2010
Cited by 36 | PDF Full-text (128 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this study was to explore the effect of picroside II on neuronal apoptosis and the expression of caspase-3 and poly ADP-ribose polymerase (PARP) following middle cerebral artery occlusion/reperfusion in male Wistar rats. Picroside II (10 mg/kg) was administered intravenously into
[...] Read more.
The aim of this study was to explore the effect of picroside II on neuronal apoptosis and the expression of caspase-3 and poly ADP-ribose polymerase (PARP) following middle cerebral artery occlusion/reperfusion in male Wistar rats. Picroside II (10 mg/kg) was administered intravenously into the tail vein of the animals. The neurological function deficits were evaluated with the Bederson’s test and the cerebral infarction volume was visualized with tetrazolium chloride (TTC) staining. The apoptotic cells were counted by in situ terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphate nick end labeling (TUNEL) assay. The immunohistochemistry stain and enzyme linked immunosorbent assay (ELISA) was used to determine the expressions of caspase-3 and PARP in brain tissue. The results indicated that rats in the control group showed neurological function deficit and cerebral infarction in ischemic hemisphere after two hours ischemia followed by 22 hours reperfusion. Caspase-3 and PARP expressions were also profound in the cortex, the striatum and the hippocampus, along with increased apoptotic cells in this group. Bederson's score, infarction volume, and expressions of caspase-3 and PARP, as well as apoptosis in the treatment group were, however, significantly decreased compared to those in the control group indicating that intravenous treatment with picroside II might be beneficial to inhibit neuronal apoptosis and, thus, to improve the neurological function of rats upon cerebral ischemia reperfusion injury. Full article
Open AccessArticle Neuroprotective Properties of Mildronate, a Small Molecule, in a Rat Model of Parkinson’s Disease
Int. J. Mol. Sci. 2010, 11(11), 4465-4487; doi:10.3390/ijms11114465
Received: 20 September 2010 / Revised: 22 October 2010 / Accepted: 27 October 2010 / Published: 9 November 2010
Cited by 11 | PDF Full-text (1454 KB) | HTML Full-text | XML Full-text
Abstract
Previously, we have found that mildronate [3-(2,2,2-trimethylhydrazinium) propionate dihydrate], a small molecule with charged nitrogen and oxygen atoms, protects mitochondrial metabolism that is altered by inhibitors of complex I and has neuroprotective effects in an azidothymidine-neurotoxicity mouse model. In the present study, we
[...] Read more.
Previously, we have found that mildronate [3-(2,2,2-trimethylhydrazinium) propionate dihydrate], a small molecule with charged nitrogen and oxygen atoms, protects mitochondrial metabolism that is altered by inhibitors of complex I and has neuroprotective effects in an azidothymidine-neurotoxicity mouse model. In the present study, we investigated the effects of mildronate in a rat model of Parkinson’s disease (PD) that was generated via a unilateral intrastriatal injection of the neurotoxin 6-hydroxydopamine (6‑OHDA). We assessed the expression of cell biomarkers that are involved in signaling cascades and provide neural and glial integration: the neuronal marker TH (tyrosine hydroxylase); ubiquitin (a regulatory peptide involved in the ubiquitin-proteasome degradation system); Notch-3 (a marker of progenitor cells); IBA-1 (a marker of microglial cells); glial fibrillary acidic protein, GFAP (a marker of astrocytes); and inducible nitric oxide synthase, iNOS (a marker of inflammation). The data show that in the 6-OHDA-lesioned striatum, mildronate completely prevented the loss of TH, stimulated Notch-3 expression and decreased the expression of ubiquitin, GFAP and iNOS. These results provide evidence for the ability of mildronate to control the expression of an array of cellular proteins and, thus, impart multi-faceted homeostatic mechanisms in neurons and glial cells in a rat model of PD. We suggest that the use of mildronate provides a protective effect during the early stages of PD that can delay or halt the progression of this neurodegenerative disease. Full article
Figures

Open AccessReview Human Umbilical Cord Blood Stem Cells: Rational for Use as a Neuroprotectant in Ischemic Brain Disease
Int. J. Mol. Sci. 2010, 11(9), 3513-3528; doi:10.3390/ijms11093513
Received: 18 August 2010 / Revised: 15 September 2010 / Accepted: 15 September 2010 / Published: 21 September 2010
Cited by 12 | PDF Full-text (283 KB) | HTML Full-text | XML Full-text
Abstract
The use of stem cells for reparative medicine was first proposed more than three decades ago. Hematopoietic stem cells from bone marrow, peripheral blood and human umbilical cord blood (CB) have gained major use for treatment of hematological indications. CB, however, is also
[...] Read more.
The use of stem cells for reparative medicine was first proposed more than three decades ago. Hematopoietic stem cells from bone marrow, peripheral blood and human umbilical cord blood (CB) have gained major use for treatment of hematological indications. CB, however, is also a source of cells capable of differentiating into various non-hematopoietic cell types, including neural cells. Several animal model reports have shown that CB cells may be used for treatment of neurological injuries. This review summarizes the information available on the origin of CB-derived neuronal cells and the mechanisms proposed to explain their action. The potential use of stem/progenitor cells for treatment of ischemic brain injuries is discussed. Issues that remain to be resolved at the present stage of preclinical trials are addressed. Full article
Open AccessReview The Yin and Yang of VEGF and PEDF: Multifaceted Neurotrophic Factors and Their Potential in the Treatment of Parkinson’s Disease
Int. J. Mol. Sci. 2010, 11(8), 2875-2900; doi:10.3390/ijms11082875
Received: 24 May 2010 / Revised: 25 July 2010 / Accepted: 30 July 2010 / Published: 5 August 2010
Cited by 17 | PDF Full-text (405 KB) | HTML Full-text | XML Full-text
Abstract
Over the last few decades, vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) have emerged as multifaceted players in not only the pathogenesis, but potential treatment, of numerous diseases. They activate diverse intracellular signaling cascades known to have extensive crosstalk, and
[...] Read more.
Over the last few decades, vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) have emerged as multifaceted players in not only the pathogenesis, but potential treatment, of numerous diseases. They activate diverse intracellular signaling cascades known to have extensive crosstalk, and have been best studied for their effects in cardiology and cancer biology. Recent work with the two factors indicates that the activity of one growth factor is often directly related to the action of the other. Their respective neuroprotective effects, in particular, raise important questions regarding the treatment of neurodegenerative disorders, including Parkinson’s disease. Full article
Open AccessArticle The Effect of Treadmill Training Pre-Exercise on Glutamate Receptor Expression in Rats after Cerebral Ischemia
Int. J. Mol. Sci. 2010, 11(7), 2658-2669; doi:10.3390/ijms11072658
Received: 4 June 2010 / Revised: 2 July 2010 / Accepted: 2 July 2010 / Published: 7 July 2010
Cited by 22 | PDF Full-text (474 KB) | HTML Full-text | XML Full-text
Abstract
Physical exercise has been demonstrated to be neuroprotective in both clinical and laboratory settings. However, the exact mechanism underlying this effect is unclear. Our study aimed to investigate whether pre-ischemic treadmill training could serve as a form of ischemic preconditioning in a rat
[...] Read more.
Physical exercise has been demonstrated to be neuroprotective in both clinical and laboratory settings. However, the exact mechanism underlying this effect is unclear. Our study aimed to investigate whether pre-ischemic treadmill training could serve as a form of ischemic preconditioning in a rat model undergoing middle cerebral artery occlusion (MCAO). Thirty-six rats were divided into three groups: a sham control group, a non-exercise with operation group and an exercise with operation group. After treadmill training, ischemia was induced by occluding the MCA for 2 h, followed by reperfusion. Half of the rats in each group were sacrificed for mRNA detection of mGluR5 and NR2B 80 min after occlusion. The remaining animals were evaluated for neurological deficits by behavioral scoring and then decapitated to assess the infarct volume. The mRNA expression of mGluR5 and NR2B was detected by real-time PCR. The results suggest that pre-ischemic treadmill training may induce brain ischemic tolerance by reducing the mRNA levels of mGluR5 and NR2B, and thus, the results indicate that physical exercise might be an effective method to establish ischemic preconditioning. Full article
Figures

Open AccessReview An Antiapoptotic Neuroprotective Role for Neuroglobin
Int. J. Mol. Sci. 2010, 11(6), 2306-2321; doi:10.3390/ijms11062306
Received: 10 May 2010 / Revised: 24 May 2010 / Accepted: 24 May 2010 / Published: 27 May 2010
Cited by 38 | PDF Full-text (404 KB) | HTML Full-text | XML Full-text
Abstract
Cell death associated with mitochondrial dysfunction is common in acute neurological disorders and in neurodegenerative diseases. Neuronal apoptosis is regulated by multiple proteins, including neuroglobin, a small heme protein of ancient origin. Neuroglobin is found in high concentration in some neurons, and its
[...] Read more.
Cell death associated with mitochondrial dysfunction is common in acute neurological disorders and in neurodegenerative diseases. Neuronal apoptosis is regulated by multiple proteins, including neuroglobin, a small heme protein of ancient origin. Neuroglobin is found in high concentration in some neurons, and its high expression has been shown to promote survival of neurons in vitro and to protect brain from damage by both stroke and Alzheimer’s disease in vivo. Early studies suggested this protective role might arise from the protein’s capacity to bind oxygen or react with nitric oxide. Recent data, however, suggests that neither of these functions is likely to be of physiological significance. Other studies have shown that neuroglobin reacts very rapidly with cytochrome c released from mitochondria during cell death, thus interfering with the intrinsic pathway of apoptosis. Systems level computational modelling suggests that the physiological role of neuroglobin is to reset the trigger level for the post-mitochondrial execution of apoptosis. An understanding of the mechanism of action of neuroglobin might thus provide a rational basis for the design of new drug targets for inhibiting excessive neuronal cell death. Full article
Figures

Open AccessArticle Neuritogenic and Neuroprotective Properties of Peptide Agonists of the Fibroblast Growth Factor Receptor
Int. J. Mol. Sci. 2010, 11(6), 2291-2305; doi:10.3390/ijms11062291
Received: 16 April 2010 / Accepted: 21 May 2010 / Published: 26 May 2010
Cited by 5 | PDF Full-text (323 KB) | HTML Full-text | XML Full-text
Abstract
Fibroblast growth factor receptors (FGFRs) interact with their cognate ligands, FGFs, and with a number of cell adhesion molecules (CAMs), such as the neural cell adhesion molecule (NCAM), mediating a wide range of events during the development and maintenance of the nervous system.
[...] Read more.
Fibroblast growth factor receptors (FGFRs) interact with their cognate ligands, FGFs, and with a number of cell adhesion molecules (CAMs), such as the neural cell adhesion molecule (NCAM), mediating a wide range of events during the development and maintenance of the nervous system. Determination of protein structure, in silico modeling and biological studies have recently resulted in the identification of FGFR binding peptides derived from various FGFs and NCAM mimicking the effects of these molecules with regard to their neuritogenic and neuroprotective properties. This review focuses on recently developed functional peptide agonists of FGFR with possible therapeutic potential. Full article
Figures

Open AccessArticle Lutein Protects RGC-5 Cells Against Hypoxia and Oxidative Stress
Int. J. Mol. Sci. 2010, 11(5), 2109-2117; doi:10.3390/ijms11052109
Received: 28 March 2010 / Revised: 13 April 2010 / Accepted: 3 May 2010 / Published: 11 May 2010
Cited by 39 | PDF Full-text (772 KB) | HTML Full-text | XML Full-text
Abstract
Retinal ischemia and oxidative stress lead to neuronal death in many ocular pathologies. Recently, we found that lutein, an oxy-carotenoid, protected the inner retina from ischemia/reperfusion injury. However, it is uncertain whether lutein directly protects retinal ganglion cells (RGCs). Here, an in vitro
[...] Read more.
Retinal ischemia and oxidative stress lead to neuronal death in many ocular pathologies. Recently, we found that lutein, an oxy-carotenoid, protected the inner retina from ischemia/reperfusion injury. However, it is uncertain whether lutein directly protects retinal ganglion cells (RGCs). Here, an in vitro model of hypoxia and oxidative stress was used to further investigate the neuroprotective role of lutein in RGCs. Cobalt chloride (CoCl2)and hydrogen peroxide (H2O2) were added to a transformed RGC cell line, RGC-5, to induce chemical hypoxia and oxidative stress, respectively. Either lutein or vehicle was added to cultured cells. A higher cell count was observed in the lutein-treated cells compared with the vehicle-treated cells. Our data from this in vitro model revealed that lutein might protect RGC-5 cells from damage when exposed to either CoCl2-induced chemical hypoxia or H2O2-induced oxidative stress. These results suggest that lutein may play a role as a neuroprotectant. Full article
Open AccessReview Stem Cell-Based Neuroprotective and Neurorestorative Strategies
Int. J. Mol. Sci. 2010, 11(5), 2039-2055; doi:10.3390/ijms11052039
Received: 23 March 2010 / Revised: 8 April 2010 / Accepted: 18 April 2010 / Published: 5 May 2010
Cited by 15 | PDF Full-text (195 KB) | HTML Full-text | XML Full-text
Abstract
Stem cells, a special subset of cells derived from embryo or adult tissues, are known to present the characteristics of self-renewal, multiple lineages of differentiation, high plastic capability, and long-term maintenance. Recent reports have further suggested that neural stem cells (NSCs) derived from
[...] Read more.
Stem cells, a special subset of cells derived from embryo or adult tissues, are known to present the characteristics of self-renewal, multiple lineages of differentiation, high plastic capability, and long-term maintenance. Recent reports have further suggested that neural stem cells (NSCs) derived from the adult hippocampal and subventricular regions possess the utilizing potential to develop the transplantation strategies and to screen the candidate agents for neurogenesis, neuroprotection, and neuroplasticity in neurodegenerative diseases. In this article, we review the roles of NSCs and other stem cells in neuroprotective and neurorestorative therapies for neurological and psychiatric diseases. We show the evidences that NSCs play the key roles involved in the pathogenesis of several neurodegenerative disorders, including depression, stroke and Parkinson’s disease. Moreover, the potential and possible utilities of induced pluripotent stem cells (iPS), reprogramming from adult fibroblasts with ectopic expression of four embryonic genes, are also reviewed and further discussed. An understanding of the biophysiology of stem cells could help us elucidate the pathogenicity and develop new treatments for neurodegenerative disorders. In contrast to cell transplantation therapies, the application of stem cells can further provide a platform for drug discovery and small molecular testing, including Chinese herbal medicines. In addition, the high-throughput stem cell-based systems can be used to elucidate the mechanisms of neuroprotective candidates in translation medical research for neurodegenerative diseases. Full article
Figures

Open AccessArticle A Novel PARP Inhibitor L-2286 in a Rat Model of Impact Acceleration Head Injury: An Immunohistochemical and Behavioral Study
Int. J. Mol. Sci. 2010, 11(4), 1253-1268; doi:10.3390/ijms11041253
Received: 3 November 2009 / Revised: 11 March 2010 / Accepted: 22 March 2010 / Published: 26 March 2010
Cited by 2 | PDF Full-text (932 KB) | HTML Full-text | XML Full-text
Abstract
We examined the neuro/axono-protective potential of a novel poly (ADP-ribose) polymerase (PARP) inhibitor L-2286 in a rat impact acceleration brain injury model. Male Wistar rats (n = 70) weighing 300-350 grams were used to determine the most effective intracerebroventricular (i.c.v.) dose of L-2286
[...] Read more.
We examined the neuro/axono-protective potential of a novel poly (ADP-ribose) polymerase (PARP) inhibitor L-2286 in a rat impact acceleration brain injury model. Male Wistar rats (n = 70) weighing 300-350 grams were used to determine the most effective intracerebroventricular (i.c.v.) dose of L-2286 administered 30 min after injury, and to test the neuroprotective effect at two time points (immediately, and 30 min after injury). The neuroprotective effect of L-2286 was tested using immunohistochemical (amyloid precursor protein and mid-sized mouse anti-neurofilament clone RMO-14.9 antibody) and behavioral tests (beam-balance, open-field and elevated plus maze). At both time-points, a 100 µg/rat dose of i.c.v. L-2286 significantly (p < 0.05) reduced the density of damaged axons in the corticospinal tract and medial longitudinal fascicle compared to controls. In the behavioral tests, treatment 30 min post-injury improved motor function, while the level of anxiety was reduced in both treatment protocols. Full article
Figures

Open AccessReview Novel Neuroprotective Strategies in Ischemic Retinal Lesions
Int. J. Mol. Sci. 2010, 11(2), 544-561; doi:10.3390/ijms11020544
Received: 7 January 2010 / Revised: 27 January 2010 / Accepted: 27 January 2010 / Published: 3 February 2010
Cited by 19 | PDF Full-text (430 KB) | HTML Full-text | XML Full-text
Abstract
Retinal ischemia can be effectively modeled by permanent bilateral common carotid artery occlusion, which leads to chronic hypoperfusion-induced degeneration in the entire rat retina. The complex pathways leading to retinal cell death offer a complex approach of neuroprotective strategies. In the present review
[...] Read more.
Retinal ischemia can be effectively modeled by permanent bilateral common carotid artery occlusion, which leads to chronic hypoperfusion-induced degeneration in the entire rat retina. The complex pathways leading to retinal cell death offer a complex approach of neuroprotective strategies. In the present review we summarize recent findings with different neuroprotective candidate molecules. We describe the protective effects of intravitreal treatment with: (i) urocortin 2; (ii) a mitochondrial ATP-sensitive K+ channel opener, diazoxide; (iii) a neurotrophic factor, pituitary adenylate cyclase activating polypeptide; and (iv) a novel poly(ADP-ribose) polymerase inhibitor (HO3089). The retinoprotective effects are demonstrated with morphological description and effects on apoptotic pathways using molecular biological techniques. Full article
Figures

Open AccessArticle Melatonin and Structurally-Related Compounds Protect Synaptosomal Membranes from Free Radical Damage
Int. J. Mol. Sci. 2010, 11(1), 312-328; doi:10.3390/ijms11010312
Received: 23 December 2009 / Accepted: 15 January 2010 / Published: 21 January 2010
Cited by 23 | PDF Full-text (296 KB) | HTML Full-text | XML Full-text
Abstract
Since biological membranes are composed of lipids and proteins we tested the in vitro antioxidant properties of several indoleamines from the tryptophan metabolic pathway in the pineal gland against oxidative damage to lipids and proteins of synaptosomes isolated from the rat brain. Free
[...] Read more.
Since biological membranes are composed of lipids and proteins we tested the in vitro antioxidant properties of several indoleamines from the tryptophan metabolic pathway in the pineal gland against oxidative damage to lipids and proteins of synaptosomes isolated from the rat brain. Free radicals were generated by incubation with 0.1 mM FeCl3, and 0.1 mM ascorbic acid. Levels of malondialdehyde (MDA) plus 4-hydroxyalkenal (4-HDA), and carbonyl content in the proteins were measured as indices of oxidative damage to lipids and proteins, respectively. Pinoline was the most powerful antioxidant evaluated, with melatonin, N-acetylserotonin, 5-hydroxytryptophan, 5-methoxytryptamine, 5-methoxytryptophol, and tryptoline also acting as antioxidants. Full article
Figures

Open AccessArticle Neuroprotective Effects of Ischemic Preconditioning on Global Brain Ischemia through Up-Regulation of Acid-Sensing Ion Channel 2a
Int. J. Mol. Sci. 2010, 11(1), 140-153; doi:10.3390/ijms11010140
Received: 13 November 2009 / Revised: 4 January 2010 / Accepted: 7 January 2010 / Published: 12 January 2010
Cited by 14 | PDF Full-text (478 KB) | HTML Full-text | XML Full-text
Abstract
Transient forebrain or global ischemia induces cell death in vulnerable CA1 pyramidal neurons. A brief period of ischemia, i.e., ischemic preconditioning, affords CA1 neurons robust protection against a subsequent, more prolonged ischemic challenge. Using the four-vessel occlusion model, we established an ischemic
[...] Read more.
Transient forebrain or global ischemia induces cell death in vulnerable CA1 pyramidal neurons. A brief period of ischemia, i.e., ischemic preconditioning, affords CA1 neurons robust protection against a subsequent, more prolonged ischemic challenge. Using the four-vessel occlusion model, we established an ischemic preconditioning model in which rodents were subjected to 3 min of sublethal ischemia 48 h before a 15 min lethal ischemia. We showed that preconditioning attenuated the ischemia-induced neural cell death and DNA fragmentation in the hippocampal CA1 region. RT-PCR and western blot analysis showed that preconditioning prior to an ischemic insult significantly increased ASIC 2a mRNA and protein expression in comparison to the ischemic insult alone (p < 0.01). These findings implicate a new role of ASIC 2a on endogenous neuroprotection from ischemic insult. Full article
Figures

Open AccessReview Ginkgo biloba Extract in Alzheimer’s Disease: From Action Mechanisms to Medical Practice
Int. J. Mol. Sci. 2010, 11(1), 107-123; doi:10.3390/ijms11010107
Received: 4 November 2009 / Revised: 31 December 2009 / Accepted: 1 January 2010 / Published: 8 January 2010
Cited by 50 | PDF Full-text (201 KB) | HTML Full-text | XML Full-text
Abstract
Standardized extract from the leaves of the Ginkgo biloba tree, labeled EGb761, is one of the most popular herbal supplements. Numerous preclinical studies have shown the neuroprotective effects of EGb761 and support the notion that it may be effective in the treatment and
[...] Read more.
Standardized extract from the leaves of the Ginkgo biloba tree, labeled EGb761, is one of the most popular herbal supplements. Numerous preclinical studies have shown the neuroprotective effects of EGb761 and support the notion that it may be effective in the treatment and prevention of neurodegenerative disorders such as Alzheimer’s disease (AD). Despite the preclinical promise, the clinical efficacy of this drug remains elusive. In this review, possible mechanisms underlying neuroprotective actions of EGb761 are described in detail, together with a brief discussion of the problem of studying this herb clinically to verify its efficacy in the treatment and prevention of AD. Moreover, various parameters e.g., the dosage and the permeability of the blood brain barrier (BBB), impacting the outcome of the clinical effectiveness of the extract are also discussed. Overall, the findings summarized in this review suggest that, a better understanding of the neuroprotective mechanisms of EGb761 may contribute to better understanding of the effectiveness and complexity of this herb and may also be helpful for design of therapeutic strategies in future clinical practice. Therefore, in future clinical studies, different factors that could interfere with the effect of EGb761 should be considered. Full article

2009

Jump to: 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010

Open AccessArticle Oxidative Neurodegeneration Is Prevented by UCP0045037, an Allosteric Modulator for the Reduced Form of DJ-1, a Wild-Type of Familial Parkinson’s Disease-Linked PARK7
Int. J. Mol. Sci. 2009, 10(11), 4789-4804; doi:10.3390/ijms10114789
Received: 17 September 2009 / Revised: 21 October 2009 / Accepted: 2 November 2009 / Published: 5 November 2009
Cited by 7 | PDF Full-text (1065 KB) | HTML Full-text | XML Full-text
Abstract
Although a loss-of-function mutation has been identified in familial Parkinson’s disease PARK7, the wild-type of DJ-1 is known to act as an oxidative stress sensor in neuronal cells. Recently, we identified UCP0045037 as a compound that bound to the reduced form of DJ-1
[...] Read more.
Although a loss-of-function mutation has been identified in familial Parkinson’s disease PARK7, the wild-type of DJ-1 is known to act as an oxidative stress sensor in neuronal cells. Recently, we identified UCP0045037 as a compound that bound to the reduced form of DJ-1 by in silico virtual screening. In this study, we determined the neuroprotective effects of UCP0045037 against focal cerebral ischemia-induced neurodegeneration in rats. Hydrogen peroxide-induced cell death was significantly inhibited by UCP0045037 in both rat mesencephalic dopaminergic neurons and human normal SH-SY5Y cells. In contrast, DJ-1-knockdown SH-SY5Y cells lost the protective activity of UCP0045037. These results suggest that UCP0045037 interacts with endogenous DJ-1 and produces a neuroprotective response. Full article

Journal Contact

MDPI AG
IJMS Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
E-Mail: 
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to IJMS Edit a special issue Review for IJMS
logo
loading...
Back to Top