ijms-logo

Journal Browser

Journal Browser

Regulation of Physiological and Morphological Responses to Plant Nutrient Deficiencies 2.0

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Genetics and Genomics".

Deadline for manuscript submissions: closed (30 June 2022) | Viewed by 7035

Special Issue Editors


E-Mail Website
Guest Editor
Universidad de Cordoba, Cordoba, Spain
Interests: regulation of physiological and morphological responses to nutrient deficiencies; molecular mechanisms of stress responses; interactions between hormones and other signals; role of beneficial rhizosphere microbes on mineral acquisition
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Departamento de Agronomía, Universidad de Córdoba, Córdoba, Spain
Interests: regulation of physiological and morphological responses to nutrient deficiencies; molecular mechanisms of stress responses; interactions between hormones and other signals; the role of beneficial rhizosphere microbes on mineral acquisition
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

To cope with nutrient deficiencies, plants develop both morphological and physiological responses. The regulation of these responses is not totally understood, but some hormones (ethylene, auxin, gibberellins, cytoquinins, jasmonate, etc.) and signaling substances (microRNAs, nitric oxide, GSH, GSNO, oxygen reactive species, etc.) have been implicated. To confer specificity to each nutrient deficiency, hormones and signaling substances should interact among them in a specific way or they can act through different transduction pathways.

Papers submitted to this Special Issue must report novelty results, new regulation working models, and the latest findings related with the regulation of the nutrient deficiency responses, mainly focused on the interactions among hormones and other substances to confer specificity to the responses.

Dr. Francisco Javier Romera
Dr. Carlos Lucena
Dr. María José García
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Plants
  • Nutrient deficiencies
  • Responses
  • Regulation
  • Hormones
  • Signaling substances
  • Crosstalk
  • Specificity
  • Interaction
  • Stress

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 4945 KiB  
Article
Genome-Wide Analysis, Evolutionary History and Response of ALMT Family to Phosphate Starvation in Brassica napus
by Ismail Din, Ihteram Ullah, Wei Wang, Hao Zhang and Lei Shi
Int. J. Mol. Sci. 2021, 22(9), 4625; https://doi.org/10.3390/ijms22094625 - 28 Apr 2021
Cited by 1 | Viewed by 3338
Abstract
Low phosphorus (P) availability is one of the major constraints to plant growth, particularly in acidic soils. A possible mechanism for enhancing the use of sparsely soluble P forms is the secretion of malate in plants by the aluminum-activated malate transporter (ALMT) gene [...] Read more.
Low phosphorus (P) availability is one of the major constraints to plant growth, particularly in acidic soils. A possible mechanism for enhancing the use of sparsely soluble P forms is the secretion of malate in plants by the aluminum-activated malate transporter (ALMT) gene family. Despite its significance in plant biology, the identification of the ALMT gene family in oilseed rape (Brassica napus; B. napus), an allotetraploid crop, is unveiled. Herein, we performed genome-wide identification and characterization of ALMTs in B. napus, determined their gene expression in different tissues and monitored transcriptional regulation of BnaALMTs in the roots and leaves at both a sufficient and a deficient P supply. Thirty-nine BnaALMT genes were identified and were clustered into five branches in the phylogenetic tree based on protein sequences. Collinearity analysis revealed that most of the BnaALMT genes shared syntenic relationships among BnaALMT members in B. napus, which suggested that whole-genome duplication (polyploidy) played a major driving force for BnaALMTs evolution in addition to segmental duplication. RNA-seq analyses showed that most BnaALMT genes were preferentially expressed in root and leaf tissues. Among them, the expression of BnaC08g13520D, BnaC08g15170D, BnaC08g15180D, BnaC08g13490D, BnaC08g13500D, BnaA08g26960D, BnaC05g14120D, BnaA06g12560D, BnaC05g20630D, BnaA07g02630D, BnaA04g15700D were significantly up-regulated in B. napus roots and leaf at a P deficient supply. The current study analyzes the evolution and the expression of the ALMT family in B. napus, which will help in further research on their role in the enhancement of soil P availability by secretion of organic acids. Full article
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 1618 KiB  
Review
Ethylene and Nitric Oxide Involvement in the Regulation of Fe and P Deficiency Responses in Dicotyledonous Plants
by María José García, Carlos Lucena and Francisco Javier Romera
Int. J. Mol. Sci. 2021, 22(9), 4904; https://doi.org/10.3390/ijms22094904 - 5 May 2021
Cited by 13 | Viewed by 3086
Abstract
Iron (Fe) and phosphorus (P) are two essential elements for plant growth. Both elements are abundant in soils but with poor availability for plants, which favor their acquisition by developing morphological and physiological responses in their roots. Although the regulation of the genes [...] Read more.
Iron (Fe) and phosphorus (P) are two essential elements for plant growth. Both elements are abundant in soils but with poor availability for plants, which favor their acquisition by developing morphological and physiological responses in their roots. Although the regulation of the genes related to these responses is not totally known, ethylene (ET) and nitric oxide (NO) have been involved in the activation of both Fe-related and P-related genes. The common involvement of ET and NO suggests that they must act in conjunction with other specific signals, more closely related to each deficiency. Among the specific signals involved in the regulation of Fe- or P-related genes have been proposed Fe-peptides (or Fe ion itself) and microRNAs, like miR399 (P), moving through the phloem. These Fe- or P-related phloem signals could interact with ET/NO and confer specificity to the responses to each deficiency, avoiding the induction of the specific responses when ET/NO increase due to other nutrient deficiencies or stresses. Besides the specificity conferred by these signals, ET itself could confer specificity to the responses to Fe- or P-deficiency by acting through different signaling pathways in each case. Given the above considerations, there are preliminary results suggesting that ET could regulate different nutrient responses by acting both in conjunction with other signals and through different signaling pathways. Because of the close relationship among these two elements, a better knowledge of the physiological and molecular basis of their interaction is necessary to improve their nutrition and to avoid the problems associated with their misuse. As examples of this interaction, it is known that Fe chlorosis can be induced, under certain circumstances, by a P over- fertilization. On the other hand, Fe oxides can have a role in the immobilization of P in soils. Qualitative and quantitative assessment of the dynamic of known Fe- and P-related genes expression, selected ad hoc and involved in each of these deficiencies, would allow us to get a profound knowledge of the processes that regulate the responses to both deficiencies. The better knowledge of the regulation by ET of the responses to these deficiencies is necessary to properly understand the interactions between Fe and P. This will allow the obtention of more efficient varieties in the absorption of P and Fe, and the use of more rational management techniques for P and Fe fertilization. This will contribute to minimize the environmental impacts caused by the use of P and Fe fertilizers (Fe chelates) in agriculture and to adjust the costs for farmers, due to the high prices and/or scarcity of Fe and P fertilizers. This review aims to summarize the latest advances in the knowledge about Fe and P deficiency responses, analyzing the similarities and differences among them and considering the interactions among their main regulators, including some hormones (ethylene) and signaling substances (NO and GSNO) as well as other P- and Fe-related signals. Full article
Show Figures

Figure 1

Back to TopTop