Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1218 KiB  
Review
Cardio-Oncology Rehabilitation—Present and Future Perspectives
by Boaz Elad, Manhal Habib and Oren Caspi
Life 2022, 12(7), 1006; https://doi.org/10.3390/life12071006 - 7 Jul 2022
Cited by 5 | Viewed by 3174
Abstract
Recent advances in cancer therapy have led to increased survival rates for cancer patients, but also allowed cardiovascular complications to become increasingly evident, with more than 40% of cancer deaths now being attributed to cardiovascular diseases. Cardiotoxicity is the most concerning cardiovascular complication, [...] Read more.
Recent advances in cancer therapy have led to increased survival rates for cancer patients, but also allowed cardiovascular complications to become increasingly evident, with more than 40% of cancer deaths now being attributed to cardiovascular diseases. Cardiotoxicity is the most concerning cardiovascular complication, one caused mainly due to anti-cancer drugs. Among the harmful mechanisms of these drugs are DNA damage, endothelial dysfunction, and oxidative stress. Cancer patients can suffer reduced cardiorespiratory fitness as a secondary effect of anti-cancer therapies, tumor burden, and deconditioning. In the general population, regular exercise can reduce the risk of cardiovascular morbidity, mortality, and cancer. Exercise-induced modifications of gene expression result in improvements of cardiovascular parameters and an increased general fitness, influencing telomere shortening, oxidative stress, vascular function, and DNA repair mechanisms. In cancer patients, exercise training is generally safe and well-tolerated; it is associated with a 10–15% improvement in cardiorespiratory fitness and can potentially counteract the adverse effects of anti-cancer therapy. It is well known that exercise programs can benefit patients with heart disease and cancer, but little research has been conducted with cardio-oncology patients. To date, there are a limited number of effective protective treatments for preventing or reversing cardiotoxicity caused by cancer therapy. Cardiac rehabilitation has the potential to mitigate cardiotoxicity based on the benefits already proven in populations suffering from either cancer or heart diseases. Additionally, the fact that cardiotoxic harm mechanisms coincide with similar mechanisms positively affected by cardiac rehabilitation makes cardiac rehabilitation an even more plausible option for cardio-oncology patients. Due to unstable functional capacity and fluctuating immunocompetence, these patients require specially tailored exercise programs designed collaboratively by cardiologists and oncologists. As the digital era is here, with the digital world and the medical world continuously intertwining, a remote, home-based cardio-oncology rehabilitation program may be a solution for this population. Full article
Show Figures

Figure 1

8 pages, 255 KiB  
Article
Fever Correlation with Erythrocyte Sedimentation Rate (ESR) and C-Reactive Protein (CRP) Concentrations in Patients with Isolated Polymyalgia Rheumatica (PMR): A Retrospective Comparison Study between Hospital and Out-of-Hospital Local Registries
by Ciro Manzo, Marcin Milchert, Carlo Venditti, Alberto Castagna, Arvind Nune, Maria Natale and Marek Brzosko
Life 2022, 12(7), 985; https://doi.org/10.3390/life12070985 - 30 Jun 2022
Cited by 1 | Viewed by 2078
Abstract
Background: Polymyalgia rheumatica (PMR) is the most common systemic inflammatory rheumatic disease affecting the elderly. Giant cell arteritis (GCA) is a granulomatous vasculitis affecting the aorta and its branches associated with PMR in up to 20% of cases. In recent studies based on [...] Read more.
Background: Polymyalgia rheumatica (PMR) is the most common systemic inflammatory rheumatic disease affecting the elderly. Giant cell arteritis (GCA) is a granulomatous vasculitis affecting the aorta and its branches associated with PMR in up to 20% of cases. In recent studies based on university hospital registries, fever correlated with the erythrocyte sedimentation rate (ESR) but not with C-reactive protein (CRP) concentrations at the time of diagnosis in patients with isolated PMR. A long delay to a PMR diagnosis was suggested to explain this discrepancy, possibly caused by laboratory alterations (for instance, anemia of chronic disease type) that can influence only ESR. We performed a retrospective comparison study between the university hospital and two out-of-hospital public ambulatory databases, searching for any differences in fever/low-grade fever correlation with ESR and CRP. Methods: We identified all patients with newly diagnosed PMR between 2013 and 2020, only including patients who had a body temperature (BT) measurement at the time of diagnosis and a follow-up of at least two years. We considered BT as normal at <37.2 °C. Routine diagnostic tests for differential diagnostics were performed at the time of diagnosis and during follow-ups, indicating the need for more in-depth investigations if required. The GCA was excluded based on the presence of suggestive signs or symptoms and routine ultrasound examination of temporal, axillary, subclavian, and carotid arteries by experienced ultrasonographers. Patients with malignancies, chronic renal disease, bacterial infections, and body mass index (BMI) > 30 kg/m2 were excluded, as these conditions can increase CRP and/or ESR. Finally, we used the Cumulative Illness Rating Scale (CIRS) for quantifying the burden of comorbidities and excluded patients with a CIRS index > 4 as an additional interfering factor. Results: We evaluated data from 169 (73 from hospital and 96 from territorial registries) patients with newly diagnosed isolated PMR. Among these, 77.7% were female, and 61.5% of patients had normal BT at the time of diagnosis. We divided the 169 patients into two cohorts (hospital and territorial) according to the first diagnostic referral. Age at diagnosis, ESR, CRP, median hemoglobin (HB), and diagnostic delay (days from first manifestations to final diagnosis) were statistically significantly different between the two cohorts. However, when we assessed these data according to BT in the territorial cohort, we found a statistical difference only between ESR and BT (46.39 ± 19.31 vs. 57.50 ± 28.16; p = 0.026). Conclusions: ESR but not CRP correlates with fever/low-grade fever at the time of diagnosis in PMR patients with a short diagnosis delay regardless of HB levels. ESR was the only variable having a statistically significant correlation with BT in a multilevel regression analysis adjusted for cohorts (β = 0.312; p = 0.014). Full article
(This article belongs to the Special Issue Innovative Biomarker and Precision Medicine)
22 pages, 1052 KiB  
Review
Cancer Cachexia and Antitumor Immunity: Common Mediators and Potential Targets for New Therapies
by Konstantinos Rounis, Dimitrios Makrakis, Ioannis Gioulbasanis, Simon Ekman, Luigi De Petris, Dimitris Mavroudis and Sofia Agelaki
Life 2022, 12(6), 880; https://doi.org/10.3390/life12060880 - 12 Jun 2022
Cited by 1 | Viewed by 2476
Abstract
Cancer cachexia syndrome (CCS) is a multifactorial metabolic syndrome affecting a significant proportion of patients. CCS is characterized by progressive weight loss, alterations of body composition and a systemic inflammatory status, which exerts a major impact on the host’s innate and adaptive immunity. [...] Read more.
Cancer cachexia syndrome (CCS) is a multifactorial metabolic syndrome affecting a significant proportion of patients. CCS is characterized by progressive weight loss, alterations of body composition and a systemic inflammatory status, which exerts a major impact on the host’s innate and adaptive immunity. Over the last few years, the development of immune checkpoint inhibitors (ICIs) transformed the treatment landscape for a wide spectrum of malignancies, creating an unprecedented opportunity for long term remissions in a significant subset of patients. Early clinical data indicate that CCS adversely impairs treatment outcomes of patients receiving ICIs. We herein reviewed existing evidence on the potential links between the mechanisms that promote the catabolic state in CCS and those that impair the antitumor immune response. We show that the biological mediators and processes leading to the development of CCS may also participate in the modulation and the sustainment of an immune suppressive tumor microenvironment and impaired anti-tumor immunity. Moreover, we demonstrate that the deregulation of the host’s metabolic homeostasis in cancer cachexia is associated with resistance to ICIs. Further research on the interrelation between cancer cachexia and anti-tumor immunity is required for the effective management of resistance to immunotherapy in this specific but large subgroup of ICI treated individuals. Full article
(This article belongs to the Collection Tumor Progression, Microenvironments, and Therapeutics)
Show Figures

Figure 1

12 pages, 1215 KiB  
Article
How Is CYP17A1 Activity Altered in Autism? A Pilot Study to Identify Potential Pharmacological Targets
by Benedikt Andreas Gasser, Johann Kurz, Bernhard Dick and Markus Georg Mohaupt
Life 2022, 12(6), 867; https://doi.org/10.3390/life12060867 - 10 Jun 2022
Cited by 1 | Viewed by 1774
Abstract
Background: Increasing evidence exists that higher levels of androgens can be found in individuals with autism. Evidence yields to a susceptible role of Cytochrome P450 17A1 (CYP17A1) with its catalyzation of the two distinct types of substrate oxidation by a hydroxylase activity (17-alpha [...] Read more.
Background: Increasing evidence exists that higher levels of androgens can be found in individuals with autism. Evidence yields to a susceptible role of Cytochrome P450 17A1 (CYP17A1) with its catalyzation of the two distinct types of substrate oxidation by a hydroxylase activity (17-alpha hydroxylase) and C17/20 lyase activity. However, to what extent steps are altered in affected children with autism versus healthy controls remains to be elucidated. Methods: Urine samples from 48 boys with autism (BMI 19.1 ± 0.6 kg/m2, age 14.2 ± 0.5 years) and a matched cohort of 48 healthy boys (BMI 18.6 ± 0.3 kg/m2, 14.3 ± 0.5 years) as well as 16 girls with autism (BMI 17.5 ± 0.7 kg/m2, age 13.8 ± 1.0 years) and a matched cohort of 16 healthy girls (BMI 17.2 ± 0.8 kg/m2, age 13.2 ± 0.8 years) were analyzed for steroid hormone metabolites by gas chromatography-mass spectrometry. Results: The activity of 17-alpha Hydroxylase increased by almost 50%, whereas activity of 17/20 Lyase activity increased by around 150% in affected children with autism. Furthermore, the concentration of Cortisol was higher as compared to the average increase of the three metabolites TH-Corticosterone, 5α-TH-Corticosterone and TH-11β-DH-Corticosterone, indicating, in addition, a stimulation by the CRH-ACTH system despite a higher enzymatic activity. Discussion: As it was shown that oxidative stress increases the 17/20-lyase activity via p38α, a link between higher steroid hormone levels and oxidative stress can be established. However, as glucocorticoid as well as androgen metabolites showed higher values in subjects affected with autism as compared to healthy controls, the data indicate, despite higher CYP17A1 activity, the presence of increased substrate availability in line with the Cholesterol theory of autism. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

12 pages, 4381 KiB  
Article
A Seed-Borne Bacterium of Rice, Pantoea dispersa BB1, Protects Rice from the Seedling Rot Caused by the Bacterial Pathogen Burkholderia glumae
by Yusuke Kouzai and Chiharu Akimoto-Tomiyama
Life 2022, 12(6), 791; https://doi.org/10.3390/life12060791 - 26 May 2022
Cited by 7 | Viewed by 2766
Abstract
Seedling rot, caused by the bacterial pathogen Burkholderia glumae, is a major disease of rice. It originates from pathogen-contaminated seeds and is thus mainly controlled by pesticide treatments of seeds. We previously demonstrated that the seed-borne bacteria of rice may be a [...] Read more.
Seedling rot, caused by the bacterial pathogen Burkholderia glumae, is a major disease of rice. It originates from pathogen-contaminated seeds and is thus mainly controlled by pesticide treatments of seeds. We previously demonstrated that the seed-borne bacteria of rice may be a useful and sustainable alternative to pesticides to manage seedling rot, but they are limited in terms of variety. Here, we report that another seed-borne bacterium, Pantoea dispersa BB1, protects rice from B. glumae. We screened 72 bacterial isolates from rice seeds of three genetically different cultivars inoculated or non-inoculated with B. glumae. 16S rRNA gene sequencing revealed that pathogen inoculation affected the composition of culturable seed-borne bacterial communities and increased the presence of Pantoea and Paenibacillus species. Among three Pantoea and Paenibacillus isolates that exhibit tolerance to toxoflavin, a virulence factor of B. glumae, P. dispersa BB1 significantly mitigated the symptoms of rice seedling rot. The culture filtrate of BB1 inhibited the growth of B. glumae in vitro, suggesting that this isolate secretes antibacterial compounds. Seed treatment with BB1 suppressed pathogen propagation in plants, although seed treatment with the culture filtrate did not. Because BB1 did not show pathogenicity in rice, our findings demonstrate that BB1 is a promising biocontrol agent against seedling rot. Full article
(This article belongs to the Collection State of the Art in Plant Science)
Show Figures

Figure 1

17 pages, 760 KiB  
Review
Acute and Long-Term Consequences of COVID-19 on Arterial Stiffness—A Narrative Review
by Ioana Mădălina Zota, Cristian Stătescu, Radu Andy Sascău, Mihai Roca, Larisa Anghel, Alexandra Maștaleru, Maria Magdalena Leon-Constantin, Cristina Mihaela Ghiciuc, Sebastian Romica Cozma, Lucia Corina Dima-Cozma, Irina Mihaela Esanu and Florin Mitu
Life 2022, 12(6), 781; https://doi.org/10.3390/life12060781 - 25 May 2022
Cited by 10 | Viewed by 3474
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global coronavirus (COVID-19) pandemic. Although initially viewed as an acute respiratory illness, COVID-19 is clearly a complex multisystemic disease with extensive cardiovascular involvement. Emerging evidence shows that the endothelium plays [...] Read more.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global coronavirus (COVID-19) pandemic. Although initially viewed as an acute respiratory illness, COVID-19 is clearly a complex multisystemic disease with extensive cardiovascular involvement. Emerging evidence shows that the endothelium plays multiple roles in COVID-19 physiopathology, as both a target organ that can be directly infected by SARS-CoV-2 and a mediator in the subsequent inflammatory and thrombotic cascades. Arterial stiffness is an established marker of cardiovascular disease. The scope of this review is to summarize available data on the acute and long-term consequences of COVID-19 on vascular function. COVID-19 causes early vascular aging and arterial stiffness. Fast, noninvasive bedside assessment of arterial stiffness could optimize risk stratification in acute COVID-19, allowing for early escalation of treatment. Vascular physiology remains impaired at least 12 months after infection with SARS-CoV-2, even in otherwise healthy adults. This raises concerns regarding the extent of arterial remodeling in patients with preexisting vascular disease and the potential development of a persistent, chronic COVID-19 vasculopathy. Long-term follow up on larger cohorts is required to investigate the reversibility of COVID-19-induced vascular changes and their associated prognostic implications. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

15 pages, 3321 KiB  
Article
Role of SaPCR2 in Zn Uptake in the Root Elongation Zone of the Zn/Cd Hyperaccumulator Sedum alfredii
by Jun Ge, Jiayu Lin, Zhiying Wu, Kuan Xu, Jingyu Tao, Haizhong Lin, Shengke Tian and Lingli Lu
Life 2022, 12(5), 768; https://doi.org/10.3390/life12050768 - 23 May 2022
Viewed by 1587
Abstract
Zn pollution is a potential toxicant for agriculture and the environment. Sedum alfredii is a Zn/Cd hyperaccumulator found in China and has been proven as a useful resource for the phytoremediation of Zn-contaminated sites. However, the molecular mechanism of Zn uptake in S. [...] Read more.
Zn pollution is a potential toxicant for agriculture and the environment. Sedum alfredii is a Zn/Cd hyperaccumulator found in China and has been proven as a useful resource for the phytoremediation of Zn-contaminated sites. However, the molecular mechanism of Zn uptake in S. alfredii is limited. In this study, the function of SaPCR2 on Zn uptake in S. alfredii was identified by gene expression analysis, yeast function assays, Zn accumulation and root morphology analysis in transgenic lines to further elucidate the mechanisms of uptake and translocation of Zn in S. alfredii. The results showed that SaPCR2 was highly expressed in the root elongation zone of the hyperaccumulating ecotype (HE) S. alfredii, and high Zn exposure downregulated the expression of SaPCR2 in the HE S. alfredii root. The heterologous expression of SaPCR2 in yeast suggested that SaPCR2 was responsible for Zn influx. The overexpression of SaPCR2 in the non-hyperaccumulating ecotype (NHE) S. alfredii significantly increased the root uptake of Zn, but did not influence Mn, Cu or Fe. SR-μ-XRF technology showed that more Zn was distributed in the vascular buddle tissues, as well as in the cortex and epidermis in the transgenic lines. Root morphology was also altered after SaPCR2 overexpression, and a severe inhibition was observed. In the transgenic lines, the meristematic and elongation zones of the root were lower compared to the WT, and Zn accumulation in meristem cells was also reduced. These results indicate that SaPCR2 is responsible for Zn uptake, and mainly functions in the root elongation zone. This research on SaPCR2 could provide a theoretical basis for the use of genetic engineering technology in the modification of crops for their safe production and biological enhancement. Full article
(This article belongs to the Special Issue Uptake, Translocation, and Metabolism of Trace Metals in Plants)
Show Figures

Figure 1

14 pages, 703 KiB  
Review
Regulatory Effects of Statins on SIRT1 and Other Sirtuins in Cardiovascular Diseases
by Danial Khayatan, Seyed Mehrad Razavi, Zahra Najafi Arab, Maryam Khanahmadi, Saeideh Momtaz, Alexandra E. Butler, Fabrizio Montecucco, Yuliya V. Markina, Amir Hossein Abdolghaffari and Amirhossein Sahebkar
Life 2022, 12(5), 760; https://doi.org/10.3390/life12050760 - 20 May 2022
Cited by 7 | Viewed by 5367
Abstract
Adverse cardiovascular disease (CVD) outcomes, such as sudden cardiac death, acute myocardial infarction, and stroke, are often catastrophic. Statins are frequently used to attenuate the risk of CVD-associated morbidity and mortality through their impact on lipids and they may also have anti-inflammatory and [...] Read more.
Adverse cardiovascular disease (CVD) outcomes, such as sudden cardiac death, acute myocardial infarction, and stroke, are often catastrophic. Statins are frequently used to attenuate the risk of CVD-associated morbidity and mortality through their impact on lipids and they may also have anti-inflammatory and other plaque-stabilization effects via different signaling pathways. Different statins, including atorvastatin, rosuvastatin, pravastatin, pitavastatin, and simvastatin, are administered to manage circulatory lipid levels. In addition, statins are potent inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase via modulating sirtuins (SIRTs). During the last two decades, SIRTs have been investigated in mammals and categorized as a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases (HDACs) with significant oxidative stress regulatory function in cells—a key factor in extending cell lifespan. Recent work has demonstrated that statins upregulate SIRT1 and SIRT2 and downregulate SIRT6 in both in vitro and in vivo experiments and clinical trials. As statins show modulatory properties, especially in CVDs, future investigations are needed to delineate the role of SIRT family members in disease and to expand knowledge about the effects of statins on SIRTs. Here, we review what is currently known about the impact of statins on SIRTs and how these changes correlate with disease, particularly CVDs. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

17 pages, 1398 KiB  
Article
SIRT1: Genetic Variants and Serum Levels in Age-Related Macular Degeneration
by Kriste Kaikaryte, Greta Gedvilaite, Alvita Vilkeviciute, Loresa Kriauciuniene, Ruta Mockute, Dzastina Cebatoriene, Reda Zemaitiene, Vilma Jurate Balciuniene and Rasa Liutkeviciene
Life 2022, 12(5), 753; https://doi.org/10.3390/life12050753 - 19 May 2022
Viewed by 1849
Abstract
Background: The aim of this paper was to determine the frequency of SIRT1 rs3818292, rs3758391, rs7895833 single nucleotide polymorphism genotypes and SIRT1 serum levels associated with age-related macular degeneration (AMD) in the Lithuanian population. Methods: Genotyping of SIRT1 rs3818292, rs3758391 and rs7895833 was [...] Read more.
Background: The aim of this paper was to determine the frequency of SIRT1 rs3818292, rs3758391, rs7895833 single nucleotide polymorphism genotypes and SIRT1 serum levels associated with age-related macular degeneration (AMD) in the Lithuanian population. Methods: Genotyping of SIRT1 rs3818292, rs3758391 and rs7895833 was performed using RT-PCR. SIRT1 serum level was determined using the ELISA method. Results: We found that rs3818292 and rs7895833 were associated with an increased risk of developing exudative AMD. Additional sex-differentiated analysis revealed only rs7895833 was associated with an increased risk of developing exudative AMD in women after strict Bonferroni correction. The analysis also revealed that individuals carrying rs3818292, rs3758391 and rs7895833 haplotype G-T-G are associated with increased odds of exudative AMD. Still, the rare haplotypes were associated with the decreased odds of exudative AMD. After performing an analysis of serum SIRT1 levels and SIRT1 genetic variant, we found that carriers of the SIRT1 rs3818292 minor allele G had higher serum SIRT1 levels than the AA genotype. In addition, individuals carrying at least one SIRT1 rs3758391 T allele also had elevated serum SIRT1 levels compared with individuals with the wild-type CC genotype. Conclusions: Our study showed that the SIRT1 polymorphisms rs3818292 and rs7895833 and rs3818292-rs3758391-rs7895833 haplotype G-T-G could be associated with the development of exudative AMD. Also, two SNPs (rs3818292 and rs3758391) are associated with elevated SIRT1 levels. Full article
(This article belongs to the Special Issue Age-Related Macular Degeneration: From Mechanisms to Therapy)
Show Figures

Figure 1

13 pages, 6581 KiB  
Article
Diffusion Tensor Imaging of a Median Nerve by Magnetic Resonance: A Pilot Study
by Kanza Awais, Žiga Snoj, Erika Cvetko and Igor Serša
Life 2022, 12(5), 748; https://doi.org/10.3390/life12050748 - 18 May 2022
Cited by 2 | Viewed by 1901
Abstract
The magnetic resonance Diffusion Tensor Imaging (DTI) is a powerful extension of Diffusion Weighted Imaging (DWI) utilizing multiple bipolar gradients, allowing for the evaluation of the microstructural environment of the highly anisotropic tissues. DTI was predominantly used for the assessment of the central [...] Read more.
The magnetic resonance Diffusion Tensor Imaging (DTI) is a powerful extension of Diffusion Weighted Imaging (DWI) utilizing multiple bipolar gradients, allowing for the evaluation of the microstructural environment of the highly anisotropic tissues. DTI was predominantly used for the assessment of the central nervous system (CNS), but with the advancement in magnetic resonance (MR) hardware and software, it has now become possible to image the peripheral nerves which were difficult to evaluate previously because of their small caliber. This study focuses on the assessment of the human median peripheral nerve ex vivo by DTI microscopy at 9.4 T magnetic field which allowed the evaluation of diffusion eigenvalues, the mean diffusivity and the fractional anisotropy at 35 μm in-plane resolution. The resolution was sufficient for clear depiction of all nerve anatomical structures and therefore further image analysis allowed the obtaining of average values for DT parameters in nerve fascicles (intrafascicular region and perineurium) as well as in the surrounding epineurium. The results confirmed the highest fractional anisotropy of 0.33 and principal diffusion eigenvalue of 1.0 × 10−9 m2/s in the intrafascicular region, somewhat lower values of 0.27 and 0.95 × 10−9 m2/s in the perineurium region and close to isotropic with very slow diffusion (0.15 and 0.05 × 10−9 m2/s) in the epineurium region. Full article
(This article belongs to the Special Issue Imaging in Neurosurgery: State of the Art)
Show Figures

Figure 1

12 pages, 5462 KiB  
Article
Variations in Strain Distribution at Distal Radius under Different Loading Conditions
by Jonas A. Pramudita, Wataru Hiroki, Takuya Yoda and Yuji Tanabe
Life 2022, 12(5), 740; https://doi.org/10.3390/life12050740 - 16 May 2022
Cited by 1 | Viewed by 3360
Abstract
Distal radial fractures exhibit various fracture patterns. By assuming that the strain distribution at the distal radius affects the diversification of the fracture pattern, a parameter study using the finite element model of a wrist developed from computed tomography (CT) images was performed [...] Read more.
Distal radial fractures exhibit various fracture patterns. By assuming that the strain distribution at the distal radius affects the diversification of the fracture pattern, a parameter study using the finite element model of a wrist developed from computed tomography (CT) images was performed under different loading conditions. The finite element model of the wrist consisted of the radius, ulna, scaphoid, lunate, triquetrum, and major carpal ligaments. The material properties of the bone models were assigned on the basis of the Hounsfield Unit (HU) values of the CT images. An impact load was applied to the scaphoid, lunate, and triquetrum to simulate boundary conditions during fall accidents. This study considered nine different loading conditions that combine three different loading directions and three different load distribution ratios. According to the analysis results, the strain distribution at the distal radius changed with respect to the change in the loading condition. High strain concentration occurred in regions where distal radius fractures are commonly developed. The direction and distribution of the load acting on the radius were considered to be factors that may cause variations in the fracture pattern of distal radius fractures. Full article
(This article belongs to the Special Issue The Biomechanics of Injury and Rehabilitation)
Show Figures

Figure 1

17 pages, 1115 KiB  
Article
Antimicrobial Properties of Compounds Isolated from Syzygium malaccense (L.) Merr. and L.M. Perry and Medicinal Plants Used in French Polynesia
by Camille Quenon, Thierry Hennebelle, Jean-François Butaud, Raimana Ho, Jennifer Samaillie, Christel Neut, Tamatoa Lehartel, Céline Rivière, Ali Siah, Natacha Bonneau, Sevser Sahpaz, Sébastien Anthérieu, Nicolas Lebegue, Phila Raharivelomanana and Vincent Roumy
Life 2022, 12(5), 733; https://doi.org/10.3390/life12050733 - 14 May 2022
Cited by 7 | Viewed by 2908
Abstract
A preliminary ethnopharmacological survey, achieved in French Polynesia, led to the collection of the most cited plants among 63 species used to treat “infectious” diseases, with a description of their medicinal uses. Bibliographical investigations and antimicrobial screening permitted the selection of the botanical [...] Read more.
A preliminary ethnopharmacological survey, achieved in French Polynesia, led to the collection of the most cited plants among 63 species used to treat “infectious” diseases, with a description of their medicinal uses. Bibliographical investigations and antimicrobial screening permitted the selection of the botanical species Syzygium malaccense (Myrtaceae) for phytochemical analysis. Leaves of Syzygium malaccense were usually used in mixture with rhizomes of Curcuma longa to treat infectious diseases such as cystitis. The methanolic plant extracts were tested in vitro with an agar microdilution method on 33 bacteria strains and 1 yeast to obtain their Minimal Inhibitory Concentration (MIC), and cytotoxicity against HepG2 cells were evaluated. Antimicrobial synergistic effects of methanolic plant extracts from leaves of Syzygium malaccense and rhizomes from Curcuma longa were also evaluated. The bio-guided isolation of leaf extract from Syzygium malaccense led to the identification of seven alkyl-salicylic acids (anacardic acids or ginkgolic acids C15:0, C15:1, C17:0, C17:1, C17:2, C17:3 and C19:1) described for the first time in this species. All compounds were tested against Staphylococcus aureus (18.75 < MIC < 75.0 µg/mL), Streptococcus pyogenes (2.34 < MIC < 18.75 µg/mL) and Pseudomonas aeruginosa (MIC = 150 µg/mL), and their structure–activity relationships were discussed. The methanolic extract and salicylic derivatives from S. malaccense showed an interesting antimicrobial activity against Gram+ bacteria, without toxicity on hepG2 cells at 400 μg/mL. Moreover, these antibacterial compounds have already been studied for their anti-inflammatory activity, which supports the therapeutic interest of S. malaccense against infectious diseases. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

15 pages, 2842 KiB  
Article
Data Mining Identifies CCN2 and THBS1 as Biomarker Candidates for Cardiac Hypertrophy
by Markus Johansson, Benyapa Tangruksa, Sepideh Heydarkhan-Hagvall, Anders Jeppsson, Peter Sartipy and Jane Synnergren
Life 2022, 12(5), 726; https://doi.org/10.3390/life12050726 - 12 May 2022
Cited by 3 | Viewed by 2933
Abstract
Cardiac hypertrophy is a condition that may contribute to the development of heart failure. In this study, we compare the gene-expression patterns of our in vitro stem-cell-based cardiac hypertrophy model with the gene expression of biopsies collected from hypertrophic human hearts. Twenty-five differentially [...] Read more.
Cardiac hypertrophy is a condition that may contribute to the development of heart failure. In this study, we compare the gene-expression patterns of our in vitro stem-cell-based cardiac hypertrophy model with the gene expression of biopsies collected from hypertrophic human hearts. Twenty-five differentially expressed genes (DEGs) from both groups were identified and the expression of selected corresponding secreted proteins were validated using ELISA and Western blot. Several biomarkers, including CCN2, THBS1, NPPA, and NPPB, were identified, which showed significant overexpressions in the hypertrophic samples in both the cardiac biopsies and in the endothelin-1-treated cells, both at gene and protein levels. The protein-interaction network analysis revealed CCN2 as a central node among the 25 overlapping DEGs, suggesting that this gene might play an important role in the development of cardiac hypertrophy. GO-enrichment analysis of the 25 DEGs revealed many biological processes associated with cardiac function and the development of cardiac hypertrophy. In conclusion, we identified important similarities between ET-1-stimulated human-stem-cell-derived cardiomyocytes and human hypertrophic cardiac tissue. Novel putative cardiac hypertrophy biomarkers were identified and validated on the protein level, lending support for further investigations to assess their potential for future clinical applications. Full article
(This article belongs to the Special Issue The Molecular Mechanism of Cardiovascular Disease)
Show Figures

Figure 1

16 pages, 6005 KiB  
Article
Biogas Production Potential of Thermophilic Anaerobic Biodegradation of Organic Waste by a Microbial Consortium Identified with Metagenomics
by Lyudmila Kabaivanova, Penka Petrova, Venelin Hubenov and Ivan Simeonov
Life 2022, 12(5), 702; https://doi.org/10.3390/life12050702 - 8 May 2022
Cited by 11 | Viewed by 2352
Abstract
Anaerobic digestion (AD) is a widespread biological process treating organic waste for green energy production. In this study, wheat straw and corn stalks without any harsh preliminary treatment were collected as a renewable source to be employed in a laboratory-scale digester to produce [...] Read more.
Anaerobic digestion (AD) is a widespread biological process treating organic waste for green energy production. In this study, wheat straw and corn stalks without any harsh preliminary treatment were collected as a renewable source to be employed in a laboratory-scale digester to produce biogas/biomethane. Processes parameters of temperature, pH, total solids, volatile solid, concentration of volatile fatty acids (VFA), and cellulose concentration, were followed. The volume of biogas produced was measured. The impact of organic loading was stated, showing that the process at 55 °C tolerated a higher substrate load, up to 45 g/L. Further substrate increase did not lead to biogas accumulation increase, probably due to inhibition or mass transfer limitations. After a 12-day anaerobic digestion process, cumulative volumes of biogas yields were 4.78 L for 1 L of the bioreactor working volume with substrate loading 30 g/L of wheat straw, 7.39 L for 40 g/L and 8.22 L for 45 g/L. The degree of biodegradation was calculated to be 68.9%, 74% and 72%, respectively. A fast, effective process for biogas production was developed from native wheat straw, with the highest quantity of daily biogas production occurring between day 2 and day 5. Biomethane concentration in the biogas was 60%. An analysis of bacterial diversity by metagenomics revealed that more than one third of bacteria belonged to class Clostridia (32.9%), followed by Bacteroidia (21.5%), Betaproteobacteria (11.2%), Gammaproteobacteria (6.1%), and Alphaproteobacteria (5%). The most prominent genera among them were Proteiniphilum, Proteiniborus, and Pseudomonas. Archaeal share was 1.37% of the microflora in the thermophilic bioreactor, as the genera Methanocorpusculum, Methanobacterium, Methanomassiliicoccus, Methanoculleus, and Methanosarcina were the most abundant. A knowledge of the microbiome residing in the anaerobic digester can be further used for the development of more effective processes in conjunction with theidentified consortium. Full article
(This article belongs to the Special Issue The Role of Renewable Resources for Ecology and Human Health)
Show Figures

Figure 1

12 pages, 2527 KiB  
Article
Type 2 Diabetes Mellitus Facilitates Shift of Adipose-Derived Stem Cells Ex Vivo Differentiation toward Osteogenesis among Patients with Obesity
by Margarita Agareva, Iurii Stafeev, Svetlana Michurina, Igor Sklyanik, Ekaterina Shestakova, Elizaveta Ratner, Xiang Hu, Mikhail Menshikov, Marina Shestakova and Yelena Parfyonova
Life 2022, 12(5), 688; https://doi.org/10.3390/life12050688 - 6 May 2022
Cited by 6 | Viewed by 2459
Abstract
Objective: Sedentary behavior with overnutrition provokes the development of obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). The main progenitor cells of adipose tissue are adipose-derived stem cells (ADSCs) which can change differentiation, metabolic, and secretory phenotypes under obesity conditions. The purpose [...] Read more.
Objective: Sedentary behavior with overnutrition provokes the development of obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). The main progenitor cells of adipose tissue are adipose-derived stem cells (ADSCs) which can change differentiation, metabolic, and secretory phenotypes under obesity conditions. The purpose of this study was to evaluate ADSC osteogenesis activity among patients with obesity in normal glucose tolerance (NGT) and T2DM conditions. Methods: In the study, ADSCs from donors with obesity were used. After clinical characterization, all patients underwent bariatric surgery and ADSCs were isolated from subcutaneous fat biopsies. ADSCs were subjected to osteogenic differentiation, stained with Alizarin Red S, and harvested for real-time PCR and Western blotting. Cell senescence was evaluated with a β-galactosidase-activity-based assay. Results: Our results demonstrated the significantly increased calcification of ADSC on day 28 of osteogenesis in the T2DM group. These data were confirmed by the statistically significant enhancement of RUNX2 gene expression, which is a master regulator of osteogenesis. Protein expression analysis showed the increased expression of syndecan 1 and collagen I before and during osteogenesis, respectively. Moreover, T2DM ADSCs demonstrated an increased level of cellular senescence. Conclusion: We suggest that T2DM-associated cellular senescence can cause ADSC differentiation to shift toward osteogenesis, the impaired formation of new fat depots in adipose tissue, and the development of insulin resistance. The balance between ADSC adipo- and osteogenesis commitment is crucial for the determination of the metabolic fate of patients and their adipose tissue. Full article
(This article belongs to the Special Issue Diabetes Metabolism: Molecular and Integrative Approaches)
Show Figures

Figure 1

24 pages, 6365 KiB  
Article
The Antileukemic and Anti-Prostatic Effect of Aeroplysinin-1 Is Mediated through ROS-Induced Apoptosis via NOX Activation and Inhibition of HIF-1a Activity
by Shou-Ping Shih, Mei-Chin Lu, Mohamed El-Shazly, Yu-Hsuan Lin, Chun-Lin Chen, Steve Sheng-Fa Yu and Yi-Chang Liu
Life 2022, 12(5), 687; https://doi.org/10.3390/life12050687 - 5 May 2022
Cited by 12 | Viewed by 2621
Abstract
Aeroplysinin-1 is a brominated isoxazoline alkaloid that has exhibited a potent antitumor cell effect in previous reports. We evaluated the cytotoxicity of aeroplysinin-1 against leukemia and prostate cancer cells in vitro. This marine alkaloid inhibited the cell proliferation of leukemia Molt-4, K562 cells, [...] Read more.
Aeroplysinin-1 is a brominated isoxazoline alkaloid that has exhibited a potent antitumor cell effect in previous reports. We evaluated the cytotoxicity of aeroplysinin-1 against leukemia and prostate cancer cells in vitro. This marine alkaloid inhibited the cell proliferation of leukemia Molt-4, K562 cells, and prostate cancer cells Du145 and PC-3 with IC50 values of 0.12 ± 0.002, 0.54 ± 0.085, 0.58 ± 0.109 and 0.33 ± 0.042 µM, respectively, as shown by the MTT assay. Furthermore, in the non-malignant cells, CCD966SK and NR8383, its IC50 values were 1.54 ± 0.138 and 6.77 ± 0.190 μM, respectively. In a cell-free system, the thermal shift assay and Western blot assay verified the binding affinity of aeroplysinin-1 to Hsp90 and Topo IIα, which inhibited their activity. Flow cytometry analysis showed that the cytotoxic effect of aeroplysinin-1 is mediated through mitochondria-dependent apoptosis induced by reactive oxygen species (ROS). ROS interrupted the cellular oxidative balance by activating NOX and inhibiting HIF-1α and HO-1 expression. Pretreatment with N-acetylcysteine (NAC) reduced Apl-1-induced mitochondria-dependent apoptosis and preserved the expression of NOX, HO-1, and HIF-1a. Our findings indicated that aeroplysinin-1 targeted leukemia and prostate cancer cells through multiple pathways, suggesting its potential application as an anti-leukemia and prostate cancer drug lead. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

10 pages, 1246 KiB  
Article
N-Methyl-D-Aspartate (NMDA) Receptors in the Prelimbic Cortex Are Required for Short- and Long-Term Memory Formation in Trace Fear Conditioning
by Eui-Ho Park, Nam-Soo Kim, Yeon-Kyung Lee and June-Seek Choi
Life 2022, 12(5), 672; https://doi.org/10.3390/life12050672 - 1 May 2022
Cited by 2 | Viewed by 2599
Abstract
Accumulating evidence suggests that the medial prefrontal cortex (mPFC) has been implicated in the acquisition of fear memory during trace fear conditioning in which a conditional stimulus (CS) is paired with an aversive unconditional stimulus (UCS) separated by a temporal gap (trace interval, [...] Read more.
Accumulating evidence suggests that the medial prefrontal cortex (mPFC) has been implicated in the acquisition of fear memory during trace fear conditioning in which a conditional stimulus (CS) is paired with an aversive unconditional stimulus (UCS) separated by a temporal gap (trace interval, TI). However, little is known about the role of the prefrontal cortex for short- and long-term trace fear memory formation. Thus, we investigated how the prelimbic (PL) subregion within mPFC in rats contributes to short- and long-term trace fear memory formation using electrolytic lesions and d,l,-2-amino-5-phosphonovaleric acid (APV), an N-methyl-D-aspartate receptor (NMDAR) antagonist infusions into PL. In experiment 1, pre-conditioning lesions of PL impaired freezing to the CS as well as TI during the acquisition and retrieval sessions, indicating that PL is critically involved in trace fear memory formation. In experiment 2, temporary blockade of NMDA receptors in PL impaired the acquisition, but not the expression of short- and long-term trace fear memory. In addition, the inactivation of NMDAR in PL had little effect on locomotor activity, pre-pulse inhibition (PPI), or shock sensitivity. Taken together, these results suggest that NMDA receptor-mediated neurotransmission in PL is required for the acquisition of trace fear memory. Full article
(This article belongs to the Special Issue Glutamate Receptors)
Show Figures

Figure 1

14 pages, 3769 KiB  
Article
Curcumin Protects Diabetic Mice against Isoproterenol-Induced Myocardial Infarction by Modulating CB2 Cannabinoid Receptors
by Harshal D. Pawar, Umesh B. Mahajan, Kartik T. Nakhate, Yogeeta O. Agrawal, Chandragouda R. Patil, M. F. Nagoor Meeran, Charu Sharma, Shreesh Ojha and Sameer N. Goyal
Life 2022, 12(5), 624; https://doi.org/10.3390/life12050624 - 22 Apr 2022
Cited by 13 | Viewed by 2704
Abstract
Molecular docking revealed curcumin as a potent CB2 cannabinoid receptor (CB2R) agonist. Since CB2R is involved in cardioprotective functions, we explored its role in ameliorative actions of curcumin against myocardial damage triggered by isoproterenol in diabetic animals. Mice were kept on a high-fat [...] Read more.
Molecular docking revealed curcumin as a potent CB2 cannabinoid receptor (CB2R) agonist. Since CB2R is involved in cardioprotective functions, we explored its role in ameliorative actions of curcumin against myocardial damage triggered by isoproterenol in diabetic animals. Mice were kept on a high-fat diet (HFD) throughout the experiment (30 days). Following 7 days of HFD feeding, streptozotocin was administered (150 mg/kg, intraperitoneal) to induce diabetes. From day 11 to 30, diabetic mice received either curcumin (100 or 200 mg/kg/day, oral), CB2R antagonist AM630 (1 mg/kg/day, intraperitoneal) or both, with concurrent isoproterenol (150 mg/kg, subcutaneous) administration on day 28 and 29. Diabetic mice with myocardial infarction showed an altered hemodynamic pattern and lipid profile, reduced injury markers, antioxidants with increased lipid peroxidation in the myocardium, and elevated glucose and liver enzymes in the blood. Moreover, an increased pro-inflammatory markers, histological severity, myonecrosis, and edema were observed. Curcumin compensated for hemodynamic fluctuations, restored biochemical markers, preserved antioxidant capacity, decreased cytokines levels, and restored cardiac functionality. However, the AM630 pre-treatment attenuated the effects of curcumin. The data suggest the involvement of CB2R in the actions of curcumin such as in the prevention of myocardial stress and in the improvement of the normal status of the myocardial membrane associated with diabetes. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

11 pages, 262 KiB  
Review
Deprescribing in Palliative Cancer Care
by Christel Hedman, Gabriella Frisk and Linda Björkhem-Bergman
Life 2022, 12(5), 613; https://doi.org/10.3390/life12050613 - 20 Apr 2022
Cited by 7 | Viewed by 4978
Abstract
The aim of palliative care is to maintain as high a quality of life (QoL) as possible despite a life-threatening illness. Thus, the prescribed medications need to be evaluated and the benefit of each treatment must be weighed against potential side effects. Medications [...] Read more.
The aim of palliative care is to maintain as high a quality of life (QoL) as possible despite a life-threatening illness. Thus, the prescribed medications need to be evaluated and the benefit of each treatment must be weighed against potential side effects. Medications that contribute to symptom relief and maintained QoL should be prioritized. However, studies have shown that treatment with preventive drugs that may not benefit the patient in end-of-life is generally deprescribed very late in the disease trajectory of cancer patients. Yet, knowing how and when to deprescribe drugs can be difficult. In addition, some drugs, such as beta-blockers, proton pump inhibitors, anti-depressants and cortisone need to be scaled down slowly to avoid troublesome withdrawal symptoms. In contrast, other medicines, such as statins, antihypertensives and vitamins, can be discontinued directly. The aim of this review is to give some advice according to when and how to deprescribe medications in palliative cancer care according to current evidence and clinical praxis. The review includes antihypertensive drugs, statins, anti-coagulants, aspirin, anti-diabetics, proton pump inhibitors, histamin-2-blockers, bisphosphonates denosumab, urologicals, anti-depressants, cortisone, thyroxin and vitamins. Full article
(This article belongs to the Section Medical Research)
19 pages, 598 KiB  
Review
Dopamine and Dopamine-Related Ligands Can Bind Not Only to Dopamine Receptors
by Jaromir Myslivecek
Life 2022, 12(5), 606; https://doi.org/10.3390/life12050606 - 19 Apr 2022
Cited by 7 | Viewed by 2802
Abstract
The dopaminergic system is one of the most important neurotransmitter systems in the central nervous system (CNS). It acts mainly by activation of the D1-like receptor family at the target cell. Additionally, fine-tuning of the signal is achieved via pre-synaptic modulation [...] Read more.
The dopaminergic system is one of the most important neurotransmitter systems in the central nervous system (CNS). It acts mainly by activation of the D1-like receptor family at the target cell. Additionally, fine-tuning of the signal is achieved via pre-synaptic modulation by the D2-like receptor family. Some dopamine drugs (both agonists and antagonists) bind in addition to DRs also to α2-ARs and 5-HT receptors. Unfortunately, these compounds are often considered subtype(s) specific. Thus, it is important to consider the presence of these receptor subtypes in specific CNS areas as the function virtually elicited by one receptor type could be an effect of other—or the co-effect of multiple receptors. However, there are enough molecules with adequate specificity. In this review, we want to give an overview of the most common off-targets for established dopamine receptor ligands. To give an overall picture, we included a discussion on subtype selectivity. Molecules used as antipsychotic drugs are reviewed too. Therefore, we will summarize reported affinities and give an outline of molecules sufficiently specific for one or more subtypes (i.e., for subfamily), the presence of DR, α2-ARs, and 5-HT receptors in CNS areas, which could help avoid ambiguous results. Full article
Show Figures

Figure 1

26 pages, 1511 KiB  
Review
Epigenetic Regulation of Chondrocytes and Subchondral Bone in Osteoarthritis
by Hope C. Ball, Andrew L. Alejo, Trinity K. Samson, Amanda M. Alejo and Fayez F. Safadi
Life 2022, 12(4), 582; https://doi.org/10.3390/life12040582 - 14 Apr 2022
Cited by 7 | Viewed by 7360
Abstract
The aim of this review is to provide an updated review of the epigenetic factors involved in the onset and development of osteoarthritis (OA). OA is a prevalent degenerative joint disease characterized by chronic inflammation, ectopic bone formation within the joint, and physical [...] Read more.
The aim of this review is to provide an updated review of the epigenetic factors involved in the onset and development of osteoarthritis (OA). OA is a prevalent degenerative joint disease characterized by chronic inflammation, ectopic bone formation within the joint, and physical and proteolytic cartilage degradation which result in chronic pain and loss of mobility. At present, no disease-modifying therapeutics exist for the prevention or treatment of the disease. Research has identified several OA risk factors including mechanical stressors, physical activity, obesity, traumatic joint injury, genetic predisposition, and age. Recently, there has been increased interest in identifying epigenetic factors involved in the pathogenesis of OA. In this review, we detail several of these epigenetic modifications with known functions in the onset and progression of the disease. We also review current therapeutics targeting aberrant epigenetic regulation as potential options for preventive or therapeutic treatment. Full article
(This article belongs to the Special Issue Gene/Stem Cell/Molecular Therapy of Craniofacial and Bone Diseases)
Show Figures

Figure 1

17 pages, 2202 KiB  
Review
Insulin Resistance Is Cheerfully Hitched with Hypertension
by Susmita Sinha and Mainul Haque
Life 2022, 12(4), 564; https://doi.org/10.3390/life12040564 - 10 Apr 2022
Cited by 18 | Viewed by 8419
Abstract
Cardiovascular diseases and type 2 diabetes mellitus (T2DM) have risen steadily worldwide, particularly in low-income and developing countries. In the last hundred years, deaths caused by cardiovascular diseases increased rapidly to 35–40%, becoming the most common cause of mortality worldwide. Cardiovascular disease is [...] Read more.
Cardiovascular diseases and type 2 diabetes mellitus (T2DM) have risen steadily worldwide, particularly in low-income and developing countries. In the last hundred years, deaths caused by cardiovascular diseases increased rapidly to 35–40%, becoming the most common cause of mortality worldwide. Cardiovascular disease is the leading cause of morbidity and mortality in type 2 diabetes mellitus (T2DM), which is aggravated by hypertension. Hypertension and diabetes are closely interlinked since they have similar risk factors such as endothelial dysfunction, vascular inflammation, arterial remodeling, atherosclerosis, dyslipidemia, and obesity. Patients with high blood pressure often show insulin resistance and have a higher risk of developing diabetes than normotensive individuals. It has been observed that over the last 30 years, the prevalence of insulin resistance (IR) has increased significantly. Accordingly, hypertension and insulin resistance are strongly related to an increased risk of impaired glucose tolerance, diabetes, cardiovascular diseases (CVD), and endocrine disorders. Common mechanisms, for instance, upregulation of the renin–angiotensin–aldosterone system, oxidative stress, inflammation, and activation of the immune system, possibly have a role in the association between diabetes and hypertension. Altogether these abnormalities significantly increase the risk of developing type 2 diabetes. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

16 pages, 4202 KiB  
Article
Dysregulation of the Amniotic PPARγ Pathway by Phthalates: Modulation of the Anti-Inflammatory Activity of PPARγ in Human Fetal Membranes
by Audrey Antoine, Coraline De Sousa Do Outeiro, Coline Charnay, Corinne Belville, Fanny Henrioux, Denis Gallot, Loïc Blanchon, Régine Minet-Quinard and Vincent Sapin
Life 2022, 12(4), 544; https://doi.org/10.3390/life12040544 - 6 Apr 2022
Cited by 1 | Viewed by 1697
Abstract
Phthalates are reprotoxic pollutants that are omnipresent in the environment. Detectable in amniotic fluid, these compounds (with the most concentrated being mono-2-ethylhexyl phthalate (MEHP)) are in direct contact with fetal membranes (FMs). They can lead to the premature rupture of FMs by deregulating [...] Read more.
Phthalates are reprotoxic pollutants that are omnipresent in the environment. Detectable in amniotic fluid, these compounds (with the most concentrated being mono-2-ethylhexyl phthalate (MEHP)) are in direct contact with fetal membranes (FMs). They can lead to the premature rupture of FMs by deregulating cellular and molecular pathways, such as, for example, the nuclear transcription factor peroxysome proliferator-activated receptor gamma (PPARγ) pathway. The objective was to study the impact of MEHP on the PPARγ pathway in FMs using amnion and choriodecidua across the three trimesters of pregnancy and the amniotic epithelial AV3 cell model by analyzing (i) PPARγ expression (mRNA and proteins) using RT-qPCR and Western blot assays; (ii) cytotoxicity and cell viability following MEHP treatment by lactate dehydrogenase (LDH) measurement and using Cell-counting Kit 8; and (iii) modulation by MEHP of PPARγ transcriptional activity (using a reporter gene assay) and PPARγ anti-inflammatory properties (by measuring IL6 and IL8 levels). PPARγ is expressed in the human amnion and choriodecidua during the three trimesters of pregnancy and in amniotic cells. In the AV3 cell line, MEHP is not cytotoxic and does not reduce cell viability, but it reduces PPARγ activity, here induced by a classical agonist without influencing its expression. MEHP also reduces PPARγ’s anti-inflammatory properties. In conclusion, PPARγ signaling is dysregulated by MEHP; this paves the way for future explorations to highlight the hypothesis of phthalates as an amniotic PPARγ disruptor that can explain the premature rupture of FMs. Full article
Show Figures

Figure 1

15 pages, 269 KiB  
Review
Emerging Pharmacological Treatments for Migraine in the Pediatric Population
by Luigi Francesco Iannone, Francesco De Cesaris and Pierangelo Geppetti
Life 2022, 12(4), 536; https://doi.org/10.3390/life12040536 - 5 Apr 2022
Cited by 6 | Viewed by 3005
Abstract
Headaches in children and adolescents have high incidence and prevalence rates, with consequent elevated disability costs to individuals and the community. Pediatric migraine is a disorder with substantial clinical differences compared to the adult form. Few clinical trials have been performed specifically on [...] Read more.
Headaches in children and adolescents have high incidence and prevalence rates, with consequent elevated disability costs to individuals and the community. Pediatric migraine is a disorder with substantial clinical differences compared to the adult form. Few clinical trials have been performed specifically on primary headache in pediatric populations using acute and preventative treatments, often with conflicting findings. The limited high-quality data on the effectiveness of treatments are also due to the high placebo effect, in terms of reductions in both the frequency and intensity of migraine attacks in the pediatric population. The recent introduction of calcitonin gene-related peptide (CGRP) pathway inhibitors and ditans is changing the treatment of migraine, but the majority of the data are still limited to adulthood. Thus, few drugs have indications for migraine treatment in the pediatric age group, and limited evidence gives guidance as to the choice of pharmacotherapy. Herein, we review the current evidence of pharmacological treatments and ongoing clinical trials on acute and preventative treatments in the pediatric population with migraine. Full article
(This article belongs to the Special Issue Migraine and Headache in Children and Adolescents)
38 pages, 2969 KiB  
Review
Personalized Management and Treatment of Alzheimer’s Disease
by Ramón Cacabelos, Vinogran Naidoo, Olaia Martínez-Iglesias, Lola Corzo, Natalia Cacabelos, Rocío Pego and Juan C. Carril
Life 2022, 12(3), 460; https://doi.org/10.3390/life12030460 - 21 Mar 2022
Cited by 8 | Viewed by 3858
Abstract
Alzheimer’s disease (AD) is a priority health problem with a high cost to society and a large consumption of medical and social resources. The management of AD patients is complex and multidisciplinary. Over 90% of patients suffer from concomitant diseases and require personalized [...] Read more.
Alzheimer’s disease (AD) is a priority health problem with a high cost to society and a large consumption of medical and social resources. The management of AD patients is complex and multidisciplinary. Over 90% of patients suffer from concomitant diseases and require personalized therapeutic regimens to reduce adverse drug reactions (ADRs), drug–drug interactions (DDIs), and unnecessary costs. Men and women show substantial differences in their AD-related phenotypes. Genomic, epigenetic, neuroimaging, and biochemical biomarkers are useful for predictive and differential diagnosis. The most frequent concomitant diseases include hypertension (>25%), obesity (>70%), diabetes mellitus type 2 (>25%), hypercholesterolemia (40%), hypertriglyceridemia (20%), metabolic syndrome (20%), hepatobiliary disorder (15%), endocrine/metabolic disorders (>20%), cardiovascular disorder (40%), cerebrovascular disorder (60–90%), neuropsychiatric disorders (60–90%), and cancer (10%). Over 90% of AD patients require multifactorial treatments with risk of ADRs and DDIs. The implementation of pharmacogenetics in clinical practice can help optimize the limited therapeutic resources available to treat AD and personalize the use of anti-dementia drugs, in combination with other medications, for the treatment of concomitant disorders. Full article
(This article belongs to the Special Issue New Trends in Pharmaceutical Science)
Show Figures

Figure 1

15 pages, 1168 KiB  
Article
When Nothing Goes Right: Risk Factors and Biomarkers of Right Heart Failure after Left Ventricular Assist Device Implantation
by Thomas Schlöglhofer, Franziska Wittmann, Robert Paus, Julia Riebandt, Anne-Kristin Schaefer, Philipp Angleitner, Marcus Granegger, Philipp Aigner, Dominik Wiedemann, Günther Laufer, Heinrich Schima and Daniel Zimpfer
Life 2022, 12(3), 459; https://doi.org/10.3390/life12030459 - 20 Mar 2022
Cited by 4 | Viewed by 2176
Abstract
Right heart failure (RHF) is a severe complication after left ventricular assist device (LVAD) implantation. The aim of this study was to analyze the incidence, risk factors, and biomarkers for late RHF including the possible superiority of the device and implantation method. This [...] Read more.
Right heart failure (RHF) is a severe complication after left ventricular assist device (LVAD) implantation. The aim of this study was to analyze the incidence, risk factors, and biomarkers for late RHF including the possible superiority of the device and implantation method. This retrospective, single-center study included patients who underwent LVAD implantation between 2014 and 2018. Primary outcome was freedom from RHF over one-year after LVAD implantation; secondary outcomes included pre- and postoperative risk factors and biomarkers for RHF. Of the 145 consecutive patients (HeartMate 3/HVAD: n = 70/75; female: 13.8%), thirty-one patients (21.4%) suffered RHF after a mean LVAD support of median (IQR) 105 (118) days. LVAD implantation method (less invasive: 46.7% vs. 35.1%, p = 0.29) did not differ significantly in patients with or without RHF, whereas the incidence of RHF was lower in HeartMate 3 vs. HVAD patients (12.9% vs. 29.3%, p = 0.016). Multivariate Cox proportional hazard analysis identified HVAD (HR 4.61, 95% CI 1.12–18.98; p = 0.03), early post-op heart rate (HR 0.96, 95% CI 0.93–0.99; p = 0.02), and central venous pressure (CVP) (HR 1.21, 95% CI 1.05–1.39; p = 0.01) as independent risk factors for RHF, but no association of RHF with increased all-cause mortality (HR 1.00, 95% CI 0.99–1.01; p = 0.50) was found. To conclude, HVAD use, lower heart rate, and higher CVP early post-op were independent risk factors for RHF following LVAD implantation. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

15 pages, 3081 KiB  
Article
The Possible Role of the Type I Chaperonins in Human Insulin Self-Association
by Federica Pizzo, Maria Rosalia Mangione, Fabio Librizzi, Mauro Manno, Vincenzo Martorana, Rosina Noto and Silvia Vilasi
Life 2022, 12(3), 448; https://doi.org/10.3390/life12030448 - 18 Mar 2022
Viewed by 2030
Abstract
Insulin is a hormone that attends to energy metabolism by regulating glucose levels in the bloodstream. It is synthesised within pancreas beta-cells where, before being released into the serum, it is stored in granules as hexamers coordinated by Zn2+ and further packaged [...] Read more.
Insulin is a hormone that attends to energy metabolism by regulating glucose levels in the bloodstream. It is synthesised within pancreas beta-cells where, before being released into the serum, it is stored in granules as hexamers coordinated by Zn2+ and further packaged in microcrystalline structures. The group I chaperonin cpn60, known for its assembly-assisting function, is present, together with its cochaperonin cpn10, at each step of the insulin secretory pathway. However, the exact function of the heat shock protein in insulin biosynthesis and processing is still far from being understood. Here we explore the possibility that the molecular machine cpn60/cpn10 could have a role in insulin hexameric assembly and its further crystallization. Moreover, we also evaluate their potential protective effect in pathological insulin aggregation. The experiments performed with the cpn60 bacterial homologue, GroEL, in complex with its cochaperonin GroES, by using spectroscopic methods, microscopy and hydrodynamic techniques, reveal that the chaperonins in vitro favour insulin hexameric organisation and inhibit its aberrant aggregation. These results provide new details in the field of insulin assembly and its related disorders. Full article
Show Figures

Figure 1

14 pages, 1948 KiB  
Article
Single-Cell Image-Based Analysis Reveals Chromatin Changes during the Acquisition of Tamoxifen Drug Resistance
by Han Zhao, Li F. Lin, Joshua Hahn, Junkai Xie, Harvey F. Holman and Chongli Yuan
Life 2022, 12(3), 438; https://doi.org/10.3390/life12030438 - 17 Mar 2022
Cited by 5 | Viewed by 2048
Abstract
Cancer drug resistance is the leading cause of cancer related deaths. The development of drug resistance can be partially contributed to tumor heterogeneity and epigenetic plasticity. However, the detailed molecular mechanism underlying epigenetic modulated drug resistance remains elusive. In this work, we systematically [...] Read more.
Cancer drug resistance is the leading cause of cancer related deaths. The development of drug resistance can be partially contributed to tumor heterogeneity and epigenetic plasticity. However, the detailed molecular mechanism underlying epigenetic modulated drug resistance remains elusive. In this work, we systematically analyzed epigenetic changes in tamoxifen (Tam) responsive and resistant breast cancer cell line MCF7, and adopted a data-driven approach to identify key epigenetic features distinguishing between these two cell types. Significantly, we revealed that DNA methylation and H3K9me3 marks that constitute the heterochromatin are distinctively different between Tam-resistant and -responsive cells. We then performed time-lapse imaging of 5mC and H3K9me3 features using engineered probes. After Tam treatment, we observed a slow transition of MCF7 cells from a drug-responsive to -resistant population based on DNA methylation features. A similar trend was not observed using H3K9me3 probes. Collectively, our results suggest that DNA methylation changes partake in the establishment of Tam-resistant breast cancer cell lines. Instead of global changes in the DNA methylation level, the distribution of DNA methylation features inside the nucleus can be one of the drivers that facilitates the establishment of a drug resistant phenotype in MCF7. Full article
(This article belongs to the Special Issue Epigenetics and Nuclear Architecture)
Show Figures

Figure 1

13 pages, 1578 KiB  
Review
Distinguishing Evolutionary Conservation from Derivedness
by Jason Cheok Kuan Leong, Masahiro Uesaka and Naoki Irie
Life 2022, 12(3), 440; https://doi.org/10.3390/life12030440 - 17 Mar 2022
Cited by 1 | Viewed by 2608
Abstract
While the concept of “evolutionary conservation” has enabled biologists to explain many ancestral features and traits, it has also frequently been misused to evaluate the degree of changes from a common ancestor, or “derivedness”. We propose that the distinction of these two concepts [...] Read more.
While the concept of “evolutionary conservation” has enabled biologists to explain many ancestral features and traits, it has also frequently been misused to evaluate the degree of changes from a common ancestor, or “derivedness”. We propose that the distinction of these two concepts allows us to properly understand phenotypic and organismal evolution. From a methodological aspect, “conservation” mainly considers genes or traits which species have in common, while “derivedness” additionally covers those that are not commonly shared, such as novel or lost traits and genes to evaluate changes from the time of divergence from a common ancestor. Due to these differences, while conservation-oriented methods are effective in identifying ancestral features, they may be prone to underestimating the overall changes accumulated during the evolution of certain lineages. Herein, we describe our recently developed method, “transcriptomic derivedness index”, for estimating the phenotypic derivedness of embryos with a molecular approach using the whole-embryonic transcriptome as a phenotype. Although echinoderms are often considered as highly derived species, our analyses with this method showed that their embryos, at least at the transcriptomic level, may not be much more derived than those of chordates. We anticipate that the future development of derivedness-oriented methods could provide quantitative indicators for finding highly/lowly evolvable traits. Full article
(This article belongs to the Special Issue Selected Papers from The 2nd AsiaEvo Conference)
Show Figures

Figure 1

17 pages, 8142 KiB  
Article
Alkanes as Membrane Regulators of the Response of Early Membranes to Extreme Temperatures
by Loreto Misuraca, Antonino Caliò, Josephine G. LoRicco, Ingo Hoffmann, Roland Winter, Bruno Demé, Judith Peters and Philippe M. Oger
Life 2022, 12(3), 445; https://doi.org/10.3390/life12030445 - 17 Mar 2022
Cited by 6 | Viewed by 1975
Abstract
One of the first steps in the origin of life was the formation of a membrane, a physical boundary that allowed the retention of molecules in concentrated solutions. The proto-membrane was likely formed by self-assembly of simple readily available amphiphiles, such as short-chain [...] Read more.
One of the first steps in the origin of life was the formation of a membrane, a physical boundary that allowed the retention of molecules in concentrated solutions. The proto-membrane was likely formed by self-assembly of simple readily available amphiphiles, such as short-chain fatty acids and alcohols. In the commonly accepted scenario that life originated near hydrothermal systems, how these very simple membrane bilayers could be stable enough in time remains a debated issue. We used various complementary techniques such as dynamic light scattering, small angle neutron scattering, neutron spin-echo spectroscopy, and Fourier-transform infrared spectroscopy to explore the stability of a novel protomembrane system in which the insertion of alkanes in the midplane is proposed to shift membrane stability to higher temperatures, pH, and hydrostatic pressures. We show that, in absence of alkanes, protomembranes transition into lipid droplets when temperature increases; while in presence of alkanes, membranes persist for longer times in a concentration-dependent manner. Proto-membranes containing alkanes are stable at higher temperatures and for longer times, have a higher bending rigidity, and can revert more easily to their initial state upon temperature variations. Hence, the presence of membrane intercalating alkanes could explain how the first membranes could resist the harsh and changing environment of the hydrothermal systems. Furthermore, modulating the quantity of alkanes in the first membranes appears as a possible strategy to adapt the proto-membrane behavior according to temperature fluctuations, and it offers a first glimpse into the evolution of the first membranes. Full article
(This article belongs to the Special Issue Biomolecular Dynamics Explored by Incoherent Neutron Spectroscopy)
Show Figures

Figure 1

25 pages, 869 KiB  
Review
Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation
by Katie A. O’Brien, Andrew J. Murray and Tatum S. Simonson
Life 2022, 12(3), 437; https://doi.org/10.3390/life12030437 - 16 Mar 2022
Cited by 8 | Viewed by 6082
Abstract
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural [...] Read more.
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation. Full article
(This article belongs to the Special Issue Cellular and Functional Response to Hypoxia)
Show Figures

Figure 1

7 pages, 1297 KiB  
Communication
Why Is the UAG (Amber) Stop Codon Almost Absent in Highly Expressed Bacterial Genes?
by Dominique Belin and Pere Puigbò
Life 2022, 12(3), 431; https://doi.org/10.3390/life12030431 - 16 Mar 2022
Cited by 3 | Viewed by 3734
Abstract
The genome hypothesis postulates that genes in a genome tend to conform to their species’ usage of the codon catalog and the GC content of the DNA. Thus, codon frequencies differ across organisms, including the three termination codons in the standard genetic code. [...] Read more.
The genome hypothesis postulates that genes in a genome tend to conform to their species’ usage of the codon catalog and the GC content of the DNA. Thus, codon frequencies differ across organisms, including the three termination codons in the standard genetic code. Here, we analyze the frequencies of stop codons in a group of highly expressed genes from 196 prokaryotes under strong translational selection. The occurrence of the three translation termination codons is highly biased, with UAA (ochre) being the most prevalent in almost all bacteria. In contrast, UAG (amber) is the least frequent termination codon, e.g., only 321 occurrences (7.4%) in E. coli K-12 substr. W3110. Of the 253 highly expressed genes, only two end with an UAG codon. The strength of the selective bias against UAG in highly expressed genes varies among bacterial genomes, but it is not affected by the GC content of these genomes. In contrast, increased GC content results in a decrease in UAA abundance with a concomitant increase in UGA abundance. We propose that readthrough efficiency and context effects could explain the prevalence of UAA over UAG, particularly in highly expressed genes. Findings from this communication can be utilized for the optimization of gene expression. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

13 pages, 2168 KiB  
Article
2-Fluorofucose Attenuates Hydrogen Peroxide-Induced Oxidative Stress in HepG2 Cells via Nrf2/keap1 and NF-κB Signaling Pathways
by Mengjue Tu, Xingshuo Fan, Jianan Shi, Shengnan Jing, Xiaole Xu and Yuqin Wang
Life 2022, 12(3), 406; https://doi.org/10.3390/life12030406 - 11 Mar 2022
Cited by 2 | Viewed by 2612
Abstract
Fucosylation is one of the most important glycan terminal modifications that affects multiple biological activities of proteins. 2-Fluorofucose (2FF), its specific inhibitor, has recently been reported to reveal numerous biological effects by blocking fucosylation both in vitro and in vivo. The current study [...] Read more.
Fucosylation is one of the most important glycan terminal modifications that affects multiple biological activities of proteins. 2-Fluorofucose (2FF), its specific inhibitor, has recently been reported to reveal numerous biological effects by blocking fucosylation both in vitro and in vivo. The current study aimed to evaluate the effect of 2FF on hydrogen peroxide (H2O2)-induced oxidative damage in vitro. In our study, treatment with H2O2 increased the level of fucosylation, and 2FF improved the cell viability in H2O2-treated HepG2 cells. Our study also showed that 2FF significantly decreased the overproduction of reactive oxygen species (ROS) induced by H2O2 and the activities of catalase, glutathione and Mn-superoxide dismutase were remarkably increased by 2FF pretreatment. Furthermore, 2FF attenuated H2O2-induced early mitochondria dysfunction. The second part of the study revealed that 2FF enhanced antioxidant capacity by affecting Nrf2/keap1 and NF-κB signaling pathways in HepG2 cells. Being pretreated with 2FF significantly increased the nuclear translocation of Nrf2 and simultaneously promoted the expression of downstream proteins, such as HO-1 and NQO1. Moreover, 2FF remarkably suppressed the expression of inflammation-associated proteins. Taken together, these data suggest that 2FF might have a potential therapeutic effect for oxidative stress. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

9 pages, 505 KiB  
Article
Genetic Workup for Charcot–Marie–Tooth Neuropathy: A Retrospective Single-Site Experience Covering 15 Years
by Chiara Gemelli, Alessandro Geroldi, Sara Massucco, Lucia Trevisan, Ilaria Callegari, Lucio Marinelli, Giulia Ursino, Mehrnaz Hamedani, Giulia Mennella, Silvia Stara, Giovanni Maggi, Laura Mori, Cristina Schenone, Fabio Gotta, Serena Patrone, Alessia Mammi, Paola Origone, Valeria Prada, Lucilla Nobbio, Paola Mandich, Angelo Schenone, Emilia Bellone and Marina Grandisadd Show full author list remove Hide full author list
Life 2022, 12(3), 402; https://doi.org/10.3390/life12030402 - 10 Mar 2022
Cited by 6 | Viewed by 2609
Abstract
Charcot–Marie–Tooth (CMT) disease is the most commonly inherited neurological disorder. This study includes patients affected by CMT during regular follow-ups at the CMT clinic in Genova, a neuromuscular university center in the northwest of Italy, with the aim of describing the genetic distribution [...] Read more.
Charcot–Marie–Tooth (CMT) disease is the most commonly inherited neurological disorder. This study includes patients affected by CMT during regular follow-ups at the CMT clinic in Genova, a neuromuscular university center in the northwest of Italy, with the aim of describing the genetic distribution of CMT subtypes in our cohort and reporting a peculiar phenotype. Since 2004, 585 patients (447 index cases) have been evaluated at our center, 64.9% of whom have a demyelinating neuropathy and 35.1% of whom have an axonal neuropathy. A genetic diagnosis was achieved in 66% of all patients, with the following distribution: CMT1A (48%), HNPP (14%), CMT1X (13%), CMT2A (5%), and P0-related neuropathies (7%), accounting all together for 87% of all the molecularly defined neuropathies. Interestingly, we observe a peculiar phenotype with initial exclusive lower limb involvement as well as lower limb involvement that is maintained over time, which we have defined as a “strictly length-dependent” phenotype. Most patients with this clinical presentation shared variants in either HSPB1 or MPZ genes. The identification of distinctive phenotypes such as this one may help to address genetic diagnosis. In conclusion, we describe our diagnostic experiences as a multidisciplinary outpatient clinic, combining a gene-by-gene approach or targeted gene panels based on clinical presentation. Full article
(This article belongs to the Special Issue Rare Neurological Diseases)
Show Figures

Figure 1

12 pages, 1512 KiB  
Article
Dosimetric Comparison of Ultra-Hypofractionated and Conventionally Fractionated Radiation Therapy Boosts for Patients with High-Risk Prostate Cancer
by Tomasz Piotrowski, Slav Yartsev, Jaroslaw Krawczyk, Marta Adamczyk, Agata Jodda, Julian Malicki and Piotr Milecki
Life 2022, 12(3), 394; https://doi.org/10.3390/life12030394 - 9 Mar 2022
Cited by 1 | Viewed by 2047
Abstract
Recent comparison of an ultra-hypofractionated radiotherapy (UF-RT) boost to a conventionally fractionated (CF-RT) option showed similar toxicity and disease control outcomes. An analysis of the treatment plans for these patients is needed for evaluating calculated doses for different organs, treatment beam-on time, and [...] Read more.
Recent comparison of an ultra-hypofractionated radiotherapy (UF-RT) boost to a conventionally fractionated (CF-RT) option showed similar toxicity and disease control outcomes. An analysis of the treatment plans for these patients is needed for evaluating calculated doses for different organs, treatment beam-on time, and requirements for human and financial resources. Eighty-six plans for UF-RT and 93 plans for CF-RT schemes were evaluated. The biologically equivalent dose, EQD2, summed for the first phase and the boost, was calculated for dose-volume parameters for organs at risk (OARs), as well as for the PTV1. ArcCHECK measurements for the boost plans were used for a comparison of planned and delivered doses. Monitor units and beam-on times were recorded by the Eclipse treatment planning system. Statistical analysis was performed with a significance level of 0.05. Dosimetric parameter values for OARs were well within tolerance for both groups. EQD2 for the PTV1 was on average 84 Gy for UF-RT patients and 76 Gy for CF-RT patients. Gamma passing rate for planned/delivered doses comparison was above 98% for both groups with 3 mm/3% distance to agreement/dose difference criteria. Total monitor units per fraction were 647 ± 94 and 2034 ± 570 for CF-RT and UF-RT, respectively. The total delivery time for boost radiation for the patients in the UF-RT arm was, on average, four times less than the total time for a conventional regimen with statistically equal clinical outcomes for the two arms in this study. Full article
(This article belongs to the Special Issue Cancer Radiotherapy: Recent Advances and Challenges)
Show Figures

Figure 1

11 pages, 726 KiB  
Systematic Review
Contribution of Hypoxic Exercise Testing to Predict High-Altitude Pathology: A Systematic Review
by Thomas Georges, Pierre Menu, Camille Le Blanc, Sophie Ferreol, Marc Dauty and Alban Fouasson-Chailloux
Life 2022, 12(3), 377; https://doi.org/10.3390/life12030377 - 5 Mar 2022
Cited by 4 | Viewed by 2610
Abstract
Altitude travelers are exposed to high-altitude pathologies, which can be potentially serious. Individual susceptibility varies widely and this makes it difficult to predict who will develop these complications. The assessment of physiological adaptations to exercise performed in hypoxia has been proposed to help [...] Read more.
Altitude travelers are exposed to high-altitude pathologies, which can be potentially serious. Individual susceptibility varies widely and this makes it difficult to predict who will develop these complications. The assessment of physiological adaptations to exercise performed in hypoxia has been proposed to help predict altitude sickness. The purpose of this review is to evaluate the contribution of hypoxic exercise testing, achieved in normobaric conditions, in the prediction of severe high-altitude pathology. We performed a systematic review using the databases PubMed, Science Direct and Embase in October 2021 to collect studies reporting physiological adaptations under hypoxic exercise testing and its interest in predicting high-altitude pathology. Eight studies were eligible, concerning 3558 patients with a mean age of 46.9 years old, and a simulated mean altitude reaching of 5092 m. 597 patients presented an acute mountain sickness during their altitude travels. Three different protocols of hypoxic exercise testing were used. Acute mountain sickness was defined using Hackett’s score or the Lake Louise score. Ventilatory and cardiac responses to hypoxia, desaturation in hypoxia, cerebral oxygenation, core temperature, variation in body mass index and some perceived sensations were the highlighted variables associated with acute mountain sickness. A decision algorithm based on hypoxic exercise tests was proposed by one team. Hypoxic exercise testing provides promising information to help predict altitude complications. Its interest should be confirmed by different teams. Full article
(This article belongs to the Special Issue Cellular and Functional Response to Hypoxia)
Show Figures

Figure 1

14 pages, 1085 KiB  
Article
CRISPR-Cas Systems in Gut Microbiome of Children with Autism Spectrum Disorders
by Natalia V. Zakharevich, Mikhail S. Nikitin, Alexey S. Kovtun, Vsevolod O. Malov, Olga V. Averina, Valery N. Danilenko and Irena I. Artamonova
Life 2022, 12(3), 367; https://doi.org/10.3390/life12030367 - 3 Mar 2022
Cited by 2 | Viewed by 2033
Abstract
The human gut microbiome is associated with various diseases, including autism spectrum disorders (ASD). Variations of the taxonomical composition in the gut microbiome of children with ASD have been observed repeatedly. However, features and parameters of the microbiome CRISPR-Cas systems in ASD have [...] Read more.
The human gut microbiome is associated with various diseases, including autism spectrum disorders (ASD). Variations of the taxonomical composition in the gut microbiome of children with ASD have been observed repeatedly. However, features and parameters of the microbiome CRISPR-Cas systems in ASD have not been investigated yet. Here, we demonstrate such an analysis in order to describe the overall changes in the microbiome CRISPR-Cas systems during ASD as well as to reveal their potential to be used in diagnostics and therapy. For the systems identification, we used a combination of the publicly available tools suited for completed genomes with subsequent filtrations. In the considered data, the microbiomes of children with ASD contained fewer arrays per Gb of assembly than the control group, but the arrays included more spacers on average. CRISPR arrays from the microbiomes of children with ASD differed from the control group neither in the fractions of spacers with protospacers from known genomes, nor in the sets of known bacteriophages providing protospacers. Almost all bacterial protospacers of the gut microbiome systems for both children with ASD and the healthy ones were located in prophage islands, leaving no room for the systems to participate in the interspecies competition. Full article
(This article belongs to the Special Issue Metagenomics: New Trends and Solutions)
Show Figures

Figure 1

14 pages, 1133 KiB  
Review
Domesticated LTR-Retrotransposon gag-Related Gene (Gagr) as a Member of the Stress Response Network in Drosophila
by Lidia Nefedova, Alexey Gigin and Alexander Kim
Life 2022, 12(3), 364; https://doi.org/10.3390/life12030364 - 3 Mar 2022
Viewed by 2211
Abstract
The most important sources of new components of genomes are transposable elements, which can occupy more than half of the nucleotide sequence of the genome in higher eukaryotes. Among the mobile components of a genome, a special place is occupied by retroelements, which [...] Read more.
The most important sources of new components of genomes are transposable elements, which can occupy more than half of the nucleotide sequence of the genome in higher eukaryotes. Among the mobile components of a genome, a special place is occupied by retroelements, which are similar to retroviruses in terms of their mechanisms of integration into a host genome. The process of positive selection of certain sequences of transposable elements and retroviruses in a host genome is commonly called molecular domestication. There are many examples of evolutionary adaptations of gag (retroviral capsid) sequences as new regulatory sequences of different genes in mammals, where domesticated gag genes take part in placenta functioning and embryogenesis, regulation of apoptosis, hematopoiesis, and metabolism. The only gag-related gene has been found in the Drosophila genome—Gagr. According to the large-scale transcriptomic and proteomic analysis data, the Gagr gene in D. melanogaster is a component of the protein complex involved in the stress response. In this work, we consider the evolutionary processes that led to the formation of a new function of the domesticated gag gene and its adaptation to participation in the stress response. We discuss the possible functional role of the Gagr as part of the complex with its partners in Drosophila, and the pathway of evolution of proteins of the complex in eukaryotes to determine the benefit of the domesticated retroelement gag gene. Full article
(This article belongs to the Special Issue Genomic Impact of Transposable Elements)
Show Figures

Figure 1

16 pages, 970 KiB  
Article
Pulmonary Complications after COVID-19
by Petr Jakubec, Kateřina Fišerová, Samuel Genzor and Milan Kolář
Life 2022, 12(3), 357; https://doi.org/10.3390/life12030357 - 28 Feb 2022
Cited by 11 | Viewed by 4153
Abstract
Coronavirus disease 2019 (COVID-19) is a threat to patients not only because of its acute course, but also because of various complications occurring in the following period, that is, more than 28 days after the onset of acute infection. The present study identified [...] Read more.
Coronavirus disease 2019 (COVID-19) is a threat to patients not only because of its acute course, but also because of various complications occurring in the following period, that is, more than 28 days after the onset of acute infection. The present study identified a total of 121 patients hospitalized 29 or more days after the first positive result of a PCR test for SARS-CoV-2, of whom 98 patients were included in the study. Patients were divided into two groups by the time interval between the positive COVID-19 test result and hospitalization date. The time intervals were week 5–11 in an ongoing-COVID group (57.1% of patients) and 12 or more weeks in a post-COVID-group (42.9%). The most frequent reason for hospitalization was respiratory tract infection (58.2%). Pneumonia accounted for 77.2% of these cases. Other reasons for hospitalization were interstitial lung disease (22.4%), pulmonary embolism (8.2%), and sarcoidosis (6.1%). The study group was further divided according to the causes of hospitalization into subgroups with infections and other causes. In the group with infectious diseases, there was a shorter time period between PCR positivity and hospitalization and there were significantly more frequent non-respiratory complications. In the entire sample, the in-hospital mortality was 5.1%. Full article
(This article belongs to the Collection Bacterial Infections, Treatment and Antibiotic Resistance)
Show Figures

Figure 1

11 pages, 275 KiB  
Review
Alcohol Consumption, ALDH2 Polymorphism as Risk Factors for Upper Aerodigestive Tract Cancer Progression and Prognosis
by Che-Hong Chen, Wen-Lun Wang, Ming-Hung Hsu and Daria Mochly-Rosen
Life 2022, 12(3), 348; https://doi.org/10.3390/life12030348 - 27 Feb 2022
Cited by 11 | Viewed by 3442
Abstract
The upper aerodigestive tract (UADT) is highly susceptible to multiple primary cancers originated from squamous epithelia and constitutes a field of cancerization. Patients with head and neck cancer (head and neck squamous cell carcinoma, HNSCC) are at high risk of developing multiple cancers [...] Read more.
The upper aerodigestive tract (UADT) is highly susceptible to multiple primary cancers originated from squamous epithelia and constitutes a field of cancerization. Patients with head and neck cancer (head and neck squamous cell carcinoma, HNSCC) are at high risk of developing multiple cancers in the esophagus (esophageal squamous cell carcinoma, ESCC). Conversely, esophageal cancer patients are prone to develop multiple primary tumors in the head and neck region. The East Asian-specific dysfunctional ALDH2*2 missense mutation is a genetic risk factor for UADT cancer. It is not only associated with increased incidences of UADT cancer, but is also implicated in faster cancer progression and poorer prognosis. Alcohol use is a major lifestyle risk factor which causes UADT cancer among ALDH2*2 carriers. The accumulation of the immediate metabolite of alcohol, acetaldehyde, is likely the genotoxic agents that is involved in the process of tumorigenesis. This review summarizes recent publications on the risk and association of ALDH2*2 mutation, alcohol consumption in synchronous, metachronous UADT cancer. Possible molecular mechanisms involved in cancer initiation, progress and prognosis are discussed. The review also highlights a need for precision medicine-based preventive and therapeutic strategies by integrating lifestyle and genetic risk factors, such as alcohol consumption, genotypes of the alcohol metabolizing genes, ADH1B and ALDH2, into a risk assessment model for better screening, surveillance and treatment outcome. Full article
(This article belongs to the Collection Tumor Progression, Microenvironments, and Therapeutics)
11 pages, 592 KiB  
Review
Utility of Keratins as Biomarkers for Human Oral Precancer and Cancer
by Milind Vaidya, Crismita Dmello and Saie Mogre
Life 2022, 12(3), 343; https://doi.org/10.3390/life12030343 - 25 Feb 2022
Cited by 13 | Viewed by 2957
Abstract
Human oral cancer is the single largest group of malignancies in the Indian subcontinent and the sixth largest group of malignancies worldwide. Squamous cell carcinomas (SCC) are the most common epithelial malignancy of the oral cavity, constituting over 90% of oral cancers. About [...] Read more.
Human oral cancer is the single largest group of malignancies in the Indian subcontinent and the sixth largest group of malignancies worldwide. Squamous cell carcinomas (SCC) are the most common epithelial malignancy of the oral cavity, constituting over 90% of oral cancers. About 90% of OSCCs arise from pre-existing, potentially malignant lesions. According to WHO, OSCC has a 5-year survival rate of 45–60%. Late diagnosis, recurrence, and regional or lymph nodal metastases could be the main causes of the high mortality rates. Biomarkers may help categorize and predict premalignant lesions as high risk of developing malignancy, local recurrence, and lymph nodal metastasis. However, at present, there is a dearth of such markers, and this is an area of ongoing research. Keratins (K) or cytokeratins are a group of intermediate filament proteins that show paired and differentiation dependent expression. Our laboratory and others have shown consistent alterations in the expression patterns of keratins in both oral precancerous lesions and tumors. The correlation of these changes with clinicopathological parameters has also been demonstrated. Furthermore, the functional significance of aberrant keratins 8/18 expression in the malignant transformation and progression of oral tumors has also been documented. This article reviews the literature that emphasizes the value of keratins as biomarkers for the prognostication of human oral precancers and cancers. Full article
Show Figures

Figure 1

20 pages, 850 KiB  
Review
Staphylococcus epidermidis Controls Opportunistic Pathogens in the Nose, Could It Help to Regulate SARS-CoV-2 (COVID-19) Infection?
by Silvestre Ortega-Peña, Sandra Rodríguez-Martínez, Mario E. Cancino-Diaz and Juan C. Cancino-Diaz
Life 2022, 12(3), 341; https://doi.org/10.3390/life12030341 - 25 Feb 2022
Cited by 5 | Viewed by 5608
Abstract
Staphylococcus epidermidis is more abundant in the anterior nares than internal parts of the nose, but its relative abundance changes along with age; it is more abundant in adolescents than in children and adults. Various studies have shown that S. epidermidis is the [...] Read more.
Staphylococcus epidermidis is more abundant in the anterior nares than internal parts of the nose, but its relative abundance changes along with age; it is more abundant in adolescents than in children and adults. Various studies have shown that S. epidermidis is the guardian of the nasal cavity because it prevents the colonization and infection of respiratory pathogens (bacteria and viruses) through the secretion of antimicrobial molecules and inhibitors of biofilm formation, occupying the space of the membrane mucosa and through the stimulation of the host’s innate and adaptive immunity. There is a strong relationship between the low number of S. epidermidis in the nasal cavity and the increased risk of serious respiratory infections. The direct application of S. epidermidis into the nasal cavity could be an effective therapeutic strategy to prevent respiratory infections and to restore nasal cavity homeostasis. This review shows the mechanisms that S. epidermidis uses to eliminate respiratory pathogens from the nasal cavity, also S. epidermidis is proposed to be used as a probiotic to prevent the development of COVID-19 because S. epidermidis induces the production of interferon type I and III and decreases the expression of the entry receptors of SARS-CoV-2 (ACE2 and TMPRSS2) in the nasal epithelial cells. Full article
(This article belongs to the Special Issue Microbiome of the Respiratory Tract)
Show Figures

Figure 1

12 pages, 3958 KiB  
Article
Ethyl P-Methoxycinnamate: An Active Anti-Metastasis Agent and Chemosensitizer Targeting NFκB from Kaempferia galanga for Melanoma Cells
by Subehan Lallo, Besse Hardianti, Sartini Sartini, Ismail Ismail, Dewi Laela and Yoshihiro Hayakawa
Life 2022, 12(3), 337; https://doi.org/10.3390/life12030337 - 24 Feb 2022
Cited by 4 | Viewed by 2502
Abstract
The most common type of skin cancer is melanoma. While significant advances in chemotherapy have occurred in a few instances, only marginal progress has been made in treating metastatic melanoma. Natural medicine has traditionally been used to treat various illnesses, including cancer. The [...] Read more.
The most common type of skin cancer is melanoma. While significant advances in chemotherapy have occurred in a few instances, only marginal progress has been made in treating metastatic melanoma. Natural medicine has traditionally been used to treat various illnesses, including cancer. The purpose of this study was to identify the active compound in Kaempferia galanga, which could be used to treat melanoma as an anti-metastasis and chemosensitizer agent. The active compound in K. galanga was isolated and identified using chromatography and spectroscopy techniques, and given six compounds. Inhibitory activity on NFκB activation and cell viability was determined using reporter assay methods. Among the isolated compounds, ethyl p-methoxycinnamate (EPMC) demonstrated potent NFκB inhibitory activity against melanoma cell B16F10- NFκB Luc2 with an IC50 of 88.7 μM. Further investigation was conducted by evaluating the anti-metastasis effect of EPMC in vitro by using wound-healing assays, invasion tests, and molecular mechanism assays using Western blotting. NFκB has been implicated in tumorigenesis through the PI3K/Akt/NFκB pathway. The results of this study indicated that EPMCs act as inhibitors of p38 and thereby Akt phosphorylation inhibitors at serine 473, inhibiting NFκB-dependent transcription. Further analysis with paclitaxel demonstrated that the combinations could sensitize to apoptosis in response to well-known chemotherapy agents. Additional studies were conducted using the human melanoma cancer cell line SK-Mel 28. Along with the induction of apoptosis, we observed an increase in p-γH2AX expression (a molecular marker for double strand breaks in DNA damage) in response to treatment with paclitaxel and EPMC. The result showed EPMC to be a potential, viable adjuvant for improving the clinical efficacy of anti-metastatic and cancer chemotherapy. Full article
(This article belongs to the Special Issue Molecular Signaling of Natural Compounds in Oncology)
Show Figures

Figure 1

19 pages, 3042 KiB  
Review
MR Imaging in Real Time Guiding of Therapies in Prostate Cancer
by Yvonne Wimper, Jurgen J. Fütterer and Joyce G. R. Bomers
Life 2022, 12(2), 302; https://doi.org/10.3390/life12020302 - 17 Feb 2022
Cited by 3 | Viewed by 2242
Abstract
Magnetic resonance imaging (MRI)-guided therapy for prostate cancer (PCa) aims to reduce the treatment-associated comorbidity of existing radical treatment, including radical prostatectomy and radiotherapy. Although active surveillance has been used as a conservative method to reduce overtreatment, there is a growing demand for [...] Read more.
Magnetic resonance imaging (MRI)-guided therapy for prostate cancer (PCa) aims to reduce the treatment-associated comorbidity of existing radical treatment, including radical prostatectomy and radiotherapy. Although active surveillance has been used as a conservative method to reduce overtreatment, there is a growing demand for less morbidity and personalized (focal) treatment. The development of multiparametric MRI was of real importance in improving the detection, localization and staging of PCa. Moreover, MRI has been useful for lesion targeting within the prostate, as it is used in the guidance of prostate biopsies, by means of cognitive registration, MRI-ultrasound fusion guidance or direct in-bore MRI-guidance. With regard to PCa therapies, MRI is used for precise probe placement into the lesion and to accurately monitor the treatment in real-time. Moreover, advances in MR-compatible thermal ablation allow for noninvasive real-time temperature mapping during treatment. In this review, we present an overview of the current status of MRI-guided therapies in PCa, focusing on cryoablation, focal laser ablation, high intensity focused ultrasound and transurethral ultrasound ablation. We explain the important role of MRI in the evaluation of the completeness of the ablation and during follow-up. Finally, we will discuss the challenges and future development inherent to these new technologies. Full article
(This article belongs to the Special Issue MRI in Cancer: Ongoing Developments and Controversies)
Show Figures

Figure 1

12 pages, 1814 KiB  
Article
Comparison of Clinical Efficacy and Safety between 70–150 µm and 100–300 µm Doxorubicin Drug-Eluting Bead Transarterial Chemoembolization for Hepatocellular Carcinoma
by Jung Woo Yi, Hyun Pyo Hong, Myung Sub Kim, Byung Seok Shin, Heon-Ju Kwon, Byung Ik Kim and Won Sohn
Life 2022, 12(2), 297; https://doi.org/10.3390/life12020297 - 16 Feb 2022
Cited by 5 | Viewed by 2583
Abstract
Background: This study aimed to compare the efficacy and safety of 70–150 μm doxorubicin drug-eluting bead (DEB) transarterial chemoembolization (TACE) with those of 100–300 μm DEB-TACE as first-line treatment in patients with hepatocellular carcinoma (HCC). Methods: We retrospectively investigated 72 patients who underwent [...] Read more.
Background: This study aimed to compare the efficacy and safety of 70–150 μm doxorubicin drug-eluting bead (DEB) transarterial chemoembolization (TACE) with those of 100–300 μm DEB-TACE as first-line treatment in patients with hepatocellular carcinoma (HCC). Methods: We retrospectively investigated 72 patients who underwent TACE with 70–150 μm DEBs (n = 40) or 100–300 μm DEBs (n = 32) for HCC in a tertiary center between March 2013 and May 2019. Initial treatment response and adverse events were assessed using the modified Response Evaluation Criteria in Solid Tumors and the National Cancer Institute Common Terminology Criteria for Adverse Events version 5.0, respectively. Results: At the 2-month post-treatment assessment, the complete and objective response rates were 47.5% and 85.0%, respectively, for the 70–150 μm group and 34.4% and 81.3%, respectively, for the 100–300 μm group; however, the difference was not statistically significant (p > 0.05). In total, 65% patients in the 70–150 μm group and 59.4 % patients in the 100-300 μm group experienced at least one symptom of post-embolization syndrome after TACE; all symptoms were classified as grade 1 or 2. There was no significant difference between the two groups in terms of post-procedural laboratory changes such as changes in liver enzymes and bilirubin levels (p > 0.05). Laboratory toxicity of grade 3 occurred in three patients, all of which were transient elevation of liver enzyme levels. Hepatobiliary adverse events, such as bile duct injury, biloma, liver abscess, and hepatic infarction, were not observed in either treatment group. Conclusion: This study found no significant difference in tumor response between 70–150 μm and 100–300 μm DEB-TACE. Both groups showed favorable safety profiles, and the difference was not significant. Full article
(This article belongs to the Section Radiobiology and Nuclear Medicine)
Show Figures

Figure 1

14 pages, 3018 KiB  
Article
Objective Perfusion Assessment in Gracilis Muscle Interposition—A Novel Software-Based Approach to Indocyanine Green Derived Near-Infrared Fluorescence in Reconstructive Surgery
by Leonard A. Lobbes, Richelle J. M. Hoveling, Leonard R. Schmidt, Susanne Berns and Benjamin Weixler
Life 2022, 12(2), 278; https://doi.org/10.3390/life12020278 - 13 Feb 2022
Cited by 4 | Viewed by 1973
Abstract
Background: Gracilis muscle interposition (GMI) is an established treatment option for complex perineal fistulas and reconstruction. The outcome is limited by complications such as necrosis, impaired wound healing and fistula persistence or recurrence. Quantifiable methods of assessing muscle flap perfusion intraoperatively are lacking. [...] Read more.
Background: Gracilis muscle interposition (GMI) is an established treatment option for complex perineal fistulas and reconstruction. The outcome is limited by complications such as necrosis, impaired wound healing and fistula persistence or recurrence. Quantifiable methods of assessing muscle flap perfusion intraoperatively are lacking. This study evaluates a novel and objective software-based assessment of indocyanine green near-infrared fluorescence (ICG-NIRF) in GMI. Methods: Intraoperative ICG-NIRF visualization data of five patients with inflammatory bowel disease (IBD) undergoing GMI for perineal fistula and reconstruction were analyzed retrospectively. A new software was utilized to generate perfusion curves for the specific regions of interest (ROIs) of each GMI by depicting the fluorescence intensity over time. Additionally, a pixel-to-pixel and perfusion zone analysis were performed. The findings were correlated with the clinical outcome. Results: Four patients underwent GMI without postoperative complications within 3 months. The novel perfusion indicators identified here (shape of the perfusion curve, maximum slope value, distribution and range) indicated adequate perfusion. In one patient, GMI failed. In this case, the perfusion indicators suggested impaired perfusion. Conclusions: We present a novel, software-based approach for ICG-NIRF perfusion assessment, identifying previously unknown objective indicators of muscle flap perfusion. Ready for intraoperative real-time use, this method has considerable potential to optimize GMI surgery in the future. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Image-Guided Surgery)
Show Figures

Figure 1

13 pages, 683 KiB  
Review
Telocytes in the Female Reproductive System: Up-to-Date Knowledge, Challenges and Possible Clinical Applications
by Martin Klein, Mária Csöbönyeiová, Ľuboš Danišovič, Lenka Lapides and Ivan Varga
Life 2022, 12(2), 267; https://doi.org/10.3390/life12020267 - 10 Feb 2022
Cited by 11 | Viewed by 6020
Abstract
From their initial description in 2005 to this day, telocytes (TCs) have been described in the ovary, uterine tubes, uterus, vagina, mammary gland, and placenta. Their morphological features, immunophenotype, physiological functions, and roles in disease have been thoroughly documented in both animal models [...] Read more.
From their initial description in 2005 to this day, telocytes (TCs) have been described in the ovary, uterine tubes, uterus, vagina, mammary gland, and placenta. Their morphological features, immunophenotype, physiological functions, and roles in disease have been thoroughly documented in both animal models and human subjects. TCs, with their extremely long cytoplasmic processes called telopodes, play a pivotal role in the morphological and functional interconnection of all the components of the interstitial compartment, but also with constituents of the parenchyma. Although there is no specific immunohistochemical marker for their identification, the most cited are CD 117, CD 34, platelet-derived growth factor receptor (PDGFR), vimentin, and specific markers typical for the female reproductive system (FRS)—estrogen and progesterone receptors (ER and PR). This immunophenotype provides important clues to their physiological roles. Their main functions include the regulation of hormone-dependent processes, intercellular signaling, immune surveillance, microenvironmental maintenance, and the nursing of stem cells. In a situation where TCs are functionally or morphologically decimated, many disease entities may develop, including premature ovarian failure, endometriosis, ectopic pregnancy, infertility, preeclampsia, or even breast cancer. The common denominator of many of these conditions is that their etiopathogenesis is either partially known or completely obscure. Even though the exact role of TCs in these conditions is yet to be revealed, multiple lines of research indicate that their future clinical application may enrich diagnostic-therapeutic strategies of countless conditions. TCs are also heavily debated in terms of their possible use in regenerative medicine and tissue engineering. Some of the concepts related to TC research are strongly substantiated by experimental data, while others are highly speculative. Only future research endeavors will clearly distinguish dead-end lines of research from genuine contributions to the field. Full article
Show Figures

Figure 1

11 pages, 589 KiB  
Article
Ex-Vivo Preservation with the Organ Care System in High Risk Heart Transplantation
by Sebastian V. Rojas, Murat Avsar, Fabio Ius, David Schibilsky, Tim Kaufeld, Christoph Benk, Ilona Maeding, Michael Berchtold-Herz, Christoph Bara, Friedhelm Beyersdorf, Axel Haverich, Gregor Warnecke and Matthias Siepe
Life 2022, 12(2), 247; https://doi.org/10.3390/life12020247 - 7 Feb 2022
Cited by 11 | Viewed by 2837
Abstract
Objective: Ex vivo organ perfusion is an advanced preservation technique that allows graft assessment and extended ex situ intervals. We hypothesized that its properties might be especially beneficial for high-risk recipients and/or donors with extended criteria. Methods: We reviewed the outcomes of 119 [...] Read more.
Objective: Ex vivo organ perfusion is an advanced preservation technique that allows graft assessment and extended ex situ intervals. We hypothesized that its properties might be especially beneficial for high-risk recipients and/or donors with extended criteria. Methods: We reviewed the outcomes of 119 consecutive heart transplant patients, which were divided into two groups: A (OCS) vs. B (conventional). Ex vivo organ perfusion was performed using the Organ Care System (OCS). Indications for OCS-usage were expected ischemic time of >4 h or >2 h plus given extended donor criteria. Results: Both groups included mostly redo cases (A: 89.7% vs. B: 78.4%; p = 0.121). Incidences of donors with previous cardiac arrest (%) (A: 32.4 vs. B: 22.2; p < 0.05) or LV-hypertrophy (%) (A: 19.1 vs. B: 8.3; p = 0.119) were also increased in Group A. Ex situ time (min) was significantly longer in Group A (A: 381 (74) vs. B: 228 (43); p < 0.05). Ventilation time (days) (A: 10.0 (19.9) vs. B: 24.3 (43.2); p = 0.057), postoperative need for ECLS (%) (A: 25.0 vs. B: 39.2; p = 0.112) and postoperative dialysis (chronic) (%) (A: 4.4 vs. B: 27.5; p < 0.001) were numerically better in the OCS group, without any difference in the occurrence of early graft rejection. The 30-d-survival (A: 92.4% vs. B: 90.2%; p = 0.745) and mid-term survival were statistically not different between both groups. Conclusions: OCS heart allowed safe transplantation of surgically complex recipients with excellent one-year outcomes, despite long preservation times and unfavourable donor characteristics. Furthermore, we observed trends towards decreased ventilation times and fewer ECLS treatments. In times of reduced organ availability and increasing recipient complexity, OCS heart is a valuable instrument that enables otherwise infeasible allocations and contributes to increase surgical safety. Full article
(This article belongs to the Collection Heart Failure and Heart Transplantation)
Show Figures

Graphical abstract

16 pages, 1675 KiB  
Article
Whole Body MRI in the Detection of Lymph Node Metastases in Patients with Testicular Germ Cell Cancer
by Vassiliki Pasoglou, Sandy Van Nieuwenhove, Julien Van Damme, Nicolas Michoux, Aline Van Maanen, Laurence Annet, Jean-Pascal Machiels, Bertrand Tombal and Frederic E. Lecouvet
Life 2022, 12(2), 212; https://doi.org/10.3390/life12020212 - 29 Jan 2022
Cited by 3 | Viewed by 3241
Abstract
Whole-Body Magnetic Resonance Imaging (WB-MRI) is increasingly used for metastatic screening in oncology. This prospective single center study assesses the diagnostic value of WB-MRI including diffusion weighted imaging (DWI) and identifies the sufficient protocol for metastatic lymph node detection in patients with testicular [...] Read more.
Whole-Body Magnetic Resonance Imaging (WB-MRI) is increasingly used for metastatic screening in oncology. This prospective single center study assesses the diagnostic value of WB-MRI including diffusion weighted imaging (DWI) and identifies the sufficient protocol for metastatic lymph node detection in patients with testicular germ cell cancer (TGCC). Forty-three patients underwent contrast enhanced thoraco-abdominopelvic CT (TAP-CT) and WB-MRI with DWI for metastatic lymph node screening. Two independent readers reviewed CTs and WB-MRIs. The diagnostic performance of different imaging protocols (CT, complete WB-MRI, T1W + DWI, T2W + DWI), the agreement between these protocols and the reference standard, the reproducibility of findings and the image quality (Signal and contrast to Noise Ratios, Likert scale) were studied. Reproducibility was very good regardless of both lesion locations (retroperitoneal vs distant lymph nodes, other lesions) and the reader. Diagnostic accuracy of MRI was ≥95% (regardless of the locations and imaging protocol); accuracy of CT was ≥93%. There was a strict overlap of 95% CIs associated with this accuracy between complete WB-MRI, T1W + DWI and T2W + DWI, regardless of the reader. Higher Likert score and SNR were observed for DWI, followed by T2W and T1W sequences. In conclusion, a fast WB-MRI protocol including T2W and DWI is a sufficient, accurate, non-irradiating alternative to TAP-CT for metastatic lymph node screening in TGCC. Full article
(This article belongs to the Special Issue MRI in Cancer: Ongoing Developments and Controversies)
Show Figures

Figure 1

20 pages, 4558 KiB  
Article
Multi-Planar VMAT Plans for High-Grade Glioma and Glioblastoma Targeting the Hypothalamic-Pituitary Axis Sparing
by Eva Y. W. Cheung, Shirley S. H. Ng, Sapphire H. Y. Yung, Dominic Y. T. Cheng, Fandy Y. C. Chan and Janice K. Y. Cheng
Life 2022, 12(2), 195; https://doi.org/10.3390/life12020195 - 28 Jan 2022
Cited by 4 | Viewed by 2867
Abstract
Background: This study aimed to identify the better arc configuration of volumetric modulated arc therapy (VMAT) for high-grade glioma and glioblastoma, focusing on a dose reduction to the hypothalamic–pituitary axis through an analysis of dose-volumetric parameters, as well as a correlation analysis between [...] Read more.
Background: This study aimed to identify the better arc configuration of volumetric modulated arc therapy (VMAT) for high-grade glioma and glioblastoma, focusing on a dose reduction to the hypothalamic–pituitary axis through an analysis of dose-volumetric parameters, as well as a correlation analysis between the planned target volume (PTV) to organs at risk (OAR) distance and the radiation dose. Method: Twenty-four patients with 9 high-grade glioma and 15 glioblastomas were included in this study. Identical CT, MRI and structure sets of each patient were used for coplanar VMAT (CO-VMAT), dual planar VMAT (DP-VMAT) and multi-planar VMAT (MP-VMAT) planning. The dose constraints adhered to the RTOG0825 and RTOG9006 protocols. The dose-volumetric parameters of each plan were collected for statistical analysis. Correlation analyses were performed between radiation dose and PTV-OARs distance. Results: The DP-VMAT and MP-VMAT achieved a significant dose reduction to most nearby OARs when compared to CO-VMAT, without compromising the dose to PTV, plan homogeneity and conformity. For centrally located OARs, including the hypothalamus, pituitary, brain stem and optic chiasm, the dose reductions ranged from 2.65 Gy to 3.91 Gy (p < 0.001) in DP-VMAT and from 2.57 Gy to 4 Gy (p < 0.001) in MP-VMAT. Similar dose reduction effects were achieved for contralaterally located OARs, including the hippocampus, optic nerve, lens and retina, ranging from 1.06 Gy to 4.37 Gy in DP-VMAT and from 0.54 Gy to 3.39 Gy in MP-VMAT. For ipsilaterally located OARs, DP-VMAT achieved a significant dose reduction of 1.75 Gy to Dmax for the optic nerve. In the correlation analysis, DP-VMAT and MP-VMAT showed significant dose reductions to centrally located OARs when the PTV-OAR distance was less than 4 cm. In particular, DP-VMAT offered better sparing to the optic chiasm when it was located less than 2 cm from the PTV than that of MP-VMAT and CO-VMAT. DP-VMAT and MP-VMAT also showed better sparing to the contralateral hippocampus and retina when they were located 3–8 cm from the PTV. Conclusion: The proposed DP-VMAT and MP-VMAT demonstrated significant dose reductions to centrally located and contralateral OARs and maintained the high plan qualities to PTV with good homogeneity and conformity when compared to CO-VMAT for high-grade glioma and glioblastoma. The benefit in choosing DP-VMAT and MP-VMAT over CO-VMAT was substantial when the PTV was located near the hypothalamus, pituitary, optic chiasm, contralateral hippocampus and contralateral retina. Full article
(This article belongs to the Special Issue Cancer Radiotherapy: Recent Advances and Challenges)
Show Figures

Figure 1

Back to TopTop