Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8963 KiB  
Review
Anthropogenic Drivers Leading to Population Decline and Genetic Preservation of the Eurasian Griffon Vulture (Gyps fulvus)
by Monica Pirastru, Paolo Mereu, Laura Manca, Daniela Bebbere, Salvatore Naitana and Giovanni G. Leoni
Life 2021, 11(10), 1038; https://doi.org/10.3390/life11101038 - 1 Oct 2021
Cited by 7 | Viewed by 3260
Abstract
Human activities are having increasingly devastating effects on the health of marine and terrestrial ecosystems. Studying the adaptive responses of animal species to changes in their habitat can be useful in mitigating this impact. Vultures represent one of the most virtuous examples of [...] Read more.
Human activities are having increasingly devastating effects on the health of marine and terrestrial ecosystems. Studying the adaptive responses of animal species to changes in their habitat can be useful in mitigating this impact. Vultures represent one of the most virtuous examples of adaptation to human-induced environmental changes. Once dependent on wild ungulate populations, these birds have adapted to the epochal change resulting from the birth of agriculture and livestock domestication, maintaining their essential role as ecological scavengers. In this review, we retrace the main splitting events characterising the vultures’ evolution, with particular emphasis on the Eurasian griffon Gyps fulvus. We summarise the main ecological and behavioural traits of this species, highlighting its vulnerability to elements introduced into the habitat by humans. We collected the genetic information available to date, underlining their importance for improving the management of this species, as an essential tool to support restocking practices and to protect the genetic integrity of G. fulvus. Finally, we examine the difficulties in implementing a coordination system that allows genetic information to be effectively transferred into management programs. Until a linking network is established between scientific research and management practices, the risk of losing important wildlife resources remains high. Full article
(This article belongs to the Special Issue Evolutionary and Conservation Genetics)
Show Figures

Figure 1

11 pages, 1266 KiB  
Article
Comparison of the Effect of Unfractionated Heparin and Enoxaparin Sodium at Different Doses on the Course of COVID-19-Associated Coagulopathy
by Oleksandr Oliynyk, Wojciech Barg, Anna Slifirczyk, Yanina Oliynyk, Serhij Dubrov, Vitaliy Gurianov and Marta Rorat
Life 2021, 11(10), 1032; https://doi.org/10.3390/life11101032 - 30 Sep 2021
Cited by 23 | Viewed by 2874
Abstract
Background: COVID-19-associated coagulopathy (CAC) exacerbates the course of coronavirus infection and contributes to increased mortality. Current recommendations for CAC treatment include the use of low-molecular weight heparins (LMWH) at prophylactic or therapeutic doses, as well as the use of unfractionated heparin (UFH). Methods: [...] Read more.
Background: COVID-19-associated coagulopathy (CAC) exacerbates the course of coronavirus infection and contributes to increased mortality. Current recommendations for CAC treatment include the use of low-molecular weight heparins (LMWH) at prophylactic or therapeutic doses, as well as the use of unfractionated heparin (UFH). Methods: A randomised, controlled trial enrolled 126 patients hospitalised in the intensive care unit with severe COVID-19 complicated by CAC. The effects of LMWH at preventive and therapeutic doses and UFH at therapeutic doses on mortality and intubation rates were compared. Results: The number of intubations and deaths showed no significant difference depending on the anticoagulant therapy used. However, multivariate logistic regression models revealed an increased risk of intubation (p = 0.026, odds ratio (OR) = 3.33, 95% confidence interval (CI) 1.15–9.59), and an increased risk of death (p = 0.046, OR = 3.01, 95% CI 1.02–8.90), for patients treated with LMWH at a prophylactic dose but not at a therapeutic dose as compared to patients treated with UFH when controlling for other risk factors. Conclusions: The use of unfractionated heparin in the treatment of COVID-19-associated coagulopathy seems to be more effective at reducing the risk of intubation and death than enoxaparin at prophylactic doses. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

12 pages, 2729 KiB  
Article
NMR Reveals the Conformational Changes of Cytochrome C upon Interaction with Cardiolipin
by Jianhua Zhan, Guangqing Zhang, Xin Chai, Qinjun Zhu, Peng Sun, Bin Jiang, Xin Zhou, Xu Zhang and Maili Liu
Life 2021, 11(10), 1031; https://doi.org/10.3390/life11101031 - 30 Sep 2021
Cited by 6 | Viewed by 2248
Abstract
Conformational change of cytochrome c (cyt c) caused by interaction with cardiolipin (CL) is an important step during apoptosis, but the underlying mechanism is controversial. To comprehensively clarify the structural transformations of cyt c upon interaction with CL and avoid the unpredictable alias [...] Read more.
Conformational change of cytochrome c (cyt c) caused by interaction with cardiolipin (CL) is an important step during apoptosis, but the underlying mechanism is controversial. To comprehensively clarify the structural transformations of cyt c upon interaction with CL and avoid the unpredictable alias that might come from protein labeling or mutations, the conformation of purified yeast iso–1 cyt c with natural isotopic abundance in different contents of CL was measured by using NMR spectroscopy, in which the trimethylated group of the protein was used as a natural probe. The data demonstrate that cyt c has two partially unfolded conformations when interacted with CL: one with Fe–His33 coordination and the other with a penta–coordination heme. The Fe–His33 coordination conformation can be converted into a penta–coordination heme conformation in high content of CL. The structure of cyt c becomes partially unfolded with more exposed heme upon interaction with CL, suggesting that cyt c prefers a high peroxidase activity state in the mitochondria, which, in turn, makes CL easy to be oxidized, and causes the release of cyt c into the cytoplasm as a trigger in apoptosis. Full article
(This article belongs to the Special Issue Application of Nuclear Magnetic Resonance Method in Protein Research)
Show Figures

Figure 1

11 pages, 851 KiB  
Article
Reduced Plasma Ascorbate and Increased Proportion of Dehydroascorbic Acid Levels in Patients Undergoing Hemodialysis
by Yuta Doshida, Mitsuyo Itabashi, Takashi Takei, Yuka Takino, Ayami Sato, Wako Yumura, Naoki Maruyama and Akihito Ishigami
Life 2021, 11(10), 1023; https://doi.org/10.3390/life11101023 - 28 Sep 2021
Cited by 3 | Viewed by 2912
Abstract
Ascorbate functions as an electron donor and scavenges free radicals. Dehydroascorbic acid (DHA), the oxidized form of ascorbate, is generated as a result of these reactions. While low plasma ascorbate levels have been reported in hemodialysis patients worldwide, no studies have measured DHA [...] Read more.
Ascorbate functions as an electron donor and scavenges free radicals. Dehydroascorbic acid (DHA), the oxidized form of ascorbate, is generated as a result of these reactions. While low plasma ascorbate levels have been reported in hemodialysis patients worldwide, no studies have measured DHA because it is not generalized. In this study, we aimed to clarify whether plasma ascorbate levels are low in dialysis patients and whether plasma ascorbate levels fluctuate before and after dialysis. Moreover, we applied our previously established method to measure the plasma ascorbate and DHA levels in chronic kidney disease (CKD) stage G3–G5 non-hemodialysis-dependent patients, and pre- and post-dialysis plasma ascorbate and DHA levels in CKD stage G5D hemodialysis patients. The sample size was calculated using G-power software. The pre-dialysis plasma total ascorbate levels, including DHA, were significantly (56%) lower in hemodialysis patients than in non-hemodialysis-dependent CKD patients. After dialysis, there was a 40% reduction in the plasma total ascorbate levels. Hemodialysis increased the post-dialysis plasma proportions of DHA from 37% to 55%. The study results demonstrated lower plasma total ascorbate levels in hemodialysis patients compared with in non-hemodialysis-dependent CKD patients; these low levels in hemodialysis patients were further reduced by hemodialysis and increased DHA proportion. Full article
(This article belongs to the Special Issue Antimicrobial Mechanisms of Vitamin C)
Show Figures

Figure 1

19 pages, 2462 KiB  
Review
Compendium of Plant-Specific CRISPR Vectors and Their Technical Advantages
by Anshu Alok, Hanny Chauhan, Santosh Kumar Upadhyay, Ashutosh Pandey, Jitendra Kumar and Kashmir Singh
Life 2021, 11(10), 1021; https://doi.org/10.3390/life11101021 - 28 Sep 2021
Cited by 7 | Viewed by 4901
Abstract
CRISPR/Cas mediated genome editing is a revolutionary approach for manipulating the plant genome. However, the success of this technology is highly dependent on selection of a specific vector and the other components. A plant-specific CRISPR/Cas vector usually consists of a Cas gene, target-specific [...] Read more.
CRISPR/Cas mediated genome editing is a revolutionary approach for manipulating the plant genome. However, the success of this technology is highly dependent on selection of a specific vector and the other components. A plant-specific CRISPR/Cas vector usually consists of a Cas gene, target-specific gRNA, leader sequence, selectable marker gene, precise promoters, and other accessories. It has always been challenging to select the specific vector for each study due to a lack of comprehensive information on CRISPR vectors in one place. Herein, we have discussed every technical aspect of various important elements that will be highly useful in vector selection and efficient editing of the desired plant genome. Various factors such as the promoter regulating the expression of Cas and gRNA, gRNA size, Cas variants, multicistronic gRNA, and vector backbone, etc. influence transformation and editing frequency. For example, the use of polycistronic tRNA-gRNA, and Csy4-gRNA has been documented to enhance the editing efficiency. Similarly, the selection of an efficient selectable marker is also a very important factor. Information on the availability of numerous variants of Cas endonucleases, such as Cas9, Cas12a, Cas12b, Casɸ, and CasMINI, etc., with diverse recognition specificities further broadens the scope of editing. The development of chimeric proteins such as Cas fused to cytosine or adenosine deaminase domain and modified reverse transcriptase using protein engineering enabled base and prime editing, respectively. In addition, the newly discovered Casɸ and CasMINI would increase the scope of genetic engineering in plants by being smaller Cas variants. All advancements would contribute to the development of various tools required for gene editing, targeted gene insertion, transcriptional activation/suppression, multiplexing, prime editing, base editing, and gene tagging. This review will serve as an encyclopedia for plant-specific CRISPR vectors and will be useful for researchers. Full article
(This article belongs to the Special Issue Research Advances in Plant Genomics)
Show Figures

Figure 1

24 pages, 1723 KiB  
Review
Microfluidic Platforms to Unravel Mysteries of Alzheimer’s Disease: How Far Have We Come?
by Pragya Prasanna, Shweta Rathee, Vedanabhatla Rahul, Debabrata Mandal, Macherla Sharath Chandra Goud, Pardeep Yadav, Susan Hawthorne, Ankur Sharma, Piyush Kumar Gupta, Shreesh Ojha, Niraj Kumar Jha, Chiara Villa and Saurabh Kumar Jha
Life 2021, 11(10), 1022; https://doi.org/10.3390/life11101022 - 28 Sep 2021
Cited by 7 | Viewed by 9450
Abstract
Alzheimer’s disease (AD) is a significant health concern with enormous social and economic impact globally. The gradual deterioration of cognitive functions and irreversible neuronal losses are primary features of the disease. Even after decades of research, most therapeutic options are merely symptomatic, and [...] Read more.
Alzheimer’s disease (AD) is a significant health concern with enormous social and economic impact globally. The gradual deterioration of cognitive functions and irreversible neuronal losses are primary features of the disease. Even after decades of research, most therapeutic options are merely symptomatic, and drugs in clinical practice present numerous side effects. Lack of effective diagnostic techniques prevents the early prognosis of disease, resulting in a gradual deterioration in the quality of life. Furthermore, the mechanism of cognitive impairment and AD pathophysiology is poorly understood. Microfluidics exploits different microscale properties of fluids to mimic environments on microfluidic chip-like devices. These miniature multichambered devices can be used to grow cells and 3D tissues in vitro, analyze cell-to-cell communication, decipher the roles of neural cells such as microglia, and gain insights into AD pathophysiology. This review focuses on the applications and impact of microfluidics on AD research. We discuss the technical challenges and possible solutions provided by this new cutting-edge technique to understand disease-associated pathways and mechanisms. Full article
(This article belongs to the Special Issue Multi-Omics for the Understanding of Brain Diseases)
Show Figures

Figure 1

12 pages, 2240 KiB  
Article
A Novel Real-Time RT-PCR-Based Methodology for the Preliminary Typing of SARS-CoV-2 Variants, Employing Non-Extendable LNA Oligonucleotides and Three Signature Mutations at the Spike Protein Receptor-Binding Domain
by Serafeim C. Chaintoutis, Taxiarchis Chassalevris, Sofia Balaska, Evangelia Mouchtaropoulou, George Tsiolas, Ioannis Vlatakis, Areti Tychala, Dimitris Koutsioulis, Anagnostis Argiriou, Lemonia Skoura and Chrysostomos I. Dovas
Life 2021, 11(10), 1015; https://doi.org/10.3390/life11101015 - 27 Sep 2021
Cited by 4 | Viewed by 2194
Abstract
Mutations resulting in amino-acid substitutions of the SARS-CoV-2 spike protein receptor-binding domain (RBD) have been associated with enhanced transmissibility and immune escape of the respective variants, namely Alpha, Beta, Gamma or Delta. Rapid identification of the aforementioned variants of concern and their discrimination [...] Read more.
Mutations resulting in amino-acid substitutions of the SARS-CoV-2 spike protein receptor-binding domain (RBD) have been associated with enhanced transmissibility and immune escape of the respective variants, namely Alpha, Beta, Gamma or Delta. Rapid identification of the aforementioned variants of concern and their discrimination of other variants is thus of importance for public health interventions. For this reason, a one-step real-time RT-PCR assay employing four locked nucleic acid (LNA) modified TaqMan probes was developed, to target signature mutations associated with amino-acid substitutions at positions 478, 484 and 501 present in the receptor-binding motif (RBM) of the spike protein RBD. This region contains most contacting residues of SARS-CoV-2 that bind to ACE2. A novel strategy employing the use of non-extendable LNA oligonucleotide blockers that can reduce non-specific hybridization of probes increased the number of different mutated sites examined in a multiplex PCR. The combinatory analysis of the different fluorescence signals obtained enabled the preliminary differentiation of SARS-CoV-2 variants of concern. The assay is sensitive with a LOD of 263 copies/reaction for the Delta variant, 170 copies/reaction for the Beta variant, amplification efficiencies > 91% and a linear range of >5 log10 copies/reaction against all targets. Validation of the assay using known SARS-CoV-2-positive and negative samples from humans and animals revealed its ability to correctly identify the targeted mutations and preliminary characterize the SARS-CoV-2 variants. The novel approach for mutation typing using LNA oligonucleotide blockers can be modified to target signature mutations at four different sites in the RBM and further expand the range of variants detected. Full article
(This article belongs to the Special Issue Virology Applications to COVID-19 Pandemic)
Show Figures

Figure 1

13 pages, 19496 KiB  
Article
The Ginsenoside Rg1 Rescues Mitochondrial Disorders in Aristolochic Acid-Induced Nephropathic Mice
by Chu-Kuang Chou, Yu-Shen Huang, Pei-Yu Lin, Kazuhiro Imai, Shih-Ming Chen and Jen-Ai Lee
Life 2021, 11(10), 1018; https://doi.org/10.3390/life11101018 - 27 Sep 2021
Cited by 2 | Viewed by 2164
Abstract
Chronic exposure to aristolochic acid (AA) leads to renal interstitial fibrosis and nephropathy. In this study, we aimed to investigate the renoprotective effects of Panax ginseng extract (GE) and ginsenoside saponin (GS) on AA-induced nephropathy (AAN) in mice. Eighty female C3H/He mice were [...] Read more.
Chronic exposure to aristolochic acid (AA) leads to renal interstitial fibrosis and nephropathy. In this study, we aimed to investigate the renoprotective effects of Panax ginseng extract (GE) and ginsenoside saponin (GS) on AA-induced nephropathy (AAN) in mice. Eighty female C3H/He mice were randomly divided into eight groups, including normal; AA (3 μg/mL for 56 days); AA with GE (125, 250, or 500 mg/kg/d for 14 days); and AA with important GE ingredients, Rg1, Rb1, or Rd (5 mg/kg/d for 14 days). Compared with the AA group, renal injuries were significantly decreased in the GE (250 mg/kg/d), Rb1, and Rg1 treatment groups. Rg1 exhibited the best renoprotection among all GS-treated groups. There were 24 peaks significantly altered among normal, AA, and AA + Rg1 groups, and four mitochondrial proteins were identified, including acyl-CoA synthetase medium-chain family member 2, upregulated during skeletal muscle growth 5 (Usmg5), mitochondrial aconitase 2 (ACO2), and cytochrome c oxidase subunit Va preprotein (COX5a). We demonstrated for the first time that the AAN mechanism and renoprotective effects of Rg1 are associated with expression of mitochondrial proteins, especially ACO2, Usmg5, and COX5a. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

19 pages, 32478 KiB  
Article
COVID-19 and Antimicrobial Resistance: Data from the Greek Electronic System for the Surveillance of Antimicrobial Resistance—WHONET-Greece (January 2018–March 2021)
by Michalis Polemis, Georgia Mandilara, Olga Pappa, Athina Argyropoulou, Efstathia Perivolioti, Nikolaos Koudoumnakis, Spyros Pournaras, Alexandra Vasilakopoulou, Sophia Vourli, Helen Katsifa, Theodoros Karampatakis, Anastasia Papavasiliou, Efthymia Petinaki, Stylianos Xitsas, Lemonia Skoura, Efthymia Protonotariou, Paraskevi Mantzana, Konstantina Gartzonika, Efthalia Priavali, Amalia Kallinteri, Panagiota Giannopoulou, Nikoletta Charalampaki, Meletis Memezas, Zervaki Calina Oana, Marina Papadogianni, Maria Panopoulou, Athanasia Koutsidou, Alkiviadis Vatopoulos and Kyriaki Tryfinopoulouadd Show full author list remove Hide full author list
Life 2021, 11(10), 996; https://doi.org/10.3390/life11100996 - 22 Sep 2021
Cited by 32 | Viewed by 4320
Abstract
Changes in hospitals’ daily practice due to COVID-19 pandemic may have an impact on antimicrobial resistance (AMR). We aimed to assess this possible impact as captured by the Greek Electronic System for the Surveillance of Antimicrobial Resistance (WHONET-Greece). Routine susceptibility data of 17,837 [...] Read more.
Changes in hospitals’ daily practice due to COVID-19 pandemic may have an impact on antimicrobial resistance (AMR). We aimed to assess this possible impact as captured by the Greek Electronic System for the Surveillance of Antimicrobial Resistance (WHONET-Greece). Routine susceptibility data of 17,837 Gram-negative and Gram-positive bacterial isolates from blood and respiratory specimens of hospitalized patients in nine COVID-19 tertiary hospitals were used in order to identify potential differences in AMR trends in the last three years, divided into two periods, January 2018–March 2020 and April 2020–March 2021. Interrupted time-series analysis was used to evaluate differences in the trends of non-susceptibility before and after the changes due to COVID-19. We found significant differences in the slope of non-susceptibility trends of Acinetobacter baumannii blood and respiratory isolates to amikacin, tigecycline and colistin; of Klebsiella pneumoniae blood and respiratory isolates to meropenem and tigecycline; and of Pseudomonas aeruginosa respiratory isolates to imipenem, meropenem and levofloxacin. Additionally, we found significant differences in the slope of non-susceptibility trends of Staphylococcus aureus isolates to oxacillin and of Enterococcus faecium isolates to glycopeptides. Assessing in this early stage, through surveillance of routine laboratory data, the way a new global threat like COVID-19 could affect an already ongoing pandemic like AMR provides useful information for prompt action. Full article
(This article belongs to the Special Issue Ecology, Evolution and Epidemiology of Coronaviruses)
Show Figures

Figure 1

13 pages, 2258 KiB  
Article
Narrow Precursor Mass Range for DIA–MS Enhances Protein Identification and Quantification in Arabidopsis
by Huoming Zhang and Dalila Bensaddek
Life 2021, 11(9), 982; https://doi.org/10.3390/life11090982 - 18 Sep 2021
Cited by 9 | Viewed by 2860
Abstract
Data independent acquisition–mass spectrometry (DIA–MS) is becoming widely utilised for robust and accurate quantification of samples in quantitative proteomics. Here, we describe the systematic evaluation of the effects of DIA precursor mass range on total protein identification and quantification. We show that a [...] Read more.
Data independent acquisition–mass spectrometry (DIA–MS) is becoming widely utilised for robust and accurate quantification of samples in quantitative proteomics. Here, we describe the systematic evaluation of the effects of DIA precursor mass range on total protein identification and quantification. We show that a narrow mass range of precursors (~250 m/z) for DIA–MS enables a higher number of protein identifications. Subsequent application of DIA with narrow precursor range (from 400 to 650 m/z) on an Arabidopsis sample with spike-in known proteins identified 34.7% more proteins than in conventional DIA (cDIA) with a wide precursor range of 400–1200 m/z. When combining several DIA–MS analyses with narrow precursor ranges (i.e., 400–650, 650–900 and 900–1200 m/z), we were able to quantify 10,099 protein groups with a median coefficient of variation of <6%. These findings represent a 54.7% increase in the number of proteins quantified than with cDIA analysis. This is particularly important for low abundance proteins, as exemplified by the six-protein mix spike-in. In cDIA only five out of the six-protein mix were quantified while our approach allowed accurate quantitation of all six proteins. Full article
(This article belongs to the Special Issue Plant Proteomics)
Show Figures

Figure 1

14 pages, 2602 KiB  
Article
Sleep Apnea in Idiopathic Pulmonary Fibrosis: A Molecular Investigation in an Experimental Model of Fibrosis and Intermittent Hypoxia
by Liasmine Haine, Juliette Bravais, Céline-Hivda Yegen, Jean-Francois Bernaudin, Dominique Marchant, Carole Planès, Nicolas Voituron and Emilie Boncoeur
Life 2021, 11(9), 973; https://doi.org/10.3390/life11090973 - 15 Sep 2021
Cited by 2 | Viewed by 2359
Abstract
Background: High prevalence of obstructive sleep apnea (OSA) is reported in incident and prevalent forms of idiopathic pulmonary fibrosis (IPF). We previously reported that Intermittent Hypoxia (IH), the major pathogenic element of OSA, worsens experimental lung fibrosis. Our objective was to investigate the [...] Read more.
Background: High prevalence of obstructive sleep apnea (OSA) is reported in incident and prevalent forms of idiopathic pulmonary fibrosis (IPF). We previously reported that Intermittent Hypoxia (IH), the major pathogenic element of OSA, worsens experimental lung fibrosis. Our objective was to investigate the molecular mechanisms involved. Methods: Impact of IH was evaluated on C57BL/6J mice developing lung fibrosis after intratracheal instillation of Bleomycin (BLM). Mice were Pre-exposed 14 days to IH before induction of lung fibrosis or Co-challenged with IH and BLM for 14 days. Weight loss and survival were daily monitored. After experimentations, lungs were sampled for histology, and protein and RNA were extracted. Results: Co-challenge or Pre-exposure of IH and BLM induced weight loss, increased tissue injury and collagen deposition, and pro-fibrotic markers. Major worsening effects of IH exposure on lung fibrosis were observed when mice were Pre-exposed to IH before developing lung fibrosis with a strong increase in sXBP1 and ATF6N ER stress markers. Conclusion: Our results showed that IH exacerbates BLM-induced lung fibrosis more markedly when IH precedes lung fibrosis induction, and that this is associated with an enhancement of ER stress markers. Full article
(This article belongs to the Special Issue Cellular and Functional Response to Hypoxia)
Show Figures

Figure 1

22 pages, 5041 KiB  
Review
Roles and Mechanisms of Deubiquitinases (DUBs) in Breast Cancer Progression and Targeted Drug Discovery
by Sixuan Li, Hongquan Zhang and Xiaofan Wei
Life 2021, 11(9), 965; https://doi.org/10.3390/life11090965 - 14 Sep 2021
Cited by 7 | Viewed by 3116
Abstract
Deubiquitinase (DUB) is an essential component in the ubiquitin—proteasome system (UPS) by removing ubiquitin chains from substrates, thus modulating the expression, activity, and localization of many proteins that contribute to tumor development and progression. DUBs have emerged as promising prognostic indicators and drug [...] Read more.
Deubiquitinase (DUB) is an essential component in the ubiquitin—proteasome system (UPS) by removing ubiquitin chains from substrates, thus modulating the expression, activity, and localization of many proteins that contribute to tumor development and progression. DUBs have emerged as promising prognostic indicators and drug targets. DUBs have shown significant roles in regulating breast cancer growth, metastasis, resistance to current therapies, and several canonical oncogenic signaling pathways. In addition, specific DUB inhibitors have been identified and are expected to benefit breast cancer patients in the future. Here, we review current knowledge about the effects and molecular mechanisms of DUBs in breast cancer, providing novel insight into treatments of breast cancer-targeting DUBs. Full article
(This article belongs to the Collection Tumor Progression, Microenvironments, and Therapeutics)
Show Figures

Figure 1

20 pages, 6851 KiB  
Article
Exploring the Impact of Terminators on Transgene Expression in Chlamydomonas reinhardtii with a Synthetic Biology Approach
by Katrin Geisler, Mark A. Scaife, Paweł M. Mordaka, Andre Holzer, Eleanor V. Tomsett, Payam Mehrshahi, Gonzalo I. Mendoza Ochoa and Alison G. Smith
Life 2021, 11(9), 964; https://doi.org/10.3390/life11090964 - 14 Sep 2021
Cited by 6 | Viewed by 3208
Abstract
Chlamydomonas reinhardtii has many attractive features for use as a model organism for both fundamental studies and as a biotechnological platform. Nonetheless, despite the many molecular tools and resources that have been developed, there are challenges for its successful engineering, in particular to [...] Read more.
Chlamydomonas reinhardtii has many attractive features for use as a model organism for both fundamental studies and as a biotechnological platform. Nonetheless, despite the many molecular tools and resources that have been developed, there are challenges for its successful engineering, in particular to obtain reproducible and high levels of transgene expression. Here we describe a synthetic biology approach to screen several hundred independent transformants using standardised parts to explore different parameters that might affect transgene expression. We focused on terminators and, using a standardised workflow and quantitative outputs, tested 9 different elements representing three different size classes of native terminators to determine their ability to support high level expression of a GFP reporter gene. We found that the optimal size reflected the median size of element found in the C. reinhardtii genome. The behaviour of the terminator parts was similar with different promoters, in different host strains and with different transgenes. This approach is applicable to the systematic testing of other genetic elements, facilitating comparison to determine optimal transgene design. Full article
(This article belongs to the Special Issue Plant Synthetic Biology)
Show Figures

Figure 1

22 pages, 2454 KiB  
Review
Structure, Activity and Function of the Protein Arginine Methyltransferase 6
by Somlee Gupta, Rajashekar Varma Kadumuri, Anjali Kumari Singh, Sreenivas Chavali and Arunkumar Dhayalan
Life 2021, 11(9), 951; https://doi.org/10.3390/life11090951 - 11 Sep 2021
Cited by 12 | Viewed by 3631
Abstract
Members of the protein arginine methyltransferase (PRMT) family methylate the arginine residue(s) of several proteins and regulate a broad spectrum of cellular functions. Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that asymmetrically dimethylates the arginine residues of numerous substrate proteins. [...] Read more.
Members of the protein arginine methyltransferase (PRMT) family methylate the arginine residue(s) of several proteins and regulate a broad spectrum of cellular functions. Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that asymmetrically dimethylates the arginine residues of numerous substrate proteins. PRMT6 introduces asymmetric dimethylation modification in the histone 3 at arginine 2 (H3R2me2a) and facilitates epigenetic regulation of global gene expression. In addition to histones, PRMT6 methylates a wide range of cellular proteins and regulates their functions. Here, we discuss (i) the biochemical aspects of enzyme kinetics, (ii) the structural features of PRMT6 and (iii) the diverse functional outcomes of PRMT6 mediated arginine methylation. Finally, we highlight how dysregulation of PRMT6 is implicated in various types of cancers and response to viral infections. Full article
(This article belongs to the Special Issue Structure, Activity, and Function of Protein Methyltransferases)
Show Figures

Figure 1

14 pages, 2017 KiB  
Article
Hesperidin and Chlorogenic Acid Synergistically Inhibit the Growth of Breast Cancer Cells via Estrogen Receptor/Mitochondrial Pathway
by Pang-Hung Hsu, Wei-Hsuan Chen, Chen Juan-Lu, Shu-Chen Hsieh, Shih-Chao Lin, Ru-Tsun Mai and Shiow-Yi Chen
Life 2021, 11(9), 950; https://doi.org/10.3390/life11090950 - 10 Sep 2021
Cited by 21 | Viewed by 3317
Abstract
Breast cancer is the most common cancer in women worldwide. Hesperidin (Hes) and chlorogenic acid (CA) are traditional medicinal molecules that abundantly exist in natural plants or foods. These compounds have been shown to prevent and suppress various cancers and therefore can be [...] Read more.
Breast cancer is the most common cancer in women worldwide. Hesperidin (Hes) and chlorogenic acid (CA) are traditional medicinal molecules that abundantly exist in natural plants or foods. These compounds have been shown to prevent and suppress various cancers and therefore can be utilized as adjunctive therapies to aid cancer treatment. Here, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays show a greater synergistic inhibitory effect on the growth of breast cancer cells, MCF-7, but not normal breast cells, MCF-10A, than hesperidin or chlorogenic acid alone. We present the possible molecular signaling pathways in MCF-7 cells with or without herbal molecule treatments via proteomic approaches. The data were further analyzed by Ingenuity Pathway Analysis (IPA) and confirmed by quantifying mRNA associated with the estrogen-receptor signaling pathway and mitochondrial functions. We demonstrated that the expression of CYC1, TFAM, ATP5PB, mtATP6, mtDNA, and NRF-1 were decreased upon 12 h treatment, and subsequent ATP production was also significantly decreased at 24 h. These results identified a synergistic effect induced by combinational treatment with hesperidin and chlorogenic acid, which can regulate mitochondria and ATP production through the estrogen receptor pathway in MCF-7 cells. However, none of the treatments induced the generation of reactive oxygen species (ROS), suggesting that ROS likely plays no role in the observed pharmacological activities. Overall, our study sheds light on the adequacy of hesperidin and chlorogenic acid to serve as an adjunctive therapy when co-administrated with chemotherapy drugs in breast cancer patients. Full article
(This article belongs to the Special Issue Regulation of Natural Products to Immunity)
Show Figures

Figure 1

10 pages, 1536 KiB  
Article
Evolution of Thyroglobulin Loop Kinetics in EpCAM
by Serena H. Chen and David R. Bell
Life 2021, 11(9), 915; https://doi.org/10.3390/life11090915 - 3 Sep 2021
Cited by 3 | Viewed by 2132
Abstract
Epithelial cell-activating molecule (EpCAM) is an important cancer biomarker and therapeutic target given its elevated expression in epithelial cancers. EpCAM is a type I transmembrane protein that forms cis-dimers along the thyroglobulin type-1A-like domain (TYD) in the extracellular region. The thyroglobulin loop [...] Read more.
Epithelial cell-activating molecule (EpCAM) is an important cancer biomarker and therapeutic target given its elevated expression in epithelial cancers. EpCAM is a type I transmembrane protein that forms cis-dimers along the thyroglobulin type-1A-like domain (TYD) in the extracellular region. The thyroglobulin loop (TY loop) within the TYD is structurally dynamic in the monomer state of human EpCAM, binding reversibly to a TYD site. However, it is not known if this flexibility is prevalent across different species. Here, we conduct over 17 μs of all-atom molecular dynamics simulations to study EpCAM TY loop kinetics of five different species, including human, mouse, chicken, frog, and fish. We find that the TY loop remains dynamic across evolution. In addition to the TYD binding site, we discover a second binding site for the TY loop in the C-terminal domain (CTD). Calculations of the dissociation rate constants from the simulation trajectories suggest a differential binding pattern of fish EpCAM and other organisms. Whereas fish TY loop has comparable binding for both TYD and CTD sites, the TY loops of other species preferably bind the TYD site. A hybrid construct of fish EpCAM with human TY loop restores the TYD binding preference, suggesting robust effects of the TY loop sequence on its dynamic behavior. Our findings provide insights into the structural dynamics of EpCAM and its implication in physiological functions. Full article
(This article belongs to the Special Issue Computational Modeling of Kinetics in Biological Systems)
Show Figures

Figure 1

16 pages, 348 KiB  
Review
Laparoscopy in Emergency: Why Not? Advantages of Laparoscopy in Major Emergency: A Review
by Giuseppe Ietto, Francesco Amico, Giuseppe Pettinato, Valentina Iori and Giulio Carcano
Life 2021, 11(9), 917; https://doi.org/10.3390/life11090917 - 3 Sep 2021
Cited by 7 | Viewed by 3431
Abstract
A laparoscopic approach is suggested with the highest grade of recommendation for acute cholecystitis, perforated gastroduodenal ulcers, acute appendicitis, gynaecological disorders, and non-specific abdominal pain (NSAP). To date, the main qualities of laparoscopy for these acute surgical scenarios are clearly stated: quicker surgery, [...] Read more.
A laparoscopic approach is suggested with the highest grade of recommendation for acute cholecystitis, perforated gastroduodenal ulcers, acute appendicitis, gynaecological disorders, and non-specific abdominal pain (NSAP). To date, the main qualities of laparoscopy for these acute surgical scenarios are clearly stated: quicker surgery, faster recovery and shorter hospital stay. For the remaining surgical emergencies, as well as for abdominal trauma, the role of laparoscopy is still a matter of debate. Patients might benefit from a laparoscopic approach only if performed by experienced teams and surgeons which guarantee a high standard of care. More precisely, laparoscopy can limit damage to the tissue and could be effective for the reduction of the overall amount of cell debris, which is a result of the intensity with which the immune system reacts to the injury and the following symptomatology. In fact, these fragments act as damage-associated molecular patterns (DAMPs). DAMPs, as well as pathogen associated molecular patterns (PAMPs), are recognised by both surface and intracellular receptors of the immune cells and activate the cascade which, in critically ill surgical patients, is responsible for a deranged response. This may result in the development of progressive and multiple organ dysfunctions, manifesting with acute respiratory distress syndrome (ARDS), coagulopathy, liver dysfunction and renal failure. In conclusion, none of the emergency surgical scenarios preclude laparoscopy, provided that the surgical tactic could ensure sufficient cleaning of the abdomen in addition to resolving the initial tissue damage caused by the “trauma”. Full article
(This article belongs to the Special Issue Trauma and Emergency: Beyond Damage Control Surgery)
16 pages, 880 KiB  
Review
Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 1
by Aleksey M. Chaulin
Life 2021, 11(9), 914; https://doi.org/10.3390/life11090914 - 2 Sep 2021
Cited by 38 | Viewed by 5673
Abstract
Although cardiac troponins are considered the most specific biomarkers for the diagnosis of acute myocardial infarction (AMI), their diagnostic consideration goes far beyond the detection of this dangerous disease. The mechanisms of cardiac troponin elevation are extremely numerous and not limited to ischemic [...] Read more.
Although cardiac troponins are considered the most specific biomarkers for the diagnosis of acute myocardial infarction (AMI), their diagnostic consideration goes far beyond the detection of this dangerous disease. The mechanisms of cardiac troponin elevation are extremely numerous and not limited to ischemic necrosis of cardiac myocytes. Practitioners should be well aware of the underlying pathological and physiological conditions that can lead to elevated serum levels of cardiac troponins to avoid differential diagnostic errors, which will be greatly increased if clinicians rely on laboratory data alone. This article presents a classification of the main causes of an elevation in cardiac troponins and discusses in detail the mechanisms of such elevation and the diagnostic consideration of cardiac troponins in some conditions not associated with AMI, such as physical exertion, inflammatory heart diseases (myocarditis and endocarditis), pulmonary embolism (PE), renal failure, and systemic inflammation (sepsis). Full article
(This article belongs to the Special Issue Myocardial Infarction 2021)
Show Figures

Figure 1

12 pages, 2342 KiB  
Article
Temperate Air Breathing Increases Cycling Performance in Hot and Humid Climate Environment
by Clovis Chabert, Aurélie Collado and Olivier Hue
Life 2021, 11(9), 911; https://doi.org/10.3390/life11090911 - 1 Sep 2021
Cited by 1 | Viewed by 2063
Abstract
Practicing physical activity in a hot and humid climate (HHC) is becoming increasingly common due to anthropogenic climate change and the growing number of international sports events held in warm countries. The aim of this study was to understand the physiological and psychological [...] Read more.
Practicing physical activity in a hot and humid climate (HHC) is becoming increasingly common due to anthropogenic climate change and the growing number of international sports events held in warm countries. The aim of this study was to understand the physiological and psychological effects of breathing two air temperatures during cycling exercise in HHC. Ten male athletes performed two sessions of exercise in HHC (T°: 32.0 ± 0.5 °C, relative humidity: 78.6 ± 0.7%) during which they breathed hot air (HA, 33.2 ± 0.06 °C) or temperate air (TA, 22.6 ± 0.1 °C). Each session was composed of 30 min of pre-fatigue cycling at constant intensity, followed by a 10 min self-regulated performance. During pre-fatigue, TA induced a better feeling score and a lower rating of perceived effort (respectively, +0.9 ± 0.2, p < 0.05; 1.13 ± 0.21; p < 0.05) with no changes in physiological parameters. During performance, oxygen consumption and mechanical workload were increased by TA (respectively, +0.23 ± 0.1 L min−1, p < 0.05 and +19.2 ± 6.1 W, p < 0.01), whereas no significant differences were observed for psychological parameters. Reducing the breathed air temperature decreased the discomfort induced by HHC during exercise and increased the performance capacity during self-regulated exercise. Thus, breathed air temperature perception is linked to the hardship of training sessions and directly contributes to the performance decrease in HHC. Full article
(This article belongs to the Special Issue Human Thermophysiology)
Show Figures

Figure 1

14 pages, 1088 KiB  
Review
3D Printing—A Cutting Edge Technology for Treating Post-Infarction Patients
by Daniel Cernica, Imre Benedek, Stefania Polexa, Cosmin Tolescu and Theodora Benedek
Life 2021, 11(9), 910; https://doi.org/10.3390/life11090910 - 1 Sep 2021
Cited by 3 | Viewed by 3722
Abstract
The increasing complexity of cardiovascular interventions requires advanced peri-procedural imaging and tailored treatment. Three-dimensional printing technology represents one of the most significant advances in the field of cardiac imaging, interventional cardiology or cardiovascular surgery. Patient-specific models may provide substantial information on intervention planning [...] Read more.
The increasing complexity of cardiovascular interventions requires advanced peri-procedural imaging and tailored treatment. Three-dimensional printing technology represents one of the most significant advances in the field of cardiac imaging, interventional cardiology or cardiovascular surgery. Patient-specific models may provide substantial information on intervention planning in complex cardiovascular diseases, and volumetric medical imaging from CT or MRI can be translated into patient-specific 3D models using advanced post-processing applications. 3D printing and additive manufacturing have a great variety of clinical applications targeting anatomy, implants and devices, assisting optimal interventional treatment and post-interventional evaluation. Although the 3D printing technology still lacks scientific evidence, its benefits have been shown in structural heart diseases as well as for treatment of complex arrhythmias and corrective surgery interventions. Recent development has enabled transformation of conventional 3D printing into complex 3D functional living tissues contributing to regenerative medicine through engineered bionic materials such hydrogels, cell suspensions or matrix components. This review aims to present the most recent clinical applications of 3D printing in cardiovascular medicine, highlighting also the potential for future development of this revolutionary technology in the medical field. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

21 pages, 758 KiB  
Review
Influencing Factors and Molecular Pathogenesis of Sarcopenia and Osteosarcopenia in Chronic Liver Disease
by Chisato Saeki and Akihito Tsubota
Life 2021, 11(9), 899; https://doi.org/10.3390/life11090899 - 30 Aug 2021
Cited by 18 | Viewed by 3571
Abstract
The liver plays a pivotal role in nutrient/energy metabolism and storage, anabolic hormone regulation, ammonia detoxification, and cytokine production. Impaired liver function can cause malnutrition, hyperammonemia, and chronic inflammation, leading to an imbalance between muscle protein synthesis and proteolysis. Patients with chronic liver [...] Read more.
The liver plays a pivotal role in nutrient/energy metabolism and storage, anabolic hormone regulation, ammonia detoxification, and cytokine production. Impaired liver function can cause malnutrition, hyperammonemia, and chronic inflammation, leading to an imbalance between muscle protein synthesis and proteolysis. Patients with chronic liver disease (CLD) have a high prevalence of sarcopenia, characterized by progressive loss of muscle mass and function, affecting health-related quality of life and prognosis. Recent reports have revealed that osteosarcopenia, defined as the concomitant occurrence of sarcopenia and osteoporosis, is also highly prevalent in patients with CLD. Since the differentiation and growth of muscles and bones are closely interrelated through mechanical and biochemical communication, sarcopenia and osteoporosis often progress concurrently and affect each other. Osteosarcopenia further exacerbates unfavorable health outcomes, such as vertebral fracture and frailty. Therefore, a comprehensive assessment of sarcopenia, osteoporosis, and osteosarcopenia, and an understanding of the pathogenic mechanisms involving the liver, bones, and muscles, are important for prevention and treatment. This review summarizes the molecular mechanisms of sarcopenia and osteosarcopenia elucidated to data in hopes of promoting advances in treating these musculoskeletal disorders in patients with CLD. Full article
(This article belongs to the Special Issue New Mechanism and Insights into Sarcopenia)
Show Figures

Figure 1

11 pages, 565 KiB  
Article
Metabolic Constellations, Clusters, and Renal Function: Findings from the 2013–2018 National Health and Nutrition Examination Surveys
by Kathleen E. Adair, Kelly R. Ylitalo, Jeffrey S. Forsse, LesLee K. Funderburk and Rodney G. Bowden
Life 2021, 11(9), 904; https://doi.org/10.3390/life11090904 - 30 Aug 2021
Cited by 2 | Viewed by 1777
Abstract
Metabolic syndrome (MetS) is associated with decreased renal function and chronic kidney disease (CKD). To date, no research regarding the sixteen possible constellations resulting in the diagnosis of MetS has been elucidated. The purpose of this study is to report renal function in [...] Read more.
Metabolic syndrome (MetS) is associated with decreased renal function and chronic kidney disease (CKD). To date, no research regarding the sixteen possible constellations resulting in the diagnosis of MetS has been elucidated. The purpose of this study is to report renal function in sixteen metabolic constellations grouped into four metabolic clusters. Individuals (n = 2767; representing 86,652,073 individuals) from the 2013–2018 National Health and Nutrition Examination Surveys who met the criteria for MetS were included. Sixteen possible constellations of three or more risk factors were analyzed for renal function. Four metabolic clusters representing MetS with hyperglycemia (Cluster I), MetS with hypertension (Cluster II), MetS with hyperglycemia and hypertension (Cluster III), or MetS with normoglycemia and normotension (Cluster IV) were assessed for renal function and CKD status. Cluster III had the highest odds of CKD (OR = 2.57, 95% CL = 1.79, 3.68). Clusters II and III had the lowest renal function and were not different from one another (87.82 and 87.28 mL/min/1.73 m2, p = 0.71). The constellation with the lowest renal function consisted of hypertension, high triglycerides, and a large waist circumference (82.86 mL/min/1.73 m2), whereas the constellation with the highest renal function consisted of hyperglycemia, low HDL, and a large waist circumference (107.46 mL/min/1.73 m2). The sixteen constellations of MetS do not have the same effects on renal function. More research is needed to understand the relationship between the various iterations of MetS and renal function. Full article
(This article belongs to the Collection Research Updates in Chronic Kidney Disease)
Show Figures

Figure 1

12 pages, 603 KiB  
Brief Report
BNT162b2 SARS-CoV-2 Vaccination Elicits High Titers of Neutralizing Antibodies to Both B.1 and P.1 Variants in Previously Infected and Uninfected Subjects
by Ilaria Vicenti, Francesca Gatti, Renzo Scaggiante, Adele Boccuto, Daniela Zago, Monica Basso, Filippo Dragoni, Saverio Giuseppe Parisi and Maurizio Zazzi
Life 2021, 11(9), 896; https://doi.org/10.3390/life11090896 - 29 Aug 2021
Cited by 2 | Viewed by 2248
Abstract
We aimed to investigate neutralizing antibody titers (NtAbT) to the P.1 and B.1 SARS-CoV-2 variants in a cohort of healthy health care workers (HCW), including 20 previously infected individuals tested at baseline (BLinf, after a median of 298 days from diagnosis) [...] Read more.
We aimed to investigate neutralizing antibody titers (NtAbT) to the P.1 and B.1 SARS-CoV-2 variants in a cohort of healthy health care workers (HCW), including 20 previously infected individuals tested at baseline (BLinf, after a median of 298 days from diagnosis) and 21 days after receiving one vaccine dose (D1inf) and 15 uninfected subjects tested 21 days after the second-dose vaccination (D2uninf). All the subjects received BNT162b2 vaccination. D1inf NtAbT increased significantly with respect to BLinf against both B.1 and P.1 variants, with a fold-change significantly higher for P.1. D1inf NtAbT were significantly higher than D2uninf NtAbT, against B.1 and P.1. NtAbT against the two strains were highly correlated. P.1 NtAbT were significantly higher than B.1 NtAbT. This difference was significant for post-vaccination sera in infected and uninfected subjects. A single-dose BNT162b2 vaccination substantially boosted the NtAb response to both variants in the previously infected subjects. NtAb titers to B.1 and P.1 lineages were highly correlated, suggesting substantial cross-neutralization. Higher titers to the P.1 than to the B.1 strain were driven by the post-vaccination titers, highlighting that cross-neutralization can be enhanced by vaccination. Full article
(This article belongs to the Special Issue Advances in Immunology of Infectious Diseases)
Show Figures

Figure 1

12 pages, 1188 KiB  
Review
Horizontal Gene Transfers in Plants
by Emilie Aubin, Moaine El Baidouri and Olivier Panaud
Life 2021, 11(8), 857; https://doi.org/10.3390/life11080857 - 21 Aug 2021
Cited by 14 | Viewed by 5492
Abstract
In plants, as in all eukaryotes, the vertical transmission of genetic information through reproduction ensures the maintenance of the integrity of species. However, many reports over the past few years have clearly shown that horizontal gene transfers, referred to as HGTs (the interspecific [...] Read more.
In plants, as in all eukaryotes, the vertical transmission of genetic information through reproduction ensures the maintenance of the integrity of species. However, many reports over the past few years have clearly shown that horizontal gene transfers, referred to as HGTs (the interspecific transmission of genetic information across reproductive barriers) are very common in nature and concern all living organisms including plants. The advent of next-generation sequencing technologies (NGS) has opened new perspectives for the study of HGTs through comparative genomic approaches. In this review, we provide an up-to-date view of our current knowledge of HGTs in plants. Full article
(This article belongs to the Collection Feature Review Papers for Life)
Show Figures

Figure 1

12 pages, 2672 KiB  
Article
Gomisin L1, a Lignan Isolated from Schisandra Berries, Induces Apoptosis by Regulating NADPH Oxidase in Human Ovarian Cancer Cells
by Young Hyun Ko, Miran Jeong, Dae Sik Jang and Jung-Hye Choi
Life 2021, 11(8), 858; https://doi.org/10.3390/life11080858 - 21 Aug 2021
Cited by 6 | Viewed by 2191
Abstract
The fruits of Schisandra chinensis (Schisandra berries) are used as health food supplements and popular food ingredients in East Asia. Lignans, major and characteristic polyphenol compounds of Schisandra berries, possess various biological activities, including hepatoprotective and anticancer effects. However, the biological activities of [...] Read more.
The fruits of Schisandra chinensis (Schisandra berries) are used as health food supplements and popular food ingredients in East Asia. Lignans, major and characteristic polyphenol compounds of Schisandra berries, possess various biological activities, including hepatoprotective and anticancer effects. However, the biological activities of gomisin L1, a lignan isolated from Schisandra berries, are less to be investigated. In this study, the antitumor activity of gomisin L1 and its underlying molecular mechanism in human ovarian cancer cells were investigated. Gomisin L1 exhibited potent cytotoxic activity against A2780 and SKOV3 ovarian cancer cells. Flow cytometry analysis revealed that the growth inhibitory effects of gomisin L1 were mediated by the induction of apoptosis. Furthermore, gomisin L1 induced an increase in intracellular reactive oxygen species (ROS) levels, and the antioxidant N-acetyl cysteine significantly negated gomisin L1-induced cell death. Moreover, inhibition of NADPH oxidase (NOX) using an inhibitor and siRNA attenuated gomisin L1-induced death of, and ROS production in, human ovarian cancer cells. Taken together, these data indicate that the lignan gomisin L1 from Schisandra berries induces apoptotic cell death by regulating intracellular ROS production via NOX. Full article
Show Figures

Figure 1

11 pages, 992 KiB  
Hypothesis
Evaluating the Microbial Habitability of Rogue Planets and Proposing Speculative Scenarios on How They Might Act as Vectors for Panspermia
by Dirk Schulze-Makuch and Alberto G. Fairén
Life 2021, 11(8), 833; https://doi.org/10.3390/life11080833 - 14 Aug 2021
Cited by 3 | Viewed by 3926
Abstract
There are two types of rogue planets, sub-brown dwarfs and “rocky” rogue planets. Sub-brown dwarfs are unlikely to be habitable or even host life, but rocky rogue planets may have a liquid ocean under a thick atmosphere or an ice layer. If they [...] Read more.
There are two types of rogue planets, sub-brown dwarfs and “rocky” rogue planets. Sub-brown dwarfs are unlikely to be habitable or even host life, but rocky rogue planets may have a liquid ocean under a thick atmosphere or an ice layer. If they are overlain by an insulating ice layer, they are also referred to as Steppenwolf planets. However, given the poor detectability of rocky rogue planets, there is still no direct evidence of the presence of water or ice on them. Here we discuss the possibility that these types of rogue planets could harbor unicellular organisms, conceivably based on a variety of different energy sources, including chemical, osmotic, thermal, and luminous energy. Further, given the theoretically predicted high number of rogue planets in the galaxy, we speculate that rogue planets could serve as a source for galactic panspermia, transferring life to other planetary systems. Full article
(This article belongs to the Collection Feature Review Papers for Life)
Show Figures

Figure 1

18 pages, 696 KiB  
Systematic Review
Association between Diet Quality and Sarcopenia in Older Adults: Systematic Review of Prospective Cohort Studies
by Eun-Hee Jang, Ye-Ji Han, Seong-Eun Jang and Seungmin Lee
Life 2021, 11(8), 811; https://doi.org/10.3390/life11080811 - 10 Aug 2021
Cited by 17 | Viewed by 3422
Abstract
(1) Background: Nutrition is a key determinant of sarcopenia in later life. (2) Methods: A systematic review of prospective cohort studies examining association of diet quality with muscle mass (MM), muscle strength (MS) or physical performance (PP) among older adults was conducted. A [...] Read more.
(1) Background: Nutrition is a key determinant of sarcopenia in later life. (2) Methods: A systematic review of prospective cohort studies examining association of diet quality with muscle mass (MM), muscle strength (MS) or physical performance (PP) among older adults was conducted. A total of 22,885 results were obtained from a literature search in MEDLINE via PubMed and EMBASE up to November 2020. Inclusion criteria included diet quality assessment via dietary indices or statistical approaches, a sample of adults aged 45 years and over at baseline in a longitudinal study design. (3) Results: Of the 22,885 cohort studies, 14 studies were eligible. Meaningful results were obtained for the Mediterranean diet and Nordic diet regarding the decrease of sarcopenia risk, however results from non-European countries were inconsistent. In addition, due to the insufficient number of studies on Japanese Food Guide Spinning Top (JFG-ST), dietary variety score (DVS), and dietary quality index-international (DQI-I), effectiveness was difficult to prove. Studies using factor analysis to examine dietary patterns suggested that the risk of sarcopenia is increased with a high in saturated fat diet such as westernized pattern etc. (4) Conclusion: In this systematic review it was found that various diet qualities are meaningful to a decreased risk of sarcopenia. Full article
(This article belongs to the Special Issue Sarcopenia and Liver Disease: Current and Future Perspectives)
Show Figures

Figure 1

15 pages, 3327 KiB  
Article
Novel Therapies for Tongue Squamous Cell Carcinoma Patients with High-Grade Tumors
by Yinghua Li, Hao Lin, Lu Chen, Zihao Chen and Weizhong Li
Life 2021, 11(8), 813; https://doi.org/10.3390/life11080813 - 10 Aug 2021
Cited by 7 | Viewed by 2359
Abstract
Background: Tongue squamous cell carcinoma (TSCC) patients with high-grade tumors usually suffer from high occurrence and poor prognosis. The current study aimed at finding the biomarkers related to tumor grades and proposing potential therapies by these biomarkers. Methods: The mRNA expression matrix of [...] Read more.
Background: Tongue squamous cell carcinoma (TSCC) patients with high-grade tumors usually suffer from high occurrence and poor prognosis. The current study aimed at finding the biomarkers related to tumor grades and proposing potential therapies by these biomarkers. Methods: The mRNA expression matrix of TSCC samples from The Cancer Genome Atlas (TCGA) database was analyzed to identify hub proteins related to tumor grades. The mRNA expression patterns of these hub proteins between TSCC and adjacent control samples were validated in three independent TSCC data sets (i.e., GSE9844, GSE30784, and GSE13601). The correlation between cell cycle index and immunotherapy efficacy was tested on the IMvigor210 data set. Based on the structure of hub proteins, virtual screening was applied to compounds to find the potential inhibitors. Results: A total of six cell cycle biomarkers (i.e., BUB1, CCNB2, CDC6, CDC20, CDK1, and MCM2) were selected as hub proteins by protein–protein interaction (PPI) analysis. In the validation data sets, the mRNA expression levels of these hub proteins were higher in tumor samples versus normal controls. The cell cycle index was constructed by the mRNA expression levels of these hub proteins, and patients with a high cell cycle index demonstrated favorable drug response to the immunotherapy. Three small molecules (i.e., ZINC100052685, ZINC8214703, and ZINC85537014) were found to bind with hub proteins and selected as drug candidates. Conclusion: The cell cycle index might provide a novel reference for selecting appropriate cancer patient candidates for immunotherapy. The current research might contribute to the development of precision medicine and improve the prognosis of TSCC. Full article
(This article belongs to the Special Issue Molecular Mechanism and Therapeutic Effect of Drugs in Cancer)
Show Figures

Figure 1

14 pages, 508 KiB  
Review
The Impact of SNCA Variations and Its Product Alpha-Synuclein on Non-Motor Features of Parkinson’s Disease
by Luca Magistrelli, Elena Contaldi and Cristoforo Comi
Life 2021, 11(8), 804; https://doi.org/10.3390/life11080804 - 9 Aug 2021
Cited by 13 | Viewed by 6713
Abstract
Parkinson’s disease (PD) is a common and progressive neurodegenerative disease, caused by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain, which is clinically characterized by a constellation of motor and non-motor manifestations. The latter include hyposmia, constipation, [...] Read more.
Parkinson’s disease (PD) is a common and progressive neurodegenerative disease, caused by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain, which is clinically characterized by a constellation of motor and non-motor manifestations. The latter include hyposmia, constipation, depression, pain and, in later stages, cognitive decline and dysautonomia. The main pathological features of PD are neuronal loss and consequent accumulation of Lewy bodies (LB) in the surviving neurons. Alpha-synuclein (α-syn) is the main component of LB, and α-syn aggregation and accumulation perpetuate neuronal degeneration. Mutations in the α-syn gene (SNCA) were the first genetic cause of PD to be identified. Generally, patients carrying SNCA mutations present early-onset parkinsonism with severe and early non-motor symptoms, including cognitive decline. Several SNCA polymorphisms were also identified, and some of them showed association with non-motor manifestations. The functional role of these polymorphisms is only partially understood. In this review we explore the contribution of SNCA and its product, α-syn, in predisposing to the non-motor manifestations of PD. Full article
(This article belongs to the Special Issue Alpha-Synuclein and Non-Motor Symptoms of Parkinson’s Disease)
Show Figures

Figure 1

13 pages, 2351 KiB  
Article
Evidence of Long-Lasting Humoral and Cellular Immunity against SARS-CoV-2 Even in Elderly COVID-19 Convalescents Showing a Mild to Moderate Disease Progression
by Bastian Fischer, Christopher Lindenkamp, Christoph Lichtenberg, Ingvild Birschmann, Cornelius Knabbe and Doris Hendig
Life 2021, 11(8), 805; https://doi.org/10.3390/life11080805 - 9 Aug 2021
Cited by 7 | Viewed by 4215
Abstract
We here evaluate the humoral and cellular immune response against SARS-CoV-2 in 41 COVID-19 convalescents. As previous studies mostly included younger individuals, one advantage of our study is the comparatively high mean age of the convalescents included in the cohort considered (54 ± [...] Read more.
We here evaluate the humoral and cellular immune response against SARS-CoV-2 in 41 COVID-19 convalescents. As previous studies mostly included younger individuals, one advantage of our study is the comparatively high mean age of the convalescents included in the cohort considered (54 ± 8.4 years). While anti-SARS-CoV-2 antibodies were still detectable in 95% of convalescents up to 8 months post infection, an antibody-decay over time was generally observed in most donors. Using a multiplex assay, our data additionally reveal that most convalescents exhibit a broad humoral immunity against different viral epitopes. We demonstrate by flow cytometry that convalescent donors show a significantly elevated number of natural killer cells when compared to healthy controls, while no differences were found concerning other leucocyte subpopulations. We detected a specific long-lasting cellular immune response in convalescents by stimulating immune cells with SARS-CoV-2-specific peptides, covering domains of the viral spike, membrane and nucleocapsid protein, and measuring interferon-γ (IFN-γ) release thereafter. We modified a commercially available ELISA assay for IFN-γ determination in whole-blood specimens of COVID-19 convalescents. One advantage of this assay is that it does not require special equipment and can, thus, be performed in any standard laboratory. In conclusion, our study adds knowledge regarding the persistence of immunity of convalescents suffering from mild to moderate COVID-19. Moreover, our study provides a set of simple methods to characterize and confirm experienced COVID-19. Full article
(This article belongs to the Special Issue Virology Applications to COVID-19 Pandemic)
Show Figures

Figure 1

10 pages, 1602 KiB  
Article
Skeletal Effects of Bone-Targeted TGFbeta Inhibition in a Mouse Model of Duchenne Muscular Dystrophy
by Juliana Marulanda, Iris Boraschi-Diaz, Pierre Beauparlant, Philippe Crine and Frank Rauch
Life 2021, 11(8), 791; https://doi.org/10.3390/life11080791 - 5 Aug 2021
Cited by 1 | Viewed by 2309
Abstract
Duchenne muscular dystrophy (DMD) is a severe progressive muscle disease that is frequently associated with secondary osteoporosis. Previous studies have shown that TGFbeta inactivating antibody improves the muscle phenotype in mdx mice, a model of DMD. In the present study, we assessed the [...] Read more.
Duchenne muscular dystrophy (DMD) is a severe progressive muscle disease that is frequently associated with secondary osteoporosis. Previous studies have shown that TGFbeta inactivating antibody improves the muscle phenotype in mdx mice, a model of DMD. In the present study, we assessed the skeletal effects of treatment with a bone-targeted TGFbeta antibody (PCT-011) in mdx mice. Micro-computed tomography showed that 8 weeks of intraperitoneal administration of PCT-011 (10 mg per kg body mass, 3 times per week) was associated with more than twofold higher trabecular bone volume at the distal femur, which was explained by a higher trabecular number. At the femoral midshaft, PCT-011 exposure increased cortical thickness but did not significantly affect the results of three-point bending tests. Histomorphometric analyses of the lumbar vertebra 4 showed that PCT-011 treatment led to a lower bone formation rate. In conclusion, treatment with the TGFbeta antibody PCT-011 had a positive effect on bone development in mdx mice. Inhibiting TGFbeta activity thus appears to be a promising approach to treat bone fragility in the context of DMD. Full article
(This article belongs to the Special Issue Duchenne Muscular Dystrophy: Mechanisms and Therapeutic Strategies)
Show Figures

Figure 1

21 pages, 2439 KiB  
Article
Shared Molecular Mechanisms of Hypertrophic Cardiomyopathy and Its Clinical Presentations: Automated Molecular Mechanisms Extraction Approach
by Mila Glavaški and Lazar Velicki
Life 2021, 11(8), 785; https://doi.org/10.3390/life11080785 - 3 Aug 2021
Cited by 5 | Viewed by 2909
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease with a prevalence of 1 in 500 people and varying clinical presentations. Although there is much research on HCM, underlying molecular mechanisms are poorly understood, and research on the molecular mechanisms of its [...] Read more.
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease with a prevalence of 1 in 500 people and varying clinical presentations. Although there is much research on HCM, underlying molecular mechanisms are poorly understood, and research on the molecular mechanisms of its specific clinical presentations is scarce. Our aim was to explore the molecular mechanisms shared by HCM and its clinical presentations through the automated extraction of molecular mechanisms. Molecular mechanisms were congregated by a query of the INDRA database, which aggregates knowledge from pathway databases and combines it with molecular mechanisms extracted from abstracts and open-access full articles by multiple machine-reading systems. The molecular mechanisms were extracted from 230,072 articles on HCM and 19 HCM clinical presentations, and their intersections were found. Shared molecular mechanisms of HCM and its clinical presentations were represented as networks; the most important elements in the intersections’ networks were found, centrality scores for each element of each network calculated, networks with reduced level of noise generated, and cooperatively working elements detected in each intersection network. The identified shared molecular mechanisms represent possible mechanisms underlying different HCM clinical presentations. Applied methodology produced results consistent with the information in the scientific literature. Full article
(This article belongs to the Special Issue Recent Trends in Computational Research on Diseases)
Show Figures

Graphical abstract

17 pages, 1014 KiB  
Review
Dystonia and Cerebellum: From Bench to Bedside
by Ryoma Morigaki, Ryosuke Miyamoto, Taku Matsuda, Kazuhisa Miyake, Nobuaki Yamamoto and Yasushi Takagi
Life 2021, 11(8), 776; https://doi.org/10.3390/life11080776 - 31 Jul 2021
Cited by 9 | Viewed by 3500
Abstract
Dystonia pathogenesis remains unclear; however, findings from basic and clinical research suggest the importance of the interaction between the basal ganglia and cerebellum. After the discovery of disynaptic pathways between the two, much attention has been paid to the cerebellum. Basic research using [...] Read more.
Dystonia pathogenesis remains unclear; however, findings from basic and clinical research suggest the importance of the interaction between the basal ganglia and cerebellum. After the discovery of disynaptic pathways between the two, much attention has been paid to the cerebellum. Basic research using various dystonia rodent models and clinical studies in dystonia patients continues to provide new pieces of knowledge regarding the role of the cerebellum in dystonia genesis. Herein, we review basic and clinical articles related to dystonia focusing on the cerebellum, and clarify the current understanding of the role of the cerebellum in dystonia pathogenesis. Given the recent evidence providing new hypotheses regarding dystonia pathogenesis, we discuss how the current evidence answers the unsolved clinical questions. Full article
(This article belongs to the Special Issue Dystonia and Related Disorders: From Bench to Bedside)
Show Figures

Figure 1

20 pages, 3406 KiB  
Article
Protective Effects of Probiotics on Cognitive and Motor Functions, Anxiety Level, Visceral Sensitivity, Oxidative Stress and Microbiota in Mice with Antibiotic-Induced Dysbiosis
by Alisa Arslanova, Aksiniya Tarasova, Anastasia Alexandrova, Vera Novoselova, Ilnar Shaidullov, Dilyara Khusnutdinova, Tatiana Grigoryeva, Dina Yarullina, Olga Yakovleva and Guzel Sitdikova
Life 2021, 11(8), 764; https://doi.org/10.3390/life11080764 - 29 Jul 2021
Cited by 13 | Viewed by 3155
Abstract
Accumulating clinical and preclinical data indicate a prominent role of gut microbiota in regulation of physiological functions. The gut-brain axis imbalance due to gut dysbiosis is associated with a range of neurodegenerative diseases. Probiotics were suggested not only to restore intestinal dysbiosis but [...] Read more.
Accumulating clinical and preclinical data indicate a prominent role of gut microbiota in regulation of physiological functions. The gut-brain axis imbalance due to gut dysbiosis is associated with a range of neurodegenerative diseases. Probiotics were suggested not only to restore intestinal dysbiosis but also modulate stress response and improve mood and anxiety symptoms. In this study, we assessed the effects of probiotic lactobacilli on behavioral reactions, the level of oxidative stress and microbiota content in mice administered to broad-spectrum antibiotics. Our study demonstrates that antibiotic treatment of adolescent mice for two weeks resulted in higher mortality and lower weight gain and induced significant changes in behavior including lower locomotor and exploratory activity, reduced muscle strength, visceral hypersensitivity, higher level of anxiety and impaired cognitive functions compared to the control group. These changes were accompanied by decreased diversity and total amount of bacteria, abundance of Proteobacteria and Verrucomicrobia phyla, and reduced Firmicutes/Bacteroides ratio in the gut microbiota. Moreover, a higher level of oxidative stress was found in brain and skeletal muscle tissues of mice treated with antibiotics. Oral administration of two Lactobacillus strains prevented the observed changes and improved not only microbiota content but also the behavioral alterations, suggesting a neuroprotective and antioxidant role of probiotics. Full article
(This article belongs to the Special Issue The Emerging Role of Probiotics in Disease)
Show Figures

Figure 1

14 pages, 5268 KiB  
Article
CXCR3 Expression and Genome-Wide 3′ Splice Site Selection in the TCGA Breast Cancer Cohort
by Lauren A. Levesque, Scott Roy and Nicole Salazar
Life 2021, 11(8), 746; https://doi.org/10.3390/life11080746 - 26 Jul 2021
Cited by 3 | Viewed by 3082
Abstract
CXCR3 is a chemokine receptor with two well-characterized isoforms that have unique, context-dependent roles: CXCR3-A and CXCR3-B, which are produced through alternative 3′ splice site selection (A3SS). RNA-seq data from The Cancer Genome Atlas (TCGA) were used to correlate CXCR3 expression with breast [...] Read more.
CXCR3 is a chemokine receptor with two well-characterized isoforms that have unique, context-dependent roles: CXCR3-A and CXCR3-B, which are produced through alternative 3′ splice site selection (A3SS). RNA-seq data from The Cancer Genome Atlas (TCGA) were used to correlate CXCR3 expression with breast cancer progression. This analysis revealed significant CXCR3 expression patterns associated with survival and differential expression between the tumor and adjacent normal tissue. TCGA data were used to estimate abundance of immune cells in breast cancer, which demonstrated the association of CXCR3 with immune infiltration, particularly in the triple-negative subtype. Given the importance of A3SS in CXCR3, genome-wide analysis of A3SS events was performed to identify events that were differentially spliced between breast cancer tissue and adjacent normal tissue. A total of 481 splicing events in 424 genes were found to be differentially spliced. The parent genes of differentially spliced events were enriched in RNA processing and splicing functions, indicating an underappreciated role of A3SS in the integrated splicing network of breast cancer. These results further validated the role of CXCR3 in immune infiltration of tumors, while raising questions about the role of A3SS splicing. Full article
(This article belongs to the Special Issue Chemokines and Their Receptors)
Show Figures

Figure 1

13 pages, 1395 KiB  
Article
Multimodal Patient-Specific Registration for Breast Imaging Using Biomechanical Modeling with Reference to AI Evaluation of Breast Tumor Change
by Cheng Xue, Fuk-Hay Tang, Christopher W. K. Lai, Lars J. Grimm and Joseph Y. Lo
Life 2021, 11(8), 747; https://doi.org/10.3390/life11080747 - 26 Jul 2021
Cited by 3 | Viewed by 2239
Abstract
Background: The strategy to combat the problem associated with large deformations in the breast due to the difference in the medical imaging of patient posture plays a vital role in multimodal medical image registration with artificial intelligence (AI) initiatives. How to build a [...] Read more.
Background: The strategy to combat the problem associated with large deformations in the breast due to the difference in the medical imaging of patient posture plays a vital role in multimodal medical image registration with artificial intelligence (AI) initiatives. How to build a breast biomechanical model simulating the large-scale deformation of soft tissue remains a challenge but is highly desirable. Methods: This study proposed a hybrid individual-specific registration model of the breast combining finite element analysis, property optimization, and affine transformation to register breast images. During the registration process, the mechanical properties of the breast tissues were individually assigned using an optimization process, which allowed the model to become patient specific. Evaluation and results: The proposed method has been extensively tested on two datasets collected from two independent institutions, one from America and another from Hong Kong. Conclusions: Our method can accurately predict the deformation of breasts from the supine to prone position for both the Hong Kong and American samples, with a small target registration error of lesions. Full article
Show Figures

Figure 1

15 pages, 2079 KiB  
Article
Does Needle Design Affect the Regenerative Potential of Bone Marrow Aspirate? An In Vitro Study
by Nadia Feddahi, Monika Herten, Tjark Tassemeier, Heike Rekasi, Alexander Hackel, Marcel Haversath and Marcus Jäger
Life 2021, 11(8), 748; https://doi.org/10.3390/life11080748 - 26 Jul 2021
Cited by 6 | Viewed by 2423
Abstract
While autologous bone is still the gold standard for treatment of bone defects, its availability is limited. Sufficient numbers of mesenchymal stroma cells (MSC) may be an alternative. Small volumes of bone marrow aspirate (BMA) were harvested with two different needle systems comparing [...] Read more.
While autologous bone is still the gold standard for treatment of bone defects, its availability is limited. Sufficient numbers of mesenchymal stroma cells (MSC) may be an alternative. Small volumes of bone marrow aspirate (BMA) were harvested with two different needle systems comparing the yield and regenerative potency of the MSCs. BMA (10 mL) was aspirated from the posterior iliac crest of 12 patients with degenerative spinal disc disease using both needle systems in each patient: the Jamshidi needle (JAM) and on the contralateral side the Marrow Cellution® Needle (AMC). Number of mononuclear cells (MNCs) and regeneration capacity (colony-forming unit/CFU) were determined. MSCs were characterized for surface markers and their differentiation into trilineages. There was no significant difference between the two harvesting needles regarding the quantity of MNCs in BMA: 5.2 ± 1.8 × 109 MNC/mL for AMC vs. 4.8 ± 2.5 × 109 MNC/mL for JAM, p = 0.182. The quantity of CFUs per ml BMA was similar for both groups: 3717 ± 5556 for AMC and 4305 ± 5507 for JAM (p = 0.695). The potency of MSCs expressed as colony-forming potential per 106 MNC resulted in 0.98 ± 1.51 for AMC and 1.00 ± 0.96 for JAM (p = 0.666). Regardless of the needle design, 10 mL bone marrow aspirate contains a sufficient number of about 40,000 MSCs that can be used to enhance bone healing. Full article
(This article belongs to the Special Issue Healing after Trauma)
Show Figures

Figure 1

13 pages, 544 KiB  
Review
Role of Matrix Gla Protein in the Complex Network of Coronary Artery Disease: A Comprehensive Review
by Marko Kumric, Josip A. Borovac, Tina Ticinovic Kurir, Dinko Martinovic, Ivan Frka Separovic, Ljupka Baric and Josko Bozic
Life 2021, 11(8), 737; https://doi.org/10.3390/life11080737 - 24 Jul 2021
Cited by 4 | Viewed by 2601
Abstract
Coronary artery disease (CAD) is widely recognized as one of the most important clinical entities. In recent years, a large body of accumulated data suggest that coronary artery calcification, a process highly prevalent in patients with CAD, occurs via well-organized biologic processes, rather [...] Read more.
Coronary artery disease (CAD) is widely recognized as one of the most important clinical entities. In recent years, a large body of accumulated data suggest that coronary artery calcification, a process highly prevalent in patients with CAD, occurs via well-organized biologic processes, rather than passively, as previously regarded. Matrix Gla protein (MGP), a vitamin K-dependent protein, emerged as an important inhibitor of both intimal and medial vascular calcification. The functionality of MGP hinges on two post-translational modifications: phosphorylation and carboxylation. Depending on the above-noted modifications, various species of MGP may exist in circulation, each with their respective level of functionality. Emerging data suggest that dysfunctional species of MGP, markedly, dephosphorylated-uncarboxylated MGP, might find its application as biomarkers of microvascular health, and assist in clinical decision making with regard to initiation of vitamin K supplementation. Hence, in this review we summarized the current knowledge with respect to the role of MGP in the complex network of vascular calcification with concurrent inferences to CAD. In addition, we discussed the effects of warfarin use on MGP functionality, with concomitant implications to coronary plaque stability. Full article
(This article belongs to the Collection Feature Review Papers for Life)
Show Figures

Figure 1

16 pages, 633 KiB  
Review
Non-Coding RNAs and Splicing Activity in Testicular Germ Cell Tumors
by Marco Barchi, Pamela Bielli, Susanna Dolci, Pellegrino Rossi and Paola Grimaldi
Life 2021, 11(8), 736; https://doi.org/10.3390/life11080736 - 24 Jul 2021
Cited by 8 | Viewed by 2942
Abstract
Testicular germ cell tumors (TGCTs) are the most common tumors in adolescent and young men. Recently, genome-wide studies have made it possible to progress in understanding the molecular mechanisms underlying the development of tumors. It is becoming increasingly clear that aberrant regulation of [...] Read more.
Testicular germ cell tumors (TGCTs) are the most common tumors in adolescent and young men. Recently, genome-wide studies have made it possible to progress in understanding the molecular mechanisms underlying the development of tumors. It is becoming increasingly clear that aberrant regulation of RNA metabolism can drive tumorigenesis and influence chemotherapeutic response. Notably, the expression of non-coding RNAs as well as specific splice variants is deeply deregulated in human cancers. Since these cancer-related RNA species are considered promising diagnostic, prognostic and therapeutic targets, understanding their function in cancer development is becoming a major challenge. Here, we summarize how the different expression of RNA species repertoire, including non-coding RNAs and protein-coding splicing variants, impacts on TGCTs’ onset and progression and sustains therapeutic resistance. Finally, the role of transcription-associated R-loop misregulation in the maintenance of genomic stability in TGCTs is also discussed. Full article
(This article belongs to the Collection Feature Review Papers for Life)
Show Figures

Figure 1

21 pages, 815 KiB  
Systematic Review
Neuroimaging Studies of Nonsuicidal Self-Injury in Youth: A Systematic Review
by Marcelo J. A. A. Brañas, Marcos S. Croci, Ana Beatriz Ravagnani Salto, Victoria F. Doretto, Eduardo Martinho, Jr., Marcos Macedo, Euripedes C. Miguel, Leonardo Roever and Pedro M. Pan
Life 2021, 11(8), 729; https://doi.org/10.3390/life11080729 - 22 Jul 2021
Cited by 7 | Viewed by 4555
Abstract
Nonsuicidal self-injury (NSSI) is prevalent and affects mainly the youth population. It is prospectively associated with suicide attempts, making it a target for suicide prevention. Recently, several studies have investigated neural pathways of NSSI using neuroimaging. However, there is a lack of systematized [...] Read more.
Nonsuicidal self-injury (NSSI) is prevalent and affects mainly the youth population. It is prospectively associated with suicide attempts, making it a target for suicide prevention. Recently, several studies have investigated neural pathways of NSSI using neuroimaging. However, there is a lack of systematized appraisal of these findings. This systematic review aims to identify and summarize the main neuroimaging findings of NSSI in youth. We followed PRISMA statement guidelines and searched MEDLINE, APA PsycInfo, and Google Scholar databases for neuroimaging studies, irrespective of imaging modality, specifically investigating NSSI in samples with a mean age of up to 25 years old. Quality assessment was made using the Newcastle–Ottawa and Joanna Briggs Institute scales. The initial search retrieved 3030 articles; 21 met inclusion criteria, with a total of 938 subjects. Eighteen studies employed functional neuroimaging techniques such as resting-state and task-based fMRI (emotional, interpersonal exposure/social exclusion, pain, reward, and cognitive processing paradigms). Three studies reported on structural MRI. An association of NSSI behavior and altered emotional processing in cortico-limbic neurocircuitry was commonly reported. Additionally, alterations in potential circuits involving pain, reward, interpersonal, self-processing, and executive function control processes were identified. NSSI has complex and diverse neural underpinnings. Future longitudinal studies are needed to understand its developmental aspects better. Full article
(This article belongs to the Special Issue Innovations in the Neurobiology of Neuropsychiatric Disorders)
Show Figures

Figure 1

37 pages, 5057 KiB  
Review
TCA Cycle Replenishing Pathways in Photosynthetic Purple Non-Sulfur Bacteria Growing with Acetate
by Ekaterina Petushkova, Ekaterina Mayorova and Anatoly Tsygankov
Life 2021, 11(7), 711; https://doi.org/10.3390/life11070711 - 19 Jul 2021
Cited by 9 | Viewed by 8511
Abstract
Purple non-sulfur bacteria (PNSB) are anoxygenic photosynthetic bacteria harnessing simple organic acids as electron donors. PNSB produce a-aminolevulinic acid, polyhydroxyalcanoates, bacteriochlorophylls a and b, ubiquinones, and other valuable compounds. They are highly promising producers of molecular hydrogen. PNSB can be cultivated [...] Read more.
Purple non-sulfur bacteria (PNSB) are anoxygenic photosynthetic bacteria harnessing simple organic acids as electron donors. PNSB produce a-aminolevulinic acid, polyhydroxyalcanoates, bacteriochlorophylls a and b, ubiquinones, and other valuable compounds. They are highly promising producers of molecular hydrogen. PNSB can be cultivated in organic waste waters, such as wastes after fermentation. In most cases, wastes mainly contain acetic acid. Therefore, understanding the anaplerotic pathways in PNSB is crucial for their potential application as producers of biofuels. The present review addresses the recent data on presence and diversity of anaplerotic pathways in PNSB and describes different classifications of these pathways. Full article
(This article belongs to the Special Issue Metabolism of Photosynthetic Organisms)
Show Figures

Figure 1

25 pages, 2054 KiB  
Review
Sorghum’s Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A Review
by Rudo Ngara, Tatenda Goche, Dirk Z. H. Swanevelder and Stephen Chivasa
Life 2021, 11(7), 704; https://doi.org/10.3390/life11070704 - 17 Jul 2021
Cited by 14 | Viewed by 3619
Abstract
Sorghum is a cereal crop with key agronomic traits of drought and heat stress tolerance, making it an ideal food and industrial commodity for hotter and more arid climates. These stress tolerances also present a useful scientific resource for studying the molecular basis [...] Read more.
Sorghum is a cereal crop with key agronomic traits of drought and heat stress tolerance, making it an ideal food and industrial commodity for hotter and more arid climates. These stress tolerances also present a useful scientific resource for studying the molecular basis for environmental resilience. Here we provide an extensive review of current transcriptome and proteome works conducted with laboratory, greenhouse, or field-grown sorghum plants exposed to drought, osmotic stress, or treated with the drought stress-regulatory phytohormone, abscisic acid. Large datasets from these studies reveal changes in gene/protein expression across diverse signaling and metabolic pathways. Together, the emerging patterns from these datasets reveal that the overall functional classes of stress-responsive genes/proteins within sorghum are similar to those observed in equivalent studies of other drought-sensitive model species. This highlights a monumental challenge of distinguishing key regulatory genes/proteins, with a primary role in sorghum adaptation to drought, from genes/proteins that change in expression because of stress. Finally, we discuss possible options for taking the research forward. Successful exploitation of sorghum research for implementation in other crops may be critical in establishing climate-resilient agriculture for future food security. Full article
(This article belongs to the Special Issue Plant Proteomics)
Show Figures

Figure 1

12 pages, 1206 KiB  
Review
The Role of Protein S-Nitrosylation in Protein Misfolding-Associated Diseases
by Yun-Jin Ju, Hye-Won Lee, Ji-Woong Choi and Min-Sik Choi
Life 2021, 11(7), 705; https://doi.org/10.3390/life11070705 - 17 Jul 2021
Cited by 8 | Viewed by 2969
Abstract
Abnormal and excessive nitrosative stress contributes to neurodegenerative disease associated with the production of pathological levels of misfolded proteins. The accumulated findings strongly suggest that excessive NO production can induce and deepen these pathological processes, particularly by the S-nitrosylation of target proteins. Therefore, [...] Read more.
Abnormal and excessive nitrosative stress contributes to neurodegenerative disease associated with the production of pathological levels of misfolded proteins. The accumulated findings strongly suggest that excessive NO production can induce and deepen these pathological processes, particularly by the S-nitrosylation of target proteins. Therefore, the relationship between S-nitrosylated proteins and the accumulation of misfolded proteins was reviewed. We particularly focused on the S-nitrosylation of E3-ubiquitin-protein ligase, parkin, and endoplasmic reticulum chaperone, PDI, which contribute to the accumulation of misfolded proteins. In addition to the target proteins being S-nitrosylated, NOS, which produces NO, and GSNOR, which inhibits S-nitrosylation, were also suggested as potential therapeutic targets for protein misfolding-associated diseases. Full article
(This article belongs to the Special Issue Biology of Protein Folding for Discovery of Novel Drugs)
Show Figures

Figure 1

12 pages, 3240 KiB  
Article
Bone Morphogenetic Protein 7 Effect on Human Glioblastoma Cell Transmigration and Migration
by Ting-Chung Wang, Sheng-Jie Luo and Shun-Fu Chang
Life 2021, 11(7), 708; https://doi.org/10.3390/life11070708 - 17 Jul 2021
Cited by 3 | Viewed by 2224
Abstract
Glioblastoma, World Health Organization—grade IV, is the most malignant glioma type and it is still an incurable tumor due to the high level of heterogeneity and uncontrolled metastatic nature. In addition to the tumorigenicity-suppressing activity, bone morphogenetic protein 7 (BMP7) has recently been [...] Read more.
Glioblastoma, World Health Organization—grade IV, is the most malignant glioma type and it is still an incurable tumor due to the high level of heterogeneity and uncontrolled metastatic nature. In addition to the tumorigenicity-suppressing activity, bone morphogenetic protein 7 (BMP7) has recently been found for its invasion-promoting role in glioblastoma. However, the detailed and precise mechanism in this issue should have more elucidation. Thus, in this study, we determined the BMP7 effect on glioblastoma transmigration and migration regulations and the underlying mechanisms. Human LN18/LN229 glioblastoma cells were used in this study. Our results showed a higher BMP7/pSmad5 level in human malignant glioma tissues compared to healthy brain tissues. In addition, it was demonstrated that endogenous and exogenous BMP7 stimulation could increase the transmigration and migration capabilities of human LN18/LN229 glioblastoma cells. Moreover, this event is regulated by Smad5 and p75 neurotrophin receptor (p75NTR) signaling. Furthermore, unexpected data are that the Smad1 gene knockdown could lead to the cell death of human LN18 glioblastoma cells. Overall, the present study finds that the invasion-promoting activity of BMP7 might be an autocrine stimulation of glioblastoma and this effect could be regulated by Smad5-p75NTR signaling. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

15 pages, 3968 KiB  
Review
Structure, Activity and Function of the Suv39h1 and Suv39h2 Protein Lysine Methyltransferases
by Sara Weirich, Mina S. Khella and Albert Jeltsch
Life 2021, 11(7), 703; https://doi.org/10.3390/life11070703 - 16 Jul 2021
Cited by 17 | Viewed by 5181
Abstract
SUV39H1 and SUV39H2 were the first protein lysine methyltransferases that were identified more than 20 years ago. Both enzymes introduce di- and trimethylation at histone H3 lysine 9 (H3K9) and have important roles in the maintenance of heterochromatin and gene repression. They consist [...] Read more.
SUV39H1 and SUV39H2 were the first protein lysine methyltransferases that were identified more than 20 years ago. Both enzymes introduce di- and trimethylation at histone H3 lysine 9 (H3K9) and have important roles in the maintenance of heterochromatin and gene repression. They consist of a catalytically active SET domain and a chromodomain, which binds H3K9me2/3 and has roles in enzyme targeting and regulation. The heterochromatic targeting of SUV39H enzymes is further enhanced by the interaction with HP1 proteins and repeat-associated RNA. SUV39H1 and SUV39H2 recognize an RKST motif with additional residues on both sides, mainly K4 in the case of SUV39H1 and G12 in the case of SUV39H2. Both SUV39H enzymes methylate different non-histone proteins including RAG2, DOT1L, SET8 and HupB in the case of SUV39H1 and LSD1 in the case of SUV39H2. Both enzymes are expressed in embryonic cells and have broad expression profiles in the adult body. SUV39H1 shows little tissue preference except thymus, while SUV39H2 is more highly expressed in the brain, testis and thymus. Both enzymes are connected to cancer, having oncogenic or tumor-suppressive roles depending on the tumor type. In addition, SUV39H2 has roles in the brain during early neurodevelopment. Full article
(This article belongs to the Special Issue Structure, Activity, and Function of Protein Methyltransferases)
Show Figures

Figure 1

16 pages, 5103 KiB  
Article
Mitogenomics, Phylogeny and Morphology Reveal Ophiocordyceps pingbianensis Sp. Nov., an Entomopathogenic Fungus from China
by Siqi Chen, Yuanbing Wang, Kongfu Zhu and Hong Yu
Life 2021, 11(7), 686; https://doi.org/10.3390/life11070686 - 14 Jul 2021
Cited by 6 | Viewed by 2690
Abstract
The new entomopathogenic fungus Ophiocordyceps pingbianensis, collected from Southeast China, was described by mitogenomic, morphological, and phylogenetic evidence. The systematic position of O. pingbianensis was determined by phylogenetic analyses based on six nuclear gene (ITS, tef1-α, nrSSU, nrLSU, rpb1 [...] Read more.
The new entomopathogenic fungus Ophiocordyceps pingbianensis, collected from Southeast China, was described by mitogenomic, morphological, and phylogenetic evidence. The systematic position of O. pingbianensis was determined by phylogenetic analyses based on six nuclear gene (ITS, tef1-α, nrSSU, nrLSU, rpb1 and rpb2) and 14 mitochondrial protein-coding gene (PCGs) (cox1, cox2, cox3, atp6, atp8, atp9, cob, nad1, nad2, nad3, nad4, nad5, nad6 and nad4L) data. Phylogenetic analyses reveal that O. pingbianensis was belonged to the Hirsutella nodulosa clade in the genus Ophiocordyceps of Ophiocordycipiaceae. This fungus exhibits distinctive characteristics which differed from other related Ophiocordyceps species with slender and geminate stromata, monophialidic conidiogenous cells with an inflated awl-shaped base, a twisty and warty phialide neck and a fusiform or oval conidia, as well as being found on a tiger beetle of Coleoptera buried in moss at the cave. The complete mitochondrial genome of O. pingbianensis was a circular DNA molecule 80,359 bp in length, containing 15 PCGs, 24 open reading frames genes (ORFs), 25 transfer RNA genes (tRNAs) and 27 introns. Ophiocordyceps pingbianensis, containing 27 introns, has the second largest mitogenome in Ophiocordycipiaceae and was next to O. sinensis. To our knowledge, this is the first report of the mitogenome from a new entomopathogenic fungus, and thus provides an important foundation for future studies on taxonomy, genetics and evolutionary biology of Ophiocordycipiaceae. Full article
Show Figures

Figure 1

26 pages, 2065 KiB  
Review
‘Whole Organism’, Systems Biology, and Top-Down Criteria for Evaluating Scenarios for the Origin of Life
by Clifford F. Brunk and Charles R. Marshall
Life 2021, 11(7), 690; https://doi.org/10.3390/life11070690 - 14 Jul 2021
Cited by 15 | Viewed by 5216
Abstract
While most advances in the study of the origin of life on Earth (OoLoE) are piecemeal, tested against the laws of chemistry and physics, ultimately the goal is to develop an overall scenario for life’s origin(s). However, the dimensionality of non-equilibrium chemical systems, [...] Read more.
While most advances in the study of the origin of life on Earth (OoLoE) are piecemeal, tested against the laws of chemistry and physics, ultimately the goal is to develop an overall scenario for life’s origin(s). However, the dimensionality of non-equilibrium chemical systems, from the range of possible boundary conditions and chemical interactions, renders the application of chemical and physical laws difficult. Here we outline a set of simple criteria for evaluating OoLoE scenarios. These include the need for containment, steady energy and material flows, and structured spatial heterogeneity from the outset. The Principle of Continuity, the fact that all life today was derived from first life, suggests favoring scenarios with fewer non-analog (not seen in life today) to analog (seen in life today) transitions in the inferred first biochemical pathways. Top-down data also indicate that a complex metabolism predated ribozymes and enzymes, and that full cellular autonomy and motility occurred post-LUCA. Using these criteria, we find the alkaline hydrothermal vent microchamber complex scenario with a late evolving exploitation of the natural occurring pH (or Na+ gradient) by ATP synthase the most compelling. However, there are as yet so many unknowns, we also advocate for the continued development of as many plausible scenarios as possible. Full article
(This article belongs to the Collection Feature Review Papers for Life)
Show Figures

Figure 1

18 pages, 2557 KiB  
Review
In Vitro Measurements of Cellular Forces and their Importance in the Lung—From the Sub- to the Multicellular Scale
by Peter Kolb, Annika Schundner, Manfred Frick and Kay-E. Gottschalk
Life 2021, 11(7), 691; https://doi.org/10.3390/life11070691 - 14 Jul 2021
Cited by 2 | Viewed by 2767
Abstract
Throughout life, the body is subjected to various mechanical forces on the organ, tissue, and cellular level. Mechanical stimuli are essential for organ development and function. One organ whose function depends on the tightly connected interplay between mechanical cell properties, biochemical signaling, and [...] Read more.
Throughout life, the body is subjected to various mechanical forces on the organ, tissue, and cellular level. Mechanical stimuli are essential for organ development and function. One organ whose function depends on the tightly connected interplay between mechanical cell properties, biochemical signaling, and external forces is the lung. However, altered mechanical properties or excessive mechanical forces can also drive the onset and progression of severe pulmonary diseases. Characterizing the mechanical properties and forces that affect cell and tissue function is therefore necessary for understanding physiological and pathophysiological mechanisms. In recent years, multiple methods have been developed for cellular force measurements at multiple length scales, from subcellular forces to measuring the collective behavior of heterogeneous cellular networks. In this short review, we give a brief overview of the mechanical forces at play on the cellular level in the lung. We then focus on the technological aspects of measuring cellular forces at many length scales. We describe tools with a subcellular resolution and elaborate measurement techniques for collective multicellular units. Many of the technologies described are by no means restricted to lung research and have already been applied successfully to cells from various other tissues. However, integrating the knowledge gained from these multi-scale measurements in a unifying framework is still a major future challenge. Full article
(This article belongs to the Special Issue Mechanical Forces in the Cell)
Show Figures

Figure 1

9 pages, 667 KiB  
Case Report
Long-Term Maintained Response to Selective Internal Radiation Therapy in an Oligometastatic Uveal Melanoma Patient Treated with Concomitant Anti-PD-1 Therapy
by Ilaria Proietti, Nevena Skroza, Luca Filippi, Nicoletta Bernardini, Alessandra Mambrin, Ersilia Tolino, Giovanni Rossi, Anna Marchesiello, Federica Marraffa, Salvatore Volpe, Oreste Bagni and Concetta Potenza
Life 2021, 11(7), 692; https://doi.org/10.3390/life11070692 - 14 Jul 2021
Cited by 1 | Viewed by 1886
Abstract
Uveal melanoma (UM) is a primary neoplasm of the eye arising from the melanocytes residing in the iris, ciliary body or choroid. It is the most frequent intraocular malignancy and often determines metastases at distant sites, with a peculiar tropism for the liver. [...] Read more.
Uveal melanoma (UM) is a primary neoplasm of the eye arising from the melanocytes residing in the iris, ciliary body or choroid. It is the most frequent intraocular malignancy and often determines metastases at distant sites, with a peculiar tropism for the liver. Metastatic UM has a poor prognosis, as any treatment affects the natural course of this fatal disease. Herein, we report a case of a UM metastatic to the liver in a 54 year-old female patient, initially treated with nivolumab without success. The patient was then scheduled for selective internal radiation therapy (SIRT) while continuing immunotherapy. This combination led to a complete and durable response and the patient is currently free of disease, two years after the diagnosis of the hepatic metastases. The association between SIRT and immunotherapy (IT) has very promising perspectives for metastatic UM, especially considering the disappointing or contradictory results of classic chemotherapies, IT alone and targeted therapies. Furthermore, this combination has been shown to have a good security profile. However, further studies are needed to confirm the efficacy of associating SIRT and IT and to clarify some unsolved problems, such as the timing of administration of these two therapies. Full article
(This article belongs to the Special Issue Primitive and Metastatic Tumours of the Skin)
Show Figures

Figure 1

14 pages, 2189 KiB  
Article
Perception of Thermal Comfort during Skin Cooling and Heating
by Igor B. Mekjavic, Daniel Yogev and Urša Ciuha
Life 2021, 11(7), 681; https://doi.org/10.3390/life11070681 - 12 Jul 2021
Cited by 9 | Viewed by 2850
Abstract
Due to the static and dynamic activity of the skin temperature sensors, the cutaneous thermal afferent information is dependent on the rate and direction of the temperature change, which would suggest different perceptions of temperature and of thermal comfort during skin heating and [...] Read more.
Due to the static and dynamic activity of the skin temperature sensors, the cutaneous thermal afferent information is dependent on the rate and direction of the temperature change, which would suggest different perceptions of temperature and of thermal comfort during skin heating and cooling. This hypothesis was tested in the present study. Subjects (N = 12; 6 females and 6 males) donned a water-perfused suit (WPS) in which the temperature was varied in a saw-tooth manner in the range from 27 to 42 °C. The rate of change of temperature of the water perfusing the suit (TWPS) was 1.2 °C min−1 during both the heating and cooling phases. The trial was repeated thrice, with subjects reporting their perception of the temperature and thermal comfort at each 3 °C change in TWPS. In addition, subjects were instructed to report when they perceived TWPS uncomfortably cool and warm during cooling and heating, respectively. Subjects reproducibly identified the boundaries of their Thermal Comfort Zone (TCZ), defined as the lower (Tlow) and upper (Thigh) temperatures at which subjects reported slight thermal discomfort. During the heating phase, Tlow and Thigh were 30.0 ± 1.5 °C and 35.1 ± 2.9 °C, respectively. During the cooling phase, the boundary temperatures of Tlow and Thigh were 35.4 ± 1.9 °C and 38.7 ± 2.3 °C, respectively. The direction of the change in the cutaneous temperature stimulus affects the boundaries of the TCZ, such that they are higher during cooling and lower during heating. These findings are explained on the basis of the neurophysiology of thermal perception. From an applied perspective, the most important observation of the present study was the strong correlation between the perception of thermal comfort and the behavioral regulation of thermal comfort. Although it is not surprising that the action of regulating thermal comfort is aligned with its perception, this link has not been proven for humans in previous studies. The results therefore provide a sound basis to consider ratings of thermal comfort as reflecting behavioral actions to achieve the sensation of thermal neutrality. Full article
(This article belongs to the Special Issue Human Thermophysiology)
Show Figures

Figure 1

Back to TopTop