Marine Natural Products: Latest Strategies in Purification, Isolation and Chemical Profiling

A special issue of Marine Drugs (ISSN 1660-3397).

Deadline for manuscript submissions: closed (15 December 2021) | Viewed by 4426

Special Issue Editor

Special Issue Information

Dear Colleagues,

Exploring the biodiversity of the marine environment requires a variety of approaches to expedite the discovery of therapeutically important compounds. In this Special Issue of Marine Drugs, you are invited to submit articles that describe strategies that probe the chemical diversity to discover unprecedented bioactive marine natural products.

Dr. Sylvia Urban
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine natural products
  • biodiversity
  • chemical diversity
  • purification
  • extraction
  • isolation
  • chemical profiling

Related Special Issues

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 2996 KiB  
Article
Bioprospecting of Less-Polar Constituents from Endemic Brown Macroalga Fucus virsoides J. Agardh from the Adriatic Sea and Targeted Antioxidant Effects In Vitro and In Vivo (Zebrafish Model)
by Igor Jerković, Ana-Marija Cikoš, Sanja Babić, Lara Čižmek, Krunoslav Bojanić, Krunoslav Aladić, Nikolay V. Ul’yanovskii, Dmitry S. Kosyakov, Albert T. Lebedev, Rozelindra Čož-Rakovac, Polonca Trebše and Stela Jokić
Mar. Drugs 2021, 19(5), 235; https://doi.org/10.3390/md19050235 - 22 Apr 2021
Cited by 22 | Viewed by 3651
Abstract
The endemic brown macroalga Fucus virsoides J. Agardh from the Adriatic Sea was in the focus of the present research. The volatiles of fresh (FrFv) and air-dried (DrFv) samples of F. virsoides obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) were analyzed [...] Read more.
The endemic brown macroalga Fucus virsoides J. Agardh from the Adriatic Sea was in the focus of the present research. The volatiles of fresh (FrFv) and air-dried (DrFv) samples of F. virsoides obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) were analyzed by gas chromatography equipped with flame ionization detector and mass spectrometry (GC-FID/MS). The major HS-FrFv compound was pentadecane (61.90–71.55%) followed by pentadec-1-ene (11.00–7.98%). In HS-DrFv, pentadec-1-ene was not present, and few lower aliphatic compounds appeared, as well as benzaldehyde and benzyl alcohol. In HD-FrFv, particularly abundant were alkenes (such as pentadec-1-ene (19.32%), or (E)-pentadec-7-ene (8.35%)). In HD-DrFv, more oxidation products were present (e.g., carbonyl compounds such as tridecanal (18.51%)). The fatty acids profile of freeze-dried sample (FdFv) after conversion to methyl esters was determined by GC-FID, and oleic acid was dominant (42.28%), followed by arachidonic acid (15.00%). High-performance liquid chromatography-high-resolution mass spectrometry with electrospray ionization (HPLC-ESI-HRMS) was used for the screening of less polar fractions (F3 and F4) of F. virsoides. Mono- and diglycerides of stearic, palmitic, oleic, and arachidonic acids were found. Terpenoids and steroids comprised the compounds C20H30(32)O2 and C29H48O(2). Among carotenoids, fucoxanthin was identified. Chlorophyll derivatives were also found (C55H74(72)N4O(5-7)), dominated by pheophytin a. The antioxidant activity of the fractions was investigated by in vitro assays (oxygen radical absorbance capacity (ORAC), reduction of radical cation (ABTS•+), 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay, and ferric reducing antioxidant power (FRAP)) and by in vivo zebrafish model (along with fish embryotoxicity). In vitro experiments proved good radical scavenging abilities of F3 and F4 fractions, which were additionally supported by the protective effect against hydrogen peroxide-induced oxidative stress in zebrafish embryos. Full article
Show Figures

Graphical abstract

Back to TopTop