materials-logo

Journal Browser

Journal Browser

Advances in Porous Materials: Synthesis, Characterisations and Applications (2nd Editon)

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Porous Materials".

Deadline for manuscript submissions: 20 October 2024 | Viewed by 765

Special Issue Editors


E-Mail Website
Guest Editor
Guangxi Medical University Cancer Hospital, Nanning 530021, China
Interests: catalysis; nanoporous materials; noble metal nanomaterials; cancer therapy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
Interests: porous materials; energy storage and conversion; dealloying; metallic glass; high entropy alloy; battery; light metals
Special Issues, Collections and Topics in MDPI journals

E-Mail Website1 Website2
Guest Editor
School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
Interests: catalysis; sensing; piezoelectric; nano–bio interaction
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Porous materials have shown great potential in catalysis, biosensor and biomedical, energy storage and conversion, aerospace, and architecture applications owing to their high surface area, low density, and high specific strength. Porous materials have the structural feature of continuous interconnected porosity, which benefits the transport of electrons, ions, and mass. The chemical compositions of porous materials are well-controlled and diversified and include metals, ceramics, and carbon-based materials. As a result, the development of porous materials is quickly becoming important. An increasing number of researchers are working from different perspectives to conduct fundamental research on various applications.

This Special Issue focuses on recent advances in various porous materials. Research areas include but are not limited to novel synthetic strategies, advanced characterization skills, theoretical calculation methods, and various applications. We encourage you to submit a manuscript to this Special Issue. Original research papers and review articles are welcome. We look forward to receiving your contributions.

Dr. Weiqing Zhang
Prof. Dr. Zhifeng Wang
Dr. Yichao Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • porous metals
  • metallic foam
  • carbon
  • dealloying
  • mechanical property
  • energy storage and conversion
  • catalysis
  • actuation
  • calculation and simulation

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

20 pages, 7916 KiB  
Review
Porous High-Entropy Oxide Anode Materials for Li-Ion Batteries: Preparation, Characterization, and Applications
by Lishan Dong, Yihe Tian, Chang Luo, Weimin Zhao, Chunling Qin and Zhifeng Wang
Materials 2024, 17(7), 1542; https://doi.org/10.3390/ma17071542 - 28 Mar 2024
Viewed by 618
Abstract
High-entropy oxides (HEOs), as a new type of single-phase solid solution with a multi-component design, have shown great potential when they are used as anodes in lithium-ion batteries due to four kinds of effects (thermodynamic high-entropy effect, the structural lattice distortion effect, the [...] Read more.
High-entropy oxides (HEOs), as a new type of single-phase solid solution with a multi-component design, have shown great potential when they are used as anodes in lithium-ion batteries due to four kinds of effects (thermodynamic high-entropy effect, the structural lattice distortion effect, the kinetic slow diffusion effect, and the electrochemical “cocktail effect”), leading to excellent cycling stability. Although the number of articles on the study of HEO materials has increased significantly, the latest research progress in porous HEO materials in the lithium-ion battery field has not been systematically summarized. This review outlines the progress made in recent years in the design, synthesis, and characterization of porous HEOs and focuses on phase transitions during the cycling process, the role of individual elements, and the lithium storage mechanisms disclosed through some advanced characterization techniques. Finally, the future outlook of HEOs in the energy storage field is presented, providing some guidance for researchers to further improve the design of porous HEOs. Full article
Show Figures

Figure 1

Back to TopTop