materials-logo

Journal Browser

Journal Browser

Manufacturing of Porous Acoustic Structures and Metamaterials

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Advanced Composites".

Deadline for manuscript submissions: 20 February 2025 | Viewed by 1503

Special Issue Editor


E-Mail Website
Guest Editor
College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
Interests: acoustic; vibration; metamaterials

Special Issue Information

Dear Colleagues,

The manufacturing of porous acoustic structures and metamaterials is one of the important research directions in the field of materials science. These structures can be applied to the fields of sound absorption/sound insulation, acoustic imaging, acoustic stealth, and so on. Porous acoustic structures can control the propagation of sound waves by controlling parameters such as porosity, pore size, and distribution, and thus are widely used in the field of acoustics. Metamaterials are a kind of synthetic material with a negative refractive index, super absorption, super refraction and other characteristics, which can realize the control of physical phenomena such as electromagnetic waves, acoustic waves, and light waves. With the continuous development of science and technology, it is believed that more methods and technologies will be developed to provide better material support for further applications in the fields of acoustics, optics, and electromagnetism. Therefore, Materials is launching a Special Issue with the theme of the “Manufacturing of Porous Acoustic Structures and Metamaterials”. Experts and scholars in related fields are warmly welcome to submit high-quality research papers.

Dr. Haichao Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • porous materials
  • acoustic structures
  • metamaterials
  • acoustic
  • vibration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 6871 KiB  
Article
The Use of Wind Turbine Blades to Build Road Noise Barriers as an Example of a Circular Economy Model
by Mirosław Broniewicz, Anna Halicka, Lidia Buda-Ożóg, Filip Broniewicz, Damian Nykiel and Łukasz Jabłoński
Materials 2024, 17(9), 2048; https://doi.org/10.3390/ma17092048 - 26 Apr 2024
Cited by 3 | Viewed by 1210
Abstract
This project’s objective was to create a circular economy in the composites sector by examining the possibility of using wind turbine blade composite materials to construct noise-absorbing barriers for roads. The possibility of constructing road noise barrier panels from components obtained from turbine [...] Read more.
This project’s objective was to create a circular economy in the composites sector by examining the possibility of using wind turbine blade composite materials to construct noise-absorbing barriers for roads. The possibility of constructing road noise barrier panels from components obtained from turbine blades was conceptually examined, and the geometry and construction of wind turbine blades were evaluated for their suitability as filler components for panels. The tensile strength parameters of two types of composites made from windmill blades—a solid composite and a sandwich type—were established based on material tests. The strength of the composite elements cut from a windmill propeller was analyzed, and a three-dimensional numerical model was created using the finite element method. The strength values of the composite used to construct the noise barriers were compared with the stresses resulting from loads operating on the road noise barriers, as determined in compliance with current standards. It was discovered that acoustic screens composed of composite materials derived from wind turbine blades may withstand loads associated with wind pressure and vehicle traffic with sufficient resistance. In order to evaluate the environmental benefits resulting from the use of composite material made from wind turbine blades to make noise barriers, this study presents the values of the embodied energy and embodied carbon for several types of road noise barriers using life cycle assessment. Full article
(This article belongs to the Special Issue Manufacturing of Porous Acoustic Structures and Metamaterials)
Show Figures

Figure 1

Back to TopTop