materials-logo

Journal Browser

Journal Browser

Advances in Surface Coatings 2013

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Manufacturing Processes and Systems".

Deadline for manuscript submissions: closed (30 June 2013) | Viewed by 49074

Special Issue Editor


E-Mail Website
Guest Editor
Mechanical Engineering Department, University of New Hampshire, Kingsbury Hall, 33 Academic Way, Durham, NH 03824, USA
Interests: nitrides; carbides; sputter deposition; ion-assisted deposition; wear; friction; tool coatings
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Surface coatings have found extensive applications in a wide range of industrial, scientific and biomedical products, and hence are of tremendous technological importance. Coatings and thin films are used extensively for electronic devices, sensors, optical components, wear-resistant and low-friction applications, biomedical devices, photovoltaics and batteries, as well as for decorative purposes. Improvements in coating properties are continuously sought, as well as new and modified methods for coating deposition. Deposition methods have a profound effect on coating properties, and efforts to understand the impact of deposition methods on the coating structure, and hence properties, are the subject of extensive research in the coatings field. This special issue will examine current advances over a broad range of coating and thin film technologies. Advances in both physical and chemical vapor deposition methods will be addressed, with a particular interest in ion-enhanced processes such as high-power impulse magnetron sputtering. Progress on methods for coating analysis and evaluation of properties will also be covered, including structural evaluation by x-ray diffraction methods, mechanical and adhesion testing using nano-mechanical probes, and methods for measuring optical and tribological properties. Nano-composite and multilayer coatings are of strong current interest and there is a need for an improved understanding of how nano-scale structural features in theses coatings impact their physical properties. Reports on polymer-based coatings are also sought, with a special interest in superhydrophobic coatings. Contributions are solicited both from academic researchers and their industrial counterparts in order to promote both the understanding of coating properties as well as an advancing their applications in relevant technologies.

Prof. Dr. James E. Krzanowski
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • magnetron sputtering
  • ion-beam assisted deposition
  • cathodic arc deposition
  • chemical vapor deposition
  • atomic layer deposition
  • adhesion
  • nano-indentation
  • wear
  • friction
  • anti-reflective coatings
  • superhydrophobic
  • coatings

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

683 KiB  
Article
Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates
by Daniel Sola, Ana Conde, Iñaki García, Elena Gracia-Escosa, Juan J. De Damborenea and Jose I. Peña
Materials 2013, 6(9), 3963-3977; https://doi.org/10.3390/ma6093963 - 09 Sep 2013
Cited by 11 | Viewed by 6605
Abstract
In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam [...] Read more.
In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics. Full article
(This article belongs to the Special Issue Advances in Surface Coatings 2013)
Show Figures

Figure 1

2049 KiB  
Article
Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure
by Zhe Lu, Sang-Won Myoung, Yeon-Gil Jung, Govindasamy Balakrishnan, Jeongseung Lee and Ungyu Paik
Materials 2013, 6(8), 3387-3403; https://doi.org/10.3390/ma6083387 - 08 Aug 2013
Cited by 30 | Viewed by 8440
Abstract
The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs) was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after [...] Read more.
The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs) was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF) for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS) method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF) for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF) and low-pressure plasma spray (LPPS) methods showed a partial cracking (and/or delamination) and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50%) after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF. Full article
(This article belongs to the Special Issue Advances in Surface Coatings 2013)
Show Figures

Figure 1

877 KiB  
Article
Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings
by Yu-Sen Yang and Ting-Pin Cho
Materials 2013, 6(8), 3373-3386; https://doi.org/10.3390/ma6083373 - 07 Aug 2013
Cited by 8 | Viewed by 7787
Abstract
Various PVD (physical vapor deposition) hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC) were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN), Cr2N, (CrAl)2N) [...] Read more.
Various PVD (physical vapor deposition) hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC) were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN), Cr2N, (CrAl)2N) and Me-DLC (Si-DLC and Cr-DLC) coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA) measurements. The as-deposited hcp-AlN, Cr2N and (CrAl)2N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr2N and (CrAl)2N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr2N and (CrAl)2N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness. Full article
(This article belongs to the Special Issue Advances in Surface Coatings 2013)
Show Figures

Figure 1

728 KiB  
Article
Effect of Boron-Doped Diamond Interlayer on Cutting Performance of Diamond Coated Micro Drills for Graphite Machining
by Xuelin Lei, Liang Wang, Bin Shen, Fanghong Sun and Zhiming Zhang
Materials 2013, 6(8), 3128-3138; https://doi.org/10.3390/ma6083128 - 25 Jul 2013
Cited by 27 | Viewed by 7652
Abstract
Thin boron doped diamond (BDD) film is deposited from trimethyl borate/acetone/hydrogen mixture on Co-cemented tungsten carbide (WC-Co) micro drills by using the hot filament chemical vapor deposition (HFCVD) technique. The boron peak on Raman spectrum confirms the boron incorporation in diamond film. This [...] Read more.
Thin boron doped diamond (BDD) film is deposited from trimethyl borate/acetone/hydrogen mixture on Co-cemented tungsten carbide (WC-Co) micro drills by using the hot filament chemical vapor deposition (HFCVD) technique. The boron peak on Raman spectrum confirms the boron incorporation in diamond film. This film is used as an interlayer for subsequent CVD of micro-crystalline diamond (MCD) film. The Rockwell indentation test shows that boron doping could effectively improve the adhesive strength on substrate of as deposited thin diamond films. Dry drilling of graphite is chosen to check the multilayer (BDD + MCD) film performance. For the sake of comparison, machining tests are also carried out under identical conditions using BDD and MCD coated micro drills with no interlayer. The wear mechanism of the tools has been identified and correlated with the criterion used to evaluate the tool life. The results show that the multilayer (BDD + MCD) coated micro drill exhibits the longest tool life. Therefore, thin BDD interlayer is proved to be a new viable alternative and a suitable option for adherent diamond coatings on micro cutting tools. Full article
(This article belongs to the Special Issue Advances in Surface Coatings 2013)
Show Figures

Figure 1

517 KiB  
Article
Optical Constants of Crystallized TiO2 Coatings Prepared by Sol-Gel Process
by Xiaodong Wang, Guangming Wu, Bin Zhou and Jun Shen
Materials 2013, 6(7), 2819-2830; https://doi.org/10.3390/ma6072819 - 12 Jul 2013
Cited by 88 | Viewed by 9465
Abstract
Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and [...] Read more.
Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and atomic force microscopy, respectively. Characterization technique, based on least-square fitting to the measured reflectance and transmittance spectra, is used to determine the refractive indices of the crystallized TiO2 coatings. The stability of the synthesized sol was also investigated by dynamic light scattering particle size analyzer. The influence of the thermal annealing on the optical properties was then discussed. The increase in refractive index with high temperature thermal annealing process was observed, obtaining refractive index values from 1.98 to 2.57 at He-Ne laser wavelength of 633 nm. The Raman spectroscopy and atomic force microscopy studies indicate that the index variation is due to the changes in crystalline phase, density, and morphology during thermal annealing. Full article
(This article belongs to the Special Issue Advances in Surface Coatings 2013)
Show Figures

Figure 1

1433 KiB  
Article
Study of PVD AlCrN Coating for Reducing Carbide Cutting Tool Deterioration in the Machining of Titanium Alloys
by Natalia L. Cadena, Rodrigo Cue-Sampedro, Héctor R. Siller, Ana M. Arizmendi-Morquecho, Carlos I. Rivera-Solorio and Santiago Di-Nardo
Materials 2013, 6(6), 2143-2154; https://doi.org/10.3390/ma6062143 - 24 May 2013
Cited by 28 | Viewed by 8639
Abstract
The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out [...] Read more.
The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum–chromium–nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating. Full article
(This article belongs to the Special Issue Advances in Surface Coatings 2013)
Show Figures

Graphical abstract

Back to TopTop