Mineralogy, Petrology and Geochemistry of Ophiolitic Complexes

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Geochemistry and Geochronology".

Deadline for manuscript submissions: closed (31 October 2019) | Viewed by 19011

Special Issue Editor


E-Mail Website
Guest Editor
Departamento de Mineralogía y Petrología, Universidad de Granada, 18002 Granada, Spain
Interests: island arc; mantle geochemistry; igneous geochemistry; oceanic crust; serpentinite; strongly chalcophile elements; magma genesis in subduction zones

Special Issue Information

Dear Colleagues,

Oceanic mantle peridotites and crustal igneous rocks in ophiolites sample lithosphere shaped in different tectonic settings, such as mid-ocean ridges, passive margins, plumes and island arcs. These rocks may record a complex tectono-magmatic evolution, including multiple stages of melt extraction, mantle-melt reaction, crustal production, interaction with fluids and deformation. Deciphering the fingerprints of this evolution is fundamental to comprehend how the oceanic lithosphere is generated, modified, recycled and/or accreted at plate boundaries. This Special Issue aims to gather studies that constrain the igneous, metamorphic and tectonic evolution of oceanic lithosphere exposed in ophiolites, in particular focusing on implications for its construction and alteration at mid-ocean ridges, back-arc basins, and subduction zones. This Special Issue intends to present a comprehensive view of the mineralogical and geochemical features of ophiolites at very different scales (from sub-microscopic minerals to km-scale massifs) and using different geochemical systems (e.g., lithophile, siderophile, chalcophile elements and related isotopes).

Dr. Claudio Marchesi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ophiolite
  • mantle melting
  • melt-rock interaction
  • crustal accretion
  • serpentinization
  • trace elements
  • radiogenic isotopes
  • platinum-group minerals

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

38 pages, 13498 KiB  
Article
Origin and Age Determination of the Neotethys Meliata Basin Ophiolite Fragments in the Late Jurassic–Early Cretaceous Accretionary Wedge Mélange (Inner Western Carpathians, Slovakia)
by Marián Putiš, Ján Soták, Qiu-Li Li, Martin Ondrejka, Xian-Hua Li, Zhaochu Hu, Xiaoxiao Ling, Ondrej Nemec, Zoltán Németh and Peter Ružička
Minerals 2019, 9(11), 652; https://doi.org/10.3390/min9110652 - 23 Oct 2019
Cited by 22 | Viewed by 3895
Abstract
This study reports the Neotethyan Meliata Basin ophiolite fragments in the Late Jurassic–Early Cretaceous accretionary wedge mélange in the southern part of the Inner Western Carpathians (IWC). Here we present new lithostratigraphical, petrographical, geochemical, and geochronological data obtained from the mélange blocks used [...] Read more.
This study reports the Neotethyan Meliata Basin ophiolite fragments in the Late Jurassic–Early Cretaceous accretionary wedge mélange in the southern part of the Inner Western Carpathians (IWC). Here we present new lithostratigraphical, petrographical, geochemical, and geochronological data obtained from the mélange blocks used to reconstruct the Meliaticum paleotectonic zones in a tentative evolutionary model of this accretionary wedge. The Dobšiná mélange block continental margin carbonatic and siliciclastic sediments have calc-alkaline basalt intercalations. The basalt Concordia age dated to 245.5 ± 3.3 Ma by U–Pb SIMS on zircon most likely indicates the pre-oceanic advanced early Middle Triassic continental rifting stage. The evolving marginal oceanic crust is composed of Middle to Upper Triassic cherty shales to radiolarites. The detrital zircon U–Pb SIMS Concordia ages of 247 ± 4 Ma and 243 ± 4 Ma from a cherty shale, and the xenocryst zircon population Concordia age of 266 ± 3 Ma from a 0.5 m thick “normal” mid-ocean ridge (N-MOR) basalt layer in this cherty shale reveal the connection of the oceanic basin to the adjacent rifting continental margin. The chertified reddish limestone transition to radiolarite indicates syn-rift basin deepening. Upwards, regular alternating N-MOR basalts and radiolarites are often disturbed by peperite breccia horizons. The Nd isotope values of these basalts (εNd240 = 7–8) are consistent with their chondrite normalized rare earth element (REE) patterns and indicate a depleted mantle source. The Triassic ophiolitic suite also comprises rare ocean island (OI) basalts (εNd240 = 5) and serpentinized subduction unrelated peridotites. The Middle to Late Jurassic shortening and southward intra-oceanic and continental margin subduction at approximately 170–150 Ma enhanced the formation of the trench-like Jurassic flysch succession which preceded the closure of the Meliata Basin. The flysch sediments form a mélange matrix of olistolithic unsubducted, obducted, and MP–HP/LT metamorphosed exhumed blocks of the Triassic to Lower Jurassic successions. Blocks of peridotites, rodingites, blueschists, greenschists, rare amphibolites, deep-water shaly sediments and shallow- to deep-water carbonates are typical members of the mélange. The Meliatic accretionary wedge mélange nappe outliers were incorporated in the IWC orogenic wedge in the late Early Cretaceous according to metamorphic rutile U–Pb SIMS ages of 100 ± 10 Ma determined from a Jaklovce metabasalt. Full article
(This article belongs to the Special Issue Mineralogy, Petrology and Geochemistry of Ophiolitic Complexes)
Show Figures

Figure 1

22 pages, 4934 KiB  
Article
Ophiolitic Pyroxenites Record Boninite Percolation in Subduction Zone Mantle
by Véronique Le Roux and Yan Liang
Minerals 2019, 9(9), 565; https://doi.org/10.3390/min9090565 - 18 Sep 2019
Cited by 13 | Viewed by 3589
Abstract
The peridotite section of supra-subduction zone ophiolites is often crosscut by pyroxenite veins, reflecting the variety of melts that percolate through the mantle wedge, react, and eventually crystallize in the shallow lithospheric mantle. Understanding the nature of parental melts and the timing of [...] Read more.
The peridotite section of supra-subduction zone ophiolites is often crosscut by pyroxenite veins, reflecting the variety of melts that percolate through the mantle wedge, react, and eventually crystallize in the shallow lithospheric mantle. Understanding the nature of parental melts and the timing of formation of these pyroxenites provides unique constraints on melt infiltration processes that may occur in active subduction zones. This study deciphers the processes of orthopyroxenite and clinopyroxenite formation in the Josephine ophiolite (USA), using new trace and major element analyses of pyroxenite minerals, closure temperatures, elemental profiles, diffusion modeling, and equilibrium melt calculations. We show that multiple melt percolation events are required to explain the variable chemistry of peridotite-hosted pyroxenite veins, consistent with previous observations in the xenolith record. We argue that the Josephine ophiolite evolved in conditions intermediate between back-arc and sub-arc. Clinopyroxenites formed at an early stage of ophiolite formation from percolation of high-Ca boninites. Several million years later, and shortly before exhumation, orthopyroxenites formed through remelting of the Josephine harzburgites through percolation of ultra-depleted low-Ca boninites. Thus, we support the hypothesis that multiple types of boninites can be created at different stages of arc formation and that ophiolitic pyroxenites uniquely record the timing of boninite percolation in subduction zone mantle. Full article
(This article belongs to the Special Issue Mineralogy, Petrology and Geochemistry of Ophiolitic Complexes)
Show Figures

Figure 1

24 pages, 17638 KiB  
Article
Geochemistry and Geochronology of Ophiolitic Rocks from the Dongco and Lanong Areas, Tibet: Insights into the Evolution History of the Bangong-Nujiang Tethys Ocean
by Peng Yang, Qiangtai Huang, Renjie Zhou, Argyrios Kapsiotis, Bin Xia, Zhanli Ren, Zhourong Cai, Xingxin Lu and Chiyu Cheng
Minerals 2019, 9(8), 466; https://doi.org/10.3390/min9080466 - 30 Jul 2019
Cited by 11 | Viewed by 4555
Abstract
The Bangong-Nujiang Suture Zone (BNSZ) in central Tibet hosts a series of dismembered Jurassic ophiolites that are widely considered as remnants of the vanished Meso-Tethys Ocean. In this study we present new compositional, isotopic, and geochronological data from anorthosites and gabbros of the [...] Read more.
The Bangong-Nujiang Suture Zone (BNSZ) in central Tibet hosts a series of dismembered Jurassic ophiolites that are widely considered as remnants of the vanished Meso-Tethys Ocean. In this study we present new compositional, isotopic, and geochronological data from anorthosites and gabbros of the Dongco and Lanong ophiolites in order to test several hypotheses about the nature of subduction in the Bangong-Nujiang Tethys Ocean (BNTO) during the Mesozoic era. Uranium–Pb dating of magmatic zircons separated from the Dongco anorthosites yielded an (average) age of 169.0 ± 3.7 Ma. Zircons separated from the Lanong anorthosites and gabbros yielded U–Pb ages of 166.8 ± 0.9 Ma and 167.3 ± 1.1 Ma, respectively. Zircons separated from the Dongco and Lanong anorthosites have positive εHf(t) values (5.62–15.94 and 10.37–14.95, respectively). The Dongco anorthosites have moderate initial 87Sr/86Sr (0.703477–0.704144) and high εNd(t) (+6.50 to +7.91). The Lanong anorthosites have high (87Sr/86Sr)i (0.706058–0.712952) and εNd(t) in the range of −1.56 to +2.02. Furthermore, the Lanong gabbros have high (87Sr/86Sr)i (0.705826–0.706613) and εNd(t) in the range of −0.79 to +4.20. Most gabbros from Dongco and a few gabbros from Lanong show normal mid-ocean ridge basalt (N-MORB)-like primitive mantle (PM)-normalized multi-element patterns. In contrast, most gabbros from Lanong show U-shaped chondrite-normalized rare earth element (REE) profiles. The investigated gabbros are characterized by wide ranges of δEu {(Eu)N/[(Sm)N*(Gd)N]1/2} values (0.83–2.53), indicating that some of them are cumulative rocks. The trace element contents of all anorthosite samples imply that their composition was controlled by cumulative processes. The geochemical and isotopic compositions of the non-cumulative gabbros from Dongco (δEu: 0.95–1.04) and Lanong (δEu: 0.83–1.03) indicate that their parental melts were derived from melting of heterogeneously depleted, juvenile mantle reservoirs. These rocks have arc-related affinities, indicating that their mantle sources were influenced by minor inputs of subducted lithospheric components. Our preferred hypothesis for the origin of the non-cumulative gabbros from Dongco is that they were formed in a transient back-arc basin (BAB) setting in the middle-western segment of the BNTO, whereas our preferred scenario about the origin of the non-cumulative gabbros from Lanong is that they were generated in a forearc setting in the middle part of the BNTO. We conclude that both geotectonic settings were developed in response to the northward subduction of the BNTO during the Middle Jurassic. Full article
(This article belongs to the Special Issue Mineralogy, Petrology and Geochemistry of Ophiolitic Complexes)
Show Figures

Figure 1

24 pages, 4610 KiB  
Article
Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece)
by Aikaterini Rogkala, Petros Petrounias, Basilios Tsikouras, Panagiota P. Giannakopoulou and Konstantin Hatzipanagiotou
Minerals 2019, 9(2), 120; https://doi.org/10.3390/min9020120 - 17 Feb 2019
Cited by 24 | Viewed by 6254
Abstract
The Edessa ophiolite complex of northern Greece consists of remnants of oceanic lithosphere emplaced during the Upper Jurassic-Lower Cretaceous onto the Palaeozoic-Mesozoic continental margin of Eurasia. This study presents new data on mineral compositions of mantle peridotites from this ophiolite, especially serpentinised harzburgite [...] Read more.
The Edessa ophiolite complex of northern Greece consists of remnants of oceanic lithosphere emplaced during the Upper Jurassic-Lower Cretaceous onto the Palaeozoic-Mesozoic continental margin of Eurasia. This study presents new data on mineral compositions of mantle peridotites from this ophiolite, especially serpentinised harzburgite and minor lherzolite. Lherzolite formed by low to moderate degrees of partial melting and subsequent melt-rock reaction in an oceanic spreading setting. On the other hand, refractory harzburgite formed by high degrees of partial melting in a supra-subduction zone (SSZ) setting. These SSZ mantle peridotites contain Cr-rich spinel residual after partial melting of more fertile (abyssal) lherzolite with Al-rich spinel. Chromite with Cr# > 60 in harzburgite resulted from chemical modification of residual Cr-spinel and, along with the presence of euhedral chromite, is indicative of late melt-peridotite interaction in the mantle wedge. Mineral compositions suggest that the Edessa oceanic mantle evolved from a typical mid-ocean ridge (MOR) oceanic basin to the mantle wedge of a SSZ. This scenario explains the higher degrees of partial melting recorded in harzburgite, as well as the overprint of primary mineralogical characteristics in the Edessa peridotites. Full article
(This article belongs to the Special Issue Mineralogy, Petrology and Geochemistry of Ophiolitic Complexes)
Show Figures

Figure 1

Back to TopTop