molecules-logo

Journal Browser

Journal Browser

Chemical Research on Photosensitive Materials

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 3046

Special Issue Editor


E-Mail Website
Guest Editor
Centre for Bioengineering and Biotechnology, China University of Petroleum, Qingdao, China
Interests: artificial photosynthesis; photocatalysis; porphyrin; self-assemble; biomineralization; functional polymer; hydrogel

Special Issue Information

Dear Colleagues,

This Special Issue, entitled “Chemical Research on Photosensitive Materials”, aims to discuss the design, synthesis, characterization, and application of photosensitive materials. Photosensitive materials include photochromic materials, photoluminescence materials, photothermal materials, photovoltaic materials, and photocatalysts; most of them have exhibited important applications in detection/indication, energy conversion, environmental protection, and phototherapy. Photosensitive materials may be composed of small molecular compounds, polymers, inorganic materials, or organic–inorganic hybrids. The key focus of this Special Issue is on the relationship between the structure, properties, and application of photosensitive materials, and especially novel designs in structures that lead to advanced properties and extended applications.

Dr. Shengjie Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photosensitive materials
  • photochromic materials
  • photoluminescence materials
  • photothermal materials
  • photovoltaic materials
  • photocatalysts

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 5779 KiB  
Article
Photochemical Transformations of Diverse Biologically Active Resveratrol Analogs in Batch and Flow Reactors
by Milena Mlakić, Hana Perinić, Vitomir Vušak, Ottó Horváth, Diego Sampedro, Raúl Losantos, Ilijana Odak and Irena Škorić
Molecules 2024, 29(1), 201; https://doi.org/10.3390/molecules29010201 - 29 Dec 2023
Viewed by 935
Abstract
Previous biological tests have shown that some resveratrol analogs exhibited significant antioxidative and cholinesterase inhibitory potential, as evidenced by lower IC50 values compared to the established standards, resveratrol and galantamine, respectively. Photochemical transformations were made in parallel on these compounds in the [...] Read more.
Previous biological tests have shown that some resveratrol analogs exhibited significant antioxidative and cholinesterase inhibitory potential, as evidenced by lower IC50 values compared to the established standards, resveratrol and galantamine, respectively. Photochemical transformations were made in parallel on these compounds in the presence of porphyrin photocatalysts in batch and microreactor, showing the significant advantage of flow photochemistry concerning productivity, selectivity, and yields. In this research, the products of photocatalysis and direct irradiation (photolysis) of resveratrol analogs were compared to elucidate how the types and ratios of the products depend on the excitation energy, to reveal the effects of the substituent on the photoinduced reactions and to rationalize experimentally and computationally the nature and ratio of the obtained products. Thus, two main paths were computed in agreement with the experimental results: isomerization with the participation of triplet state intermediates to yield the experimentally detected cis-isomers and subsequent cyclization following a pathway not available for the trans-isomers. The investigation of five model compounds confirmed the advantages of the flow photoreactor in the photochemical reactions of heterocyclic resveratrol analogs. Full article
(This article belongs to the Special Issue Chemical Research on Photosensitive Materials)
Show Figures

Graphical abstract

11 pages, 2655 KiB  
Article
Bio-Inspired Hydrogel–Elastomer Actuator with Bidirectional Bending and Dynamic Structural Color
by Yongqing Xia, Yaru Meng, Ronghua Yu, Ziqi Teng, Jie Zhou and Shengjie Wang
Molecules 2023, 28(19), 6752; https://doi.org/10.3390/molecules28196752 - 22 Sep 2023
Viewed by 1015
Abstract
In nature, some creatures can change their body shapes and surface colors simultaneously to respond to the external environments, which greatly inspired researchers in the development of color-tunable soft actuators. In this work, we present a facile method to prepare a smart hydrogel [...] Read more.
In nature, some creatures can change their body shapes and surface colors simultaneously to respond to the external environments, which greatly inspired researchers in the development of color-tunable soft actuators. In this work, we present a facile method to prepare a smart hydrogel actuator that can bend bidirectionally and change color simultaneously, just like an octopus. The actuator is fabricated by elastomer/hydrogel bilayer and the hydrogel layer was decorated with thermoresponsive microgels as the photonic crystal blocks. Compared with the previously reported poly(N-isopropylacrylamide) hydrogel-based bilayer hydrogel actuators, which are generally limited to one-directional deformation, the elastomer/hydrogel bilayer actuator prepared in our work exhibits unique bidirectional bending behavior in accordance with the change of structural color. The bending degrees can be changed from −360° to 270° in response to solution temperatures ranging from 20 °C to 60 °C. At the same time, the surface color changes from red to green, and then to blue, covering the full visible light spectrum. The bending direction and degree of the hydrogel actuator can easily be adjusted by tuning the layer thickness ratio of the elastomer/hydrogel or the composition of the hydrogel. The color-tunable hydrogel-elastomer actuator reported in this work can achieve both programmable deformations and color-changing highly resembling the natural actuating behaviors of creatures. Full article
(This article belongs to the Special Issue Chemical Research on Photosensitive Materials)
Show Figures

Graphical abstract

14 pages, 5809 KiB  
Article
In Situ Construction of Near-Infrared Response Hybrid Up-Conversion Photocatalyst for Degrading Organic Dyes and Antibiotics
by Lianqing Yu, Yankun Wang, Xinhai Su, Chong Liu, Kehui Xue, Huihua Luo, Yaping Zhang and Haifeng Zhu
Molecules 2023, 28(18), 6674; https://doi.org/10.3390/molecules28186674 - 18 Sep 2023
Viewed by 655
Abstract
Unique nonlinear optical properties for converting low-energy incident light into high-energy radiation enable up-conversion materials to be employed in photocatalytic systems. An efficient near-infrared (NIR) response photocatalyst was successfully fabricated through a facile two-step method to load BiOBr on the Nd3+, [...] Read more.
Unique nonlinear optical properties for converting low-energy incident light into high-energy radiation enable up-conversion materials to be employed in photocatalytic systems. An efficient near-infrared (NIR) response photocatalyst was successfully fabricated through a facile two-step method to load BiOBr on the Nd3+, Er3+@NaYF4 (NE@NYF) up-conversion material. The NE@NYF can transform NIR into visible and UV light and promote charge–energy transfer in the semiconductor. Consequently, the as-obtained photocatalysts exhibit excellent photodegradation performance for rhodamine B dye (RhB) and tetracycline (TC) organic pollutants. About 98.9% of the RhB was decomposed within 60 min with the 20% NE@NYF-B sample, outperforming the pristine BiOBr (61.9%). In addition, the 20% NE@NYF-B composite could decompose approximately 72.7% of the organic carbon during a 10 h reaction, which was almost two-fold more than that of BiOBr. Meanwhile, a possible charge transfer mechanism is proposed based on the recombination of electron–hole pairs and reactive oxygen species. This work provides a rational hybrid structure photocatalyst for improving photocatalytic performance in the broadband spectrum and provides a new strategy for NIR light utilization. Full article
(This article belongs to the Special Issue Chemical Research on Photosensitive Materials)
Show Figures

Figure 1

Back to TopTop