molecules-logo

Journal Browser

Journal Browser

Synthesis of Bioactive Compounds: Volume II

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Organic Chemistry".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 10441

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania
Interests: cancer therapy; anti-infective drugs; molecular mechanisms; drug synthesis; targeted therapies; bioactive heterocycle synthesis; docking and molecular modelling
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the past few decades, the emergence of new highly pathogenic strains of viruses and microorganisms, such as SARS-CoV-2, drug-resistant tuberculosis and malaria (i.e., superbugs), has presented challenges that require an urgent response. Effective treatment of cancer is another important and unresolved problem. Tumors develop through genetic and epigenetic changes that modify fundamental cellular programs for growth and proliferation, followed by the natural selection of reprogrammed cells that best adapt to the constant fight against human immunity and chemotherapy drugs.

To address these issues, a number of breakthrough synthetic methodologies need to be developed which enable the efficient assembly of new molecules and make it possible to achieve the high variability of substituents necessary for studying structure–biological activity relationships.

This Special Issue aims to gather scientific articles devoted to the synthesis and study of the activity of previously unknown compounds, as well as fully synthetic papers that describe new effective approaches to known biologically active compounds, without further evaluation of biological properties.

Prof. Dr. Brindusa Tiperciuc
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biological activity
  • nature-derived molecules
  • heterocyclic moieties
  • aromatic species
  • structural diversity
  • alkaloids
  • organic synthesis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 9854 KiB  
Article
Synthesis and Antimicrobial Activity of (E)-1-Aryl-2-(1H-tetrazol-5-yl)acrylonitrile Derivatives via [3+2] Cycloaddition Reaction Using Reusable Heterogeneous Nanocatalyst under Microwave Irradiation
by Ayashkanta Nanda, Navneet Kaur, Manvinder Kaur, Fohad Mabood Husain, Haesook Han, Pradip K. Bhowmik and Harvinder Singh Sohal
Molecules 2024, 29(18), 4339; https://doi.org/10.3390/molecules29184339 - 12 Sep 2024
Viewed by 563
Abstract
The magnetically recoverable heterogeneous Fe2O3@cellulose@Mn nanocomposite was synthesized by a stepwise fabrication of Mn nanoparticles on cellulose-modified magnetic Fe2O3 nanocomposites, and the morphology of the nanocomposite was characterized through advanced spectroscopic techniques. This nanocomposite was investigated [...] Read more.
The magnetically recoverable heterogeneous Fe2O3@cellulose@Mn nanocomposite was synthesized by a stepwise fabrication of Mn nanoparticles on cellulose-modified magnetic Fe2O3 nanocomposites, and the morphology of the nanocomposite was characterized through advanced spectroscopic techniques. This nanocomposite was investigated as a heterogeneous catalyst for the synthesis of medicinally important tetrazole derivatives through Knoevenagel condensation between aromatic/heteroaromatic aldehyde and malononitrile followed by [3+2] cycloaddition reaction with sodium azide. Thirteen potent (E)-1-aryl-2-(1H-tetrazol-5-yl)acrylonitrile derivatives are reported in this paper with very high yields (up to 98%) and with excellent purity (as crystals) in a very short period (3 min @ 120 W) using microwave irradiation. The present procedure offers several advantages over recent protocols, including minimal catalyst loading, quick reaction time, and the utilization of an eco-friendly solvent. Furthermore, the synthesized (E)-1-aryl-2-(1H-tetrazol-5-yl)acrylonitrile derivatives (4b, 4c, and 4m) are shown to have excellent resistance against various fungal strains over bacterial strains as compared to the standard drugs Cefixime (4 μg/mL) and Fluconazole (2 μg/mL). Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Graphical abstract

10 pages, 1599 KiB  
Article
Amphetamine-like Deferiprone and Clioquinol Derivatives as Iron Chelating Agents
by Mahmoud El Safadi, Katie A. Wilson, Indigo J. Strudwicke, Megan L. O’Mara, Mohan Bhadbhade, Tristan Rawling and Andrew M. McDonagh
Molecules 2024, 29(17), 4213; https://doi.org/10.3390/molecules29174213 - 5 Sep 2024
Viewed by 605
Abstract
The accumulation of iron in dopaminergic neurons can cause oxidative stress and dopaminergic neuron degeneration. Iron chelation therapy may reduce dopaminergic neurodegeneration, but chelators should be targeted towards dopaminergic cells. In this work, two series of compounds based on 8-hydroxyquinoline and deferiprone, iron [...] Read more.
The accumulation of iron in dopaminergic neurons can cause oxidative stress and dopaminergic neuron degeneration. Iron chelation therapy may reduce dopaminergic neurodegeneration, but chelators should be targeted towards dopaminergic cells. In this work, two series of compounds based on 8-hydroxyquinoline and deferiprone, iron chelators that have amphetamine-like structures, have been designed, synthesized and characterized. Each of these compounds chelated iron ions in aqueous solution. The hydroxyquinoline-based compounds exhibited stronger iron-binding constants than those of the deferiprone derivatives. The hydroxyquinoline-based compounds also exhibited greater free radical scavenging activities compared to the deferiprone derivatives. Molecular dynamics simulations showed that the hydroxyquinoline-based compounds generally bound well within human dopamine transporter cavities. Thus, these compounds are excellent candidates for future exploration as drugs against diseases that are affected by iron-induced dopaminergic neuron damage, such as Parkinson’s disease. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Figure 1

15 pages, 881 KiB  
Article
Halogenated Analogs to Natural A-Type Proanthocyanidins: Evaluation of Their Antioxidant and Antimicrobial Properties and Possible Application in Food Industries
by Antonio Cobo, Alfonso Alejo-Armijo, Daniel Cruz, Joaquín Altarejos, Sofía Salido and Elena Ortega-Morente
Molecules 2024, 29(15), 3622; https://doi.org/10.3390/molecules29153622 - 31 Jul 2024
Viewed by 672
Abstract
A description of new antimicrobial agents suitable for food industries has become necessary, and natural compounds are being considered as promising sources of new active derivatives to be used with the aim of improving food safety. We have previously described desirable antimicrobial and [...] Read more.
A description of new antimicrobial agents suitable for food industries has become necessary, and natural compounds are being considered as promising sources of new active derivatives to be used with the aim of improving food safety. We have previously described desirable antimicrobial and antibiofilm activities against foodborne bacteria by analogs to A-type proanthocyanidins (PACs) with a nitro (NO2) group at carbon 6 of the A-ring. We report herein the synthesis of eight additional analogs with chloro and bromo atoms at the A-ring and the systematic study of their antimicrobial and antioxidant activities in order to evaluate their possible application as biocides or food preservatives, as well as to elucidate new structure–activity relationships. The results from this study show that halogenated analogs to natural A-type proanthocyanidins rise above the nitro derivatives previously reported in their antimicrobial activities. Gram-positive bacteria are the most sensitive to all the analogs and combinations assayed, showing MICs from 10 to 50 μg/mL in most cases, as well as reductions in biofilm formation and the disruption of preformed biofilms of at least 75%. Some structure–activity relationships previously described have also been corroborated. Analogs with just one OH group at the B-ring show better antimicrobial activities than those with two OH groups, and those analogs with two or three OH groups in the whole structure are more active than those with four OH groups. In addition, the analogs with two OH groups at the B-ring and chloro at the A-ring are the most effective when antibiofilm activities are studied, especially at low concentrations. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Graphical abstract

14 pages, 2892 KiB  
Article
Bioactive Naphthoquinone and Phenazine Analogs from the Endophytic Streptomyces sp. PH9030 as α-Glucosidase Inhibitors
by Qingxian Ma, Yani Zhong, Pingzhi Huang, Aijie Li, Ting Jiang, Lin Jiang, Hao Yang, Zhong Wang, Guangling Wu, Xueshuang Huang, Hong Pu and Jianxin Liu
Molecules 2024, 29(15), 3450; https://doi.org/10.3390/molecules29153450 - 23 Jul 2024
Viewed by 718
Abstract
A talented endophytic Streptomyces sp. PH9030 is derived from the medicinal plant Kadsura coccinea (Lem.) A.C. Smith. The undescribed naphthoquinone naphthgeranine G (5) and seven previously identified compounds, 612, were obtained from Streptomyces sp. PH9030. The structure of [...] Read more.
A talented endophytic Streptomyces sp. PH9030 is derived from the medicinal plant Kadsura coccinea (Lem.) A.C. Smith. The undescribed naphthoquinone naphthgeranine G (5) and seven previously identified compounds, 612, were obtained from Streptomyces sp. PH9030. The structure of 5 was identified by comprehensive examination of its HRESIMS, 1D NMR, 2D NMR and ECD data. The inhibitory activities of all the compounds toward α-glucosidase and their antibacterial properties were investigated. The α-glucosidase inhibitory activities of 5, 6, 7 and 9 were reported for the first time, with IC50 values ranging from 66.4 ± 6.7 to 185.9 ± 0.2 μM, as compared with acarbose (IC50 = 671.5 ± 0.2 μM). The molecular docking and molecular dynamics analysis of 5 with α-glucosidase further indicated that it may have a good binding ability with α-glucosidase. Both 9 and 12 exhibited moderate antibacterial activity against methicillin-resistant Staphylococcus aureus, with minimum inhibitory concentration (MIC) values of 16 μg/mL. These results indicate that 5, together with the naphthoquinone scaffold, has the potential to be further developed as a possible inhibitor of α-glucosidase. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Figure 1

14 pages, 2047 KiB  
Article
Assessing the Effects of Thiazole-Carboxamide Derivatives on the Biophysical Properties of AMPA Receptor Complexes as a Potential Neuroprotective Agent
by Mohammad Qneibi, Mohammed Hawash, Sosana Bdir, Mohammad Bdair and Samia Ammar Aldwaik
Molecules 2024, 29(13), 3232; https://doi.org/10.3390/molecules29133232 - 8 Jul 2024
Viewed by 1101
Abstract
An optimal balance between excitatory and inhibitory transmission in the central nervous system provides essential neurotransmission for good functioning of the neurons. In the neurology field, a disturbed balance can lead to neurological diseases like epilepsy, Alzheimer’s, and Autism. One of the critical [...] Read more.
An optimal balance between excitatory and inhibitory transmission in the central nervous system provides essential neurotransmission for good functioning of the neurons. In the neurology field, a disturbed balance can lead to neurological diseases like epilepsy, Alzheimer’s, and Autism. One of the critical agents mediating excitatory neurotransmission is α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors, which are concerned with synaptic plasticity, memory, and learning. An imbalance in neurotransmission finally results in excitotoxicity and neurological pathologies that should be corrected through specific compounds. Hence, the current study will prove to be an evaluation of new thiazole-carboxamide derivatives concerning AMPAR-modulating activity and extended medicinal potential. In the current project, five previously synthesized thiazole-carboxamide derivatives, i.e., TC-1 to TC-5, were used to interact with the AMPARs expressed in HEK293T cells, which overexpress different subunits of the AMPAR. Patch-clamp analysis was carried out while the effect of the drugs on AMPAR-mediated currents was followed with a particular emphasis on the kinetics of inhibition, desensitization, and deactivation. All tested TC compounds, at all subunits, showed potent inhibition of AMPAR-mediated currents, with TC-2 being the most powerful for all subunits. These compounds shifted the receptor kinetics efficiently, mainly enhancing the deactivation rates, and hence acted as a surrogate for their neuroprotective potentials. Additionally, recently published structure–activity relationship studies identified particular substituent groups as necessary for improving the pharmacologic profiles of these compounds. In this regard, thiazole-carboxamide derivatives, particularly those classified as TC-2, have become essential negative allosteric modulators of AMPAR function and potential therapeutics in neurological disturbances underlain by the dysregulation of excitatory neurotransmission. Given their therapeutic effectiveness and safety profiles, these in vivo studies need to be further validated, although computational modeling can be further developed for drug design and selectivity. This will open possibilities for new drug-like AMPAR negative allosteric modulators with applications at the clinical level toward neurology. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Graphical abstract

20 pages, 3281 KiB  
Article
Identification of Benzothiazoles Bearing 1,3,4-Thiadiazole as Antiproliferative Hybrids Targeting VEGFR-2 and BRAF Kinase: Design, Synthesis, BIO Evaluation and In Silico Study
by Wafaa A. Ewes, Samar S. Tawfik, Aya M. Almatary, Mashooq Ahmad Bhat, Hamed W. El-Shafey, Ahmed A. B. Mohamed, Abdullah Haikal, Mohammed A. El-Magd, Abdullah A. Elgazar, Marwa Balaha and Abdelrahman Hamdi
Molecules 2024, 29(13), 3186; https://doi.org/10.3390/molecules29133186 - 4 Jul 2024
Viewed by 1090
Abstract
Cancer remains a leading cause of death worldwide, often resulting from uncontrolled growth in various organs. Protein kinase inhibitors represent an important class of targeted cancer therapies. Recently, the kinases BRAF and VEGFR-2 have shown synergistic effects on tumor progression. Seeking to develop [...] Read more.
Cancer remains a leading cause of death worldwide, often resulting from uncontrolled growth in various organs. Protein kinase inhibitors represent an important class of targeted cancer therapies. Recently, the kinases BRAF and VEGFR-2 have shown synergistic effects on tumor progression. Seeking to develop dual BRAF/VEGFR-2 inhibitors, we synthesized 18 amino-benzothiazole derivatives with structural similarities to reported dual inhibitors. Four compounds—4a, 4f, 4l, and 4r—demonstrated remarkable cytotoxicity, with IC50 values ranging from 3.58 to 15.36 μM, against three cancer cell lines. Furthermore, these compounds showed IC50 values of 38.77–66.22 μM in the case of a normal cell line, which was significantly safer than the reference, sorafenib. Subsequent investigation revealed that compound 4f exhibited the capacity to inhibit the BRAF and VEGFR-2 enzymes, with IC50 values similar to sorafenib (0.071 and 0.194 μM, respectively). Moreover, compound 4f caused G2-M- and S-phase cycle arrest. Molecular modeling demonstrated binding patterns compatible with inhibition for both targets, where 4f exerted the critical interactions in the BRAF site and interacted in the VEGFR-2 site in a manner akin to sorafenib, demonstrating affinity similar to dabrafenib. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Figure 1

14 pages, 1511 KiB  
Article
Enantioselective Synthesis of the Active Sex Pheromone Components of the Female Lichen Moth, Lyclene dharma dharma, and Their Enantiomers
by Yun Zhou, Jianan Wang, Yueru Zhang, Xiaochen Fu, Hongqing Xie, Jinlong Han, Jianhua Zhang, Jiangchun Zhong and Chenggang Shan
Molecules 2024, 29(12), 2918; https://doi.org/10.3390/molecules29122918 - 19 Jun 2024
Viewed by 765
Abstract
The Lichen moth, Lyclene dharma dharma (Arctiidae, Lithosiinae), plays a significant role in forest ecosystem dynamics. A concise and novel method to synthesize the active sex pheromone components, (S)-14-methyloctadecan-2-one ((S)-1), (S)-6-methyloctadecan-2-one (( [...] Read more.
The Lichen moth, Lyclene dharma dharma (Arctiidae, Lithosiinae), plays a significant role in forest ecosystem dynamics. A concise and novel method to synthesize the active sex pheromone components, (S)-14-methyloctadecan-2-one ((S)-1), (S)-6-methyloctadecan-2-one ((S)-2), and their enantiomers has been developed. Key steps in the synthesis include the use of Evans’ chiral auxiliaries, Grignard cross-coupling reactions, hydroboration–oxidation, and Wacker oxidation. The synthesized sex pheromone components hold potential value for studies on communication mechanisms, species identification, and ecological management. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Graphical abstract

14 pages, 2040 KiB  
Article
Synthesis and Photophysical Characterization of Fluorescent Naphtho[2,3-d]thiazole-4,9-Diones and Their Antimicrobial Activity against Staphylococcus Strains
by Masayori Hagimori, Fumiko Hara, Naoko Mizuyama, Shinya Takada, Saki Hayashi, Tamami Haraguchi, Yoshiro Hatanaka, Toshihiro Nagao, Shigemitsu Tanaka, Miki Yoshii and Miyako Yoshida
Molecules 2024, 29(12), 2777; https://doi.org/10.3390/molecules29122777 - 11 Jun 2024
Viewed by 735
Abstract
The chemical reaction of 2-(methylsulfinyl)naphtho[2,3-d]thiazole-4,9-dione (3) using different amines, including benzylamine (4a), morpholine (4b), thiomorpholine (4c), piperidine (4d), and 4-methylpiperazine (4e), produced corresponding new tricyclic naphtho[2,3-d]thiazole–4,9–dione compounds [...] Read more.
The chemical reaction of 2-(methylsulfinyl)naphtho[2,3-d]thiazole-4,9-dione (3) using different amines, including benzylamine (4a), morpholine (4b), thiomorpholine (4c), piperidine (4d), and 4-methylpiperazine (4e), produced corresponding new tricyclic naphtho[2,3-d]thiazole–4,9–dione compounds (5ae) in moderate-to-good yields. The photophysical properties and antimicrobial activities of these compounds (5ae) were then characterized. Owing to the extended π-conjugated system of naphtho[2,3-d]thiazole–4,9–dione skeleton and substituent effect, 5ae showed fluorescence both in solution and in the solid state. The introduction of nitrogen-containing heterocycles at position 2 of the thiazole ring on naphtho[2,3-d]thiazole-4,9-dione led to large bathochromic shifts in solution, and 5be exhibited orange-red fluorescence with emission maxima of over 600 nm in highly polar solvents. Staphylococcus aureus (S. aureus) is a highly pathogenic bacterium, and infection with its antimicrobial-resistant pathogen methicillin-resistant S. aureus (MRSA) results in serious clinical problems. In this study, we also investigated the antimicrobial activities of 5ae against S. aureus, MRSA, and S. epidermidis. Compounds 5c with thiomorpholine group and 5e with 4-methylpiperazine group showed potent antimicrobial activity against these bacteria. These results will lead to the development of new fluorescent dyes with antimicrobial activity in the future. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Figure 1

19 pages, 6703 KiB  
Article
Design, Synthesis, and Antitumor Activity of Isoliquiritigenin Amino Acid Ester Derivatives
by Chi Liu, Xinyue Liu, Qing Ma, Fengyan Su and Enbo Cai
Molecules 2024, 29(11), 2641; https://doi.org/10.3390/molecules29112641 - 3 Jun 2024
Viewed by 681
Abstract
Isoliquiritigenin (ISL) is a chalcone that has shown great potential in the treatment of cancer. However, its relatively weak activity and low water solubility limit its clinical application. In this study, we designed and synthesized 21 amino acid ester derivatives of ISL and [...] Read more.
Isoliquiritigenin (ISL) is a chalcone that has shown great potential in the treatment of cancer. However, its relatively weak activity and low water solubility limit its clinical application. In this study, we designed and synthesized 21 amino acid ester derivatives of ISL and characterized the compounds using 1H NMR and 13C NMR. Among them, compound 9 (IC50 = 14.36 μM) had a better inhibitory effect on human cervical cancer (Hela) than ISL (IC50 = 126.5 μM), and it was superior to the positive drug 5-FU (IC50 = 33.59 μM). The mechanism of the action experiment showed that compound 9 could induce Hela cell apoptosis and autophagy through the PI3K/Akt/mTOR pathway. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Figure 1

28 pages, 7372 KiB  
Article
Are Terminal Alkynes Necessary for MAO-A/MAO-B Inhibition? A New Scaffold Is Revealed
by Panagiou Mavroeidi, Leandros P. Zorba, Nikolaos V. Tzouras, Stavros P. Neofotistos, Nikitas Georgiou, Kader Sahin, Murat Şentürk, Serdar Durdagi, Georgios C. Vougioukalakis and Thomas Mavromoustakos
Molecules 2024, 29(11), 2486; https://doi.org/10.3390/molecules29112486 - 24 May 2024
Viewed by 871
Abstract
A versatile family of quaternary propargylamines was synthesized employing the KA2 multicomponent reaction, through the single-step coupling of a number of amines, ketones, and terminal alkynes. Sustainable synthetic procedures using transition metal catalysts were employed in all cases. The inhibitory activity of [...] Read more.
A versatile family of quaternary propargylamines was synthesized employing the KA2 multicomponent reaction, through the single-step coupling of a number of amines, ketones, and terminal alkynes. Sustainable synthetic procedures using transition metal catalysts were employed in all cases. The inhibitory activity of these molecules was evaluated against human monoaminoxidase (hMAO)-A and hMAO-B enzymes and was found to be significant. The IC50 values for hMAO-B range from 152.1 to 164.7 nM while the IC50 values for hMAO-A range from 765.6 to 861.6 nM. Furthermore, these compounds comply with Lipinski’s rule of five and exhibit no predicted toxicity. To understand their binding properties with the two target enzymes, key interactions were studied using molecular docking, all-atom molecular dynamics (MD) simulations, and MM/GBSA binding free energy calculations. Overall, herein, the reported family of propargylamines exhibits promise as potential treatments for neurodegenerative disorders, such as Parkinson’s disease. Interestingly, this is the first time a propargylamine scaffold bearing an internal alkyne has been reported to show activity against monoaminoxidases. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Figure 1

25 pages, 5588 KiB  
Article
Synthesis, In Vivo Anticonvulsant Activity Evaluation and In Silico Studies of Some Quinazolin-4(3H)-One Derivatives
by Raluca Pele, Gabriel Marc, Cristina Mogoșan, Anamaria Apan, Ioana Ionuț, Brîndușa Tiperciuc, Cristina Moldovan, Cătălin Araniciu, Ilioara Oniga, Adrian Pîrnău, Laurian Vlase and Ovidiu Oniga
Molecules 2024, 29(9), 1951; https://doi.org/10.3390/molecules29091951 - 24 Apr 2024
Cited by 1 | Viewed by 1128
Abstract
Two series, “a” and “b”, each consisting of nine chemical compounds, with 2,3-disubstituted quinazolin-4(3H)-one scaffold, were synthesized and evaluated for their anticonvulsant activity. They were investigated as dual potential positive allosteric modulators of the GABAA receptor at the [...] Read more.
Two series, “a” and “b”, each consisting of nine chemical compounds, with 2,3-disubstituted quinazolin-4(3H)-one scaffold, were synthesized and evaluated for their anticonvulsant activity. They were investigated as dual potential positive allosteric modulators of the GABAA receptor at the benzodiazepine binding site and inhibitors of carbonic anhydrase II. Quinazolin-4(3H)-one derivatives were evaluated in vivo (D1–3 = 50, 100, 150 mg/kg, administered intraperitoneally) using the pentylenetetrazole (PTZ)-induced seizure model in mice, with phenobarbital and diazepam, as reference anticonvulsant agents. The in silico studies suggested the compounds act as anticonvulsants by binding on the allosteric site of GABAA receptor and not by inhibiting the carbonic anhydrase II, because the ligands-carbonic anhydrase II predicted complexes were unstable in the molecular dynamics simulations. The mechanism targeting GABAA receptor was confirmed through the in vivo flumazenil antagonism assay. The pentylenetetrazole experimental anticonvulsant model indicated that the tested compounds, 1a9a and 1b9b, present a potential anticonvulsant activity. The evaluation, considering the percentage of protection against PTZ, latency until the onset of the first seizure, and reduction in the number of seizures, revealed more favorable results for the “b” series, particularly for compound 8b. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Graphical abstract

Review

Jump to: Research

61 pages, 53143 KiB  
Review
Biological Activities of Novel Oleanolic Acid Derivatives from Bioconversion and Semi-Synthesis
by Nahla Triaa, Mansour Znati, Hichem Ben Jannet and Jalloul Bouajila
Molecules 2024, 29(13), 3091; https://doi.org/10.3390/molecules29133091 - 28 Jun 2024
Viewed by 905
Abstract
Oleanolic acid (OA) is a vegetable chemical that is present naturally in a number of edible and medicinal botanicals. It has been extensively studied by medicinal chemists and scientific researchers due to its biological activity against a wide range of diseases. A significant [...] Read more.
Oleanolic acid (OA) is a vegetable chemical that is present naturally in a number of edible and medicinal botanicals. It has been extensively studied by medicinal chemists and scientific researchers due to its biological activity against a wide range of diseases. A significant number of researchers have synthesized a variety of analogues of OA by modifying its structure with the intention of creating more potent biological agents and improving its pharmaceutical properties. In recent years, chemical and enzymatic techniques have been employed extensively to investigate and modify the chemical structure of OA. This review presents recent advancements in medical chemistry for the structural modification of OA, with a special focus on the biotransformation, semi-synthesis and relationship between the modified structures and their biopharmaceutical properties. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds: Volume II)
Show Figures

Graphical abstract

Back to TopTop