molecules-logo

Journal Browser

Journal Browser

Design, Synthesis and Application of Heterogeneous Catalysts

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: closed (30 April 2024) | Viewed by 1504

Special Issue Editors

Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Jinhua, China
Interests: heterogeneous catalysis; oxidation; hydrogenation; nanocatalyst; metal oxides; fine chemicals synthesis

E-Mail Website
Guest Editor
Hangzhou Institute of Advanced studies, Zhejiang Normal University, Jinhua, China
Interests: heterogeneous catalysis; selective hydrogenation; non-precious metal catalyst; fine chemicals synthesis

E-Mail Website
Guest Editor
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy Sciences, Dalian 116023, China
Interests: heterogeneous catalysis; nanocatalyst; single-atom catalysis; strong metal-support interaction; clean energy conversion and utilization

Special Issue Information

Dear Colleagues,

Over the last few decades, increasing number of researches have focused on design and synthesis of heterogeneous catalysts, since over 90% of industrial processes for chemical synthesis use heterogeneous systems. In comparison with traditional homogeneous catalysts, heterogeneous catalysts are quite stable and easy to separate from the reaction system. However, due to the multiple components of heterogeneous systems, the  reactivity and selectivity of catalysts are sometimes low. Presently, heterogeneous catalyst have been widely used in various types of catalytic process, including thermocatalysis, electro-catalysis, photocatalysis and biocatalysis. Given the widespread use of heterogeneous catalysts and the growing needs of environmental protection and green chemistry, it is necessary to develop good-to-excellent catalysts for various reactions and investigate how heterogeneous catalysts work with good performacens.  

This Special Issue will cover topics including, but not restricted to, the recent advances in heterogeneous catalysis for new energy catalysis, biomass transformation and fine chemicals synthesis by using supported metal catalysts or mixed metal oxides. Short communications, full research articles and review articles are all respectfully welcomed to submit in the Specisl Issue.    

Dr. Yuan Tan
Dr. Xingkun Chen
Prof. Dr. Botao Qiao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • heterogeneous catalyst
  • energy catalysis
  • metal catalyst
  • metal oxides
  • nanocatalyst
  • hydrogenation
  • oxidation
  • characterization

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 5297 KiB  
Article
Preparation of Hydrophobic Au Catalyst and Application in One-Step Oxidative Esterification of Methacrolein to Methyl Methacrylate
by Yanxia Zheng, Yubo Yang, Yixuan Li, Lu Cai, Xuanjiao Zhao, Bing Xue, Yuchao Li, Jiutao An and Jialiang Zhang
Molecules 2024, 29(8), 1854; https://doi.org/10.3390/molecules29081854 - 19 Apr 2024
Viewed by 396
Abstract
The water produced during the oxidative esterification reaction occupies the active sites and reduces the activity of the catalyst. In order to reduce the influence of water on the reaction system, a hydrophobic catalyst was prepared for the one-step oxidative esterification of methylacrolein [...] Read more.
The water produced during the oxidative esterification reaction occupies the active sites and reduces the activity of the catalyst. In order to reduce the influence of water on the reaction system, a hydrophobic catalyst was prepared for the one-step oxidative esterification of methylacrolein (MAL) and methanol. The catalyst was synthesized by loading the active component Au onto ZnO using the deposition–precipitation method, followed by constructing the silicon shell on Au/ZnO using tetraethoxysilane (TEOS) to introduce hydrophobic groups. Trimethylchlorosilane (TMCS) was used as a hydrophobic modification reagent to prepare hydrophobic catalysts, which exhibited a water droplet contact angle of 111.2°. At a temperature of 80 °C, the hydrophobic catalyst achieved a high MMA selectivity of over 95%. The samples were characterized using XRD, N2 adsorption, ICP, SEM, TEM, UV-vis, FT-IR, XPS, and water droplet contact angle measurements. Kinetic analysis revealed an activation energy of 22.44 kJ/mol for the hydrophobic catalyst. Full article
(This article belongs to the Special Issue Design, Synthesis and Application of Heterogeneous Catalysts)
Show Figures

Graphical abstract

18 pages, 3961 KiB  
Article
Upgrading Pyrolytic Residue from End-of-Life Tires to Efficient Heterogeneous Catalysts for the Conversion of Glycerol to Acetins
by Anna Malaika, Jolanta Kowalska-Kuś, Klaudia Końska, Karolina Ptaszyńska, Aldona Jankowska, Agnieszka Held, Krzysztof Wróblewski and Mieczysław Kozłowski
Molecules 2023, 28(24), 8137; https://doi.org/10.3390/molecules28248137 - 17 Dec 2023
Viewed by 832
Abstract
Recovered carbon blacks (rCBs) produced from end-of-life tires using pyrolysis were transformed into solid acid catalysts for the synthesis of acetins, i.e., products with a wide spectrum of practical applications. Tuning the chemical properties of the surface of samples and introducing specific functional [...] Read more.
Recovered carbon blacks (rCBs) produced from end-of-life tires using pyrolysis were transformed into solid acid catalysts for the synthesis of acetins, i.e., products with a wide spectrum of practical applications. Tuning the chemical properties of the surface of samples and introducing specific functional groups on the rCBs were achieved through carbon functionalization with concentrated H2SO4. The initial and modified rCBs were thoroughly characterized using techniques such as elemental analysis, potentiometric back titration, thermogravimetric technique, scanning and transmission microscopy, X-ray photoelectron spectroscopy, etc. The catalytic activities of the samples were measured via batch mode glycerol acetylation performed at 110 °C and compared to the catalytic performance of the functionalized commercial carbon black. The modified rCBs were found to show a significant catalytic effect in the tested reaction, giving high glycerol conversions (above 95%) and satisfactory combined yields of diacetins and triacetin (~72%) within 4 h; this behavior was attributed to the presence of -SO3H moieties on the surface of functionalized rCBs. The reusability tests indicated that the modified samples were catalytically stable in subsequent acetylation runs. The obtained results evidenced the feasibility of using end-of-life tires for the production of effective acid catalysts for glycerol valorization processes. Full article
(This article belongs to the Special Issue Design, Synthesis and Application of Heterogeneous Catalysts)
Show Figures

Graphical abstract

Back to TopTop