molecules-logo

Journal Browser

Journal Browser

Tracing the Fate of Microplastics from Daily Activities to Environments

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Green Chemistry".

Deadline for manuscript submissions: 31 July 2024 | Viewed by 4731

Special Issue Editors

Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
Interests: microplastics analysis; microplastics controlling; microplastics monitoring

E-Mail Website
Guest Editor
Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
Interests: microplastics controlling; water and wastewater treatment; desalination; membrane process
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Due to the intensive consumption of plastics as part of daily activities, microplastic generation has immerged as an epidemic issue in environments. Considerable amounts of microplastics are generated from plastic waste via the degradation process during its disposal pathway and are even released via human activities. Those MPs negatively affect the environment and potentially human health. Therefore, the fate of microplastics should be systematically studied based on monitoring the abundance of MPs in the environment and studies of its degradation in factors mainly affecting its physicochemical properties and fragmentation process.

In this Special Issue, monitoring microplastics in the environment (water, air, soil) and further from daily products will be considered. Studies on the MP treatment process and its identification using various methodologies are also welcomed. In-depth studies on the degradation of MPs under various aging factors are encouraged to be submitted to this Special Issue.

Dr. Jieun Lee
Prof. Dr. Sanghyun Jeong
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microplastics
  • microplastics monitoring
  • microplastics fate
  • nanoplastics
  • microplastics degradation

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 4844 KiB  
Article
Effect of Copper Antifouling Paint on Marine Degradation of Polypropylene: Uneven Distribution of Microdebris between Nagasaki Port and Goto Island, Japan
by Hisayuki Nakatani, Kaito Yamashiro, Taishi Uchiyama, Suguru Motokucho, Anh Thi Ngoc Dao, Hee-Jin Kim, Mitsuharu Yagi and Yusaku Kyozuka
Molecules 2024, 29(5), 1173; https://doi.org/10.3390/molecules29051173 - 06 Mar 2024
Viewed by 613
Abstract
Microplastics (MP) encompass not only plastic products but also paint particles. Marine microdebris, including MP, was retrieved from five sampling stations spanning Nagasaki-Goto island and was classified into six types, primarily consisting of MP (A), Si-based (B), and Cu-based (C) paint particles. Type-A [...] Read more.
Microplastics (MP) encompass not only plastic products but also paint particles. Marine microdebris, including MP, was retrieved from five sampling stations spanning Nagasaki-Goto island and was classified into six types, primarily consisting of MP (A), Si-based (B), and Cu-based (C) paint particles. Type-A particles, i.e., MP, were exceedingly small, with 74% of them having a long diameter of 25 µm or less. The vertical distribution of type C, containing cuprous oxide, exhibited no depth dependence, with its dominant size being less than 7 μm. It was considered that the presence of type C was associated with a natural phenomenon of MP loss. To clarify this, polypropylene (PP) samples containing cuprous oxide were prepared, and their accelerated degradation behavior was studied using a novel enhanced degradation method employing a sulfate ion radical as an initiator. Infrared spectroscopy revealed the formation of a copper soap compound in seawater. Scanning electron microscopy/energy-dispersive X-ray spectroscopy analysis indicated that the chemical reactions between Cl and cuprous oxide produced Cu+ ions. The acceleration of degradation induced by the copper soap formed was studied through the changes in the number of PP chain scissions, revealing that the presence of type-C accelerated MP degradation. Full article
Show Figures

Graphical abstract

12 pages, 3931 KiB  
Article
Study on the Thermal Stabilizing Process of Layered Double Hydroxides in PVC Resin
by Zhi Rao, Kaitao Li, Pingli Liu, Yanjun Lin and Xiang Lyu
Molecules 2023, 28(23), 7792; https://doi.org/10.3390/molecules28237792 - 27 Nov 2023
Viewed by 788
Abstract
Poly(vinyl chloride) (PVC) is widely used in various fields and requires the use of thermal stabilizers to enhance its thermal stability during processing because of its poor thermal stability. Layered double hydroxides (LDHs) are widely considered to be one kind of highly efficient [...] Read more.
Poly(vinyl chloride) (PVC) is widely used in various fields and requires the use of thermal stabilizers to enhance its thermal stability during processing because of its poor thermal stability. Layered double hydroxides (LDHs) are widely considered to be one kind of highly efficient and environmentally friendly PVC thermal stabilizer. To investigate the thermal stabilizing process of layered double hydroxides (LDHs) in PVC resin, PVC and MgAl-LDHs powders with different interlayer anions (CO32−, Cl, and NO3) were physically mixed and aged at 180 °C. The structure of LDHs at different aging times was studied using XRD, SEM, and FT-IR. The results show that the thermal stabilizing process of LDHs on PVC mainly has three stages. In the first stage, the layers of LDHs undergo a reaction with HCl, which is released during the thermal decomposition of PVC. Subsequently, the ion exchange process occurs between Cl and interlayer CO32−, resulting in the formation of MgAl-Cl-LDHs. Finally, the layers of MgAl-Cl-LDHs react with HCl slowly. During the thermal stabilizing process of MgAl-Cl-LDHs, the peak intensity of XRD reduces slightly, and no new XRD peak emerges. It indicates that only the first step happens for MgAl-Cl-LDHs. The TG-DTA analysis of LDHs indicates that the interaction of LDHs with different interlayer anions has the following order: NO3 < CO32− < Cl, according to the early coloring in the thermal aging test of PVC composites. The results of the thermal aging tests suggest that LDHs with a weak interaction between interlayer anions and layers can enhance the early stability of PVC significantly. Furthermore, the thermal aging test demonstrates that LDHs with high HCl absorption capacities exhibit superior long-term stabilizing effects on PVC resin. This finding provides a valuable hint for designing an LDHs/PVC resin with a novel structure and excellent thermal stability. Full article
Show Figures

Figure 1

13 pages, 2640 KiB  
Article
Microplastics’ Shape and Morphology Analysis in the Presence of Natural Organic Matter Using Flow Imaging Microscopy
by Soyoun Kim, Yejin Hyeon and Chanhyuk Park
Molecules 2023, 28(19), 6913; https://doi.org/10.3390/molecules28196913 - 03 Oct 2023
Cited by 1 | Viewed by 1280
Abstract
Ubiquitous microplastics in urban waters have raised substantial public concern due to their high chemical persistence, accumulative effects, and potential adverse effects on human health. Reliable and standardized methods are urgently needed for the identification and quantification of these emerging environmental pollutants in [...] Read more.
Ubiquitous microplastics in urban waters have raised substantial public concern due to their high chemical persistence, accumulative effects, and potential adverse effects on human health. Reliable and standardized methods are urgently needed for the identification and quantification of these emerging environmental pollutants in wastewater treatment plants (WWTPs). In this study, we introduce an innovative rapid approach that employs flow imaging microscopy (FlowCam) to simultaneously identify and quantify microplastics by capturing high-resolution digital images. Real-time image acquisition is followed by semi-automated classification using customized libraries for distinct polyethylene (PE) and polystyrene (PS) microplastics. Subsequently, these images are subjected to further analysis to extract precise morphological details of microplastics, providing insights into their behavior during transport and retention within WWTPs. Of particular significance, a systematic investigation was conducted to explore how the presence of natural organic matter (NOM) in WWTPs affects the accuracy of the FlowCam’s measurement outputs for microplastics. It was observed that varying concentrations of NOM induced a more curled shape in microplastics, indicating the necessity of employing pre-treatment procedures to ensure accurate microplastic identification when utilizing the FlowCam. These observations offer valuable new perspectives and potential solutions for designing appropriate treatment technologies for removing microplastics within WWTPs. Full article
Show Figures

Figure 1

14 pages, 5053 KiB  
Article
Complementary Analysis for Undetectable Microplastics from Contact Lenses to Aquatic Environments via Fourier Transform Infrared Spectroscopy
by Jieun Lee, Yejin Lee, Jeonghyeon Lee, Minseong Kang and Sanghyun Jeong
Molecules 2023, 28(9), 3713; https://doi.org/10.3390/molecules28093713 - 25 Apr 2023
Cited by 2 | Viewed by 1595
Abstract
Although microplastics (MPs) are intrinsically toxic and function as vectors for organic micropollutants, their discharge from wastewater treatment plant effluents and human activity remains unknown owing to the limitations of detection and treatment technologies. It is imperative to quantify MPs from human activities [...] Read more.
Although microplastics (MPs) are intrinsically toxic and function as vectors for organic micropollutants, their discharge from wastewater treatment plant effluents and human activity remains unknown owing to the limitations of detection and treatment technologies. It is imperative to quantify MPs from human activities involving the consumption of various plastic products. This study warns that contact lenses can generate MPs and nanoplastics (NPs) after being discharged into aquatic environments. Identification via micro-Fourier transform infrared spectroscopy revealed that the fragmented particles (from a few tens to a few hundred micrometres) could not be detected as poly(2-hydroxyl methacrylate), the component of contact lenses, owing to changes in its chemical properties. After the degradation process, the median size of the contact lens particles decreased from 313 to 85 µm. Approximately 300,600 g of contact lens waste is discharged into sewage systems daily in the United States of America (USA), where 45 million people wear contact lenses and throw away one-fifth of them every day. Contact lens waste (1 g) has the potential to release 5653.3–17,773.3 particles of MPs. This implies that the currently reported MP amounts in the environmental matrix exclude significant amounts of MPs and NPs from discharged contact lenses. The identification method should be examined, and a registration of the disposal process should be established. Full article
Show Figures

Graphical abstract

Back to TopTop