molecules-logo

Journal Browser

Journal Browser

Recent Advances in Food and Natural Product Analysis

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Analytical Chemistry".

Deadline for manuscript submissions: closed (29 February 2020) | Viewed by 50401

Special Issue Editors


E-Mail Website
Guest Editor
Deakin University, Burwood, Australia
Interests: food chemistry; flavour science; gas chromatography, multidimensional gas chromatography; mass spectrometry, sample preparation

Special Issue Information

Dear Colleagues,

According to its definition, a “nutrient” has been considered for decades “a substance that an organism must obtain from its surroundings for growth and the sustenance of life”. More recently, the term has evolved towards a more “comprehensive” meaning, including not only organic (carbohydrates, proteins, lipids, vitamins) and inorganic nutrients (water, oxygen, minerals) present in food but also bioactive non-nutrients, anti-nutrients, toxicants and contaminants. Food chemistry is committed to the assessment of food quality and authenticity, the control of a technological process, the determination of nutritional values and the detection of molecules with possible beneficial or toxic effects on human health. In this regard, analytical methods should allow the determination of the main components of food samples but can also be selective and sensitive enough to determine minor components. The elucidation of antioxidants in food and natural products represents a challenge for understanding the molecular forms responsible for the health-related properties attributed to them. As a consequence, a salient task of food chemistry consists in the continuous improvement and development of analytical methodologies. This Special Issue aims to collect papers dealing with the characterization of bioactive molecules in food and natural products in order to provide an updated overview of the state of the art in antioxidant analysis; moreover, papers describing recent developments in both extraction and qualitative–quantitative determination of bioactive molecules will be especially welcome.

Assoc. Prof. Robert Shellie
Prof. Francesco Cacciola
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Food analysis
  • Antioxidants
  • Natural products
  • Chromatography
  • Spectroscopy
  • Mass spectrometry
  • Extraction
  • Sample preparation

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 4478 KiB  
Article
Climate and Processing Effects on Tea (Camellia sinensis L. Kuntze) Metabolome: Accurate Profiling and Fingerprinting by Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry
by Federico Stilo, Giulia Tredici, Carlo Bicchi, Albert Robbat, Jr., Joshua Morimoto and Chiara Cordero
Molecules 2020, 25(10), 2447; https://doi.org/10.3390/molecules25102447 - 24 May 2020
Cited by 22 | Viewed by 3806
Abstract
This study applied an untargeted–targeted (UT) fingerprinting approach, based on comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOF MS), to assess the effects of rainfall and temperature (both seasonal and elevational) on the tea metabolome. By this strategy, the same compound found in multiple [...] Read more.
This study applied an untargeted–targeted (UT) fingerprinting approach, based on comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOF MS), to assess the effects of rainfall and temperature (both seasonal and elevational) on the tea metabolome. By this strategy, the same compound found in multiple samples need only to be identified once, since chromatograms and mass spectral features are aligned in the data analysis process. Primary and specialized metabolites of leaves from two Chinese provinces, Yunnan (pu′erh) and Fujian (oolong), and a farm in South Carolina (USA, black tea) were studied. UT fingerprinting provided insight into plant metabolism activation/inhibition, taste and trigeminal sensations, and antioxidant properties, not easily attained by other analytical approaches. For example, pu′erh and oolong contained higher relative amounts of amino acids, organic acids, and sugars. Conversely, black tea contained less of all targeted compounds except fructose and glucose, which were more similar to oolong tea. Findings revealed compounds statistically different between spring (pre-monsoon) and summer (monsoon) in pu′erh and oolong teas as well as compounds that exhibited the greatest variability due to seasonal and elevational differences. The UT fingerprinting approach offered unique insights into how differences in growing conditions and commercial processing affect the nutritional benefits and sensory characteristics of tea beverages. Full article
(This article belongs to the Special Issue Recent Advances in Food and Natural Product Analysis)
Show Figures

Graphical abstract

12 pages, 2542 KiB  
Article
Determination of the Metabolite Content of Brassica juncea Cultivars Using Comprehensive Two-Dimensional Liquid Chromatography Coupled with a Photodiode Array and Mass Spectrometry Detection
by Katia Arena, Francesco Cacciola, Laura Dugo, Paola Dugo and Luigi Mondello
Molecules 2020, 25(5), 1235; https://doi.org/10.3390/molecules25051235 - 09 Mar 2020
Cited by 30 | Viewed by 3574
Abstract
Plant-based foods are characterized by significant amounts of bioactive molecules with desirable health benefits beyond basic nutrition. The Brassicaceae (Cruciferae) family consists of 350 genera; among them, Brassica is the most important one, which includes some crops and species of great worldwide economic [...] Read more.
Plant-based foods are characterized by significant amounts of bioactive molecules with desirable health benefits beyond basic nutrition. The Brassicaceae (Cruciferae) family consists of 350 genera; among them, Brassica is the most important one, which includes some crops and species of great worldwide economic importance. In this work, the metabolite content of three different cultivars of Brassica juncea, namely ISCI Top, “Broad-leaf,” and ISCI 99, was determined using comprehensive two-dimensional liquid chromatography coupled with a photodiode array and mass spectrometry detection. The analyses were carried out under reversed-phase conditions in both dimensions, using a combination of a 250-mm microbore cyano column and a 50-mm RP-Amide column in the first and second dimension (2D), respectively. A multi (three-step) segmented-in-fraction gradient for the 2D separation was advantageously investigated here for the first time, leading to the identification of 37 metabolites. In terms of resolving power, orthogonality values ranged from 62% to 69%, whereas the corrected peak capacity values were the highest for B. juncea ISCI Top (639), followed by B. juncea “Broad-leaf” (502). Regarding quantification, B. juncea cv. “Broad-leaf” presented the highest flavonoid content (1962.61 mg/kg) followed by B. juncea cv. ISCI Top (1002.03 mg/kg) and B. juncea cv. ISCI 99 (211.37 mg/kg). Full article
(This article belongs to the Special Issue Recent Advances in Food and Natural Product Analysis)
Show Figures

Figure 1

19 pages, 2212 KiB  
Article
Exploration of Rapid Evaporative-Ionization Mass Spectrometry as a Shotgun Approach for the Comprehensive Characterization of Kigelia Africana (Lam) Benth. Fruit
by Katia Arena, Francesca Rigano, Domenica Mangraviti, Francesco Cacciola, Francesco Occhiuto, Laura Dugo, Paola Dugo and Luigi Mondello
Molecules 2020, 25(4), 962; https://doi.org/10.3390/molecules25040962 - 20 Feb 2020
Cited by 15 | Viewed by 3821
Abstract
Rapid evaporative-ionization mass spectrometry (REIMS) coupled with an electroknife as a sampling device was recently employed in many application fields to obtain a rapid characterization of different samples without any need for extraction or cleanup procedures. In the present research, REIMS was used [...] Read more.
Rapid evaporative-ionization mass spectrometry (REIMS) coupled with an electroknife as a sampling device was recently employed in many application fields to obtain a rapid characterization of different samples without any need for extraction or cleanup procedures. In the present research, REIMS was used to obtain a metabolic profiling of the Kigelia africana fruit, thus extending the applicability of such a technique to the investigation of phytochemical constituents. In particular, the advantages of REIMS linked to a typical electrosurgical handpiece were applied for a comprehensive screening of this botanical species, by exploiting the mass accuracy and tandem MS capabilities of a quadrupole-time of flight analyzer. Then, 78 biomolecules were positively identified, including phenols, fatty acids and phospholipids. In the last decade, Kigelia africana (Lam.) Benth. fruit has attracted special interest for its drug-like properties, e.g., its use for infertility treatments and as anti-tumor agent, as well as against fungal and bacterial infections, diabetes, and inflammatory processes. Many of these properties are currently correlated to the presence of phenolic compounds, also detected in the present study, while the native lipid composition is here reported for the first time and could open new directions in the evaluation of therapeutic activity. Full article
(This article belongs to the Special Issue Recent Advances in Food and Natural Product Analysis)
Show Figures

Figure 1

20 pages, 1636 KiB  
Article
Analysis of Phospholipids, Lysophospholipids, and Their Linked Fatty Acyl Chains in Yellow Lupin Seeds (Lupinus luteus L.) by Liquid Chromatography and Tandem Mass Spectrometry
by Cosima Damiana Calvano, Mariachiara Bianco, Giovanni Ventura, Ilario Losito, Francesco Palmisano and Tommaso R.I. Cataldi
Molecules 2020, 25(4), 805; https://doi.org/10.3390/molecules25040805 - 13 Feb 2020
Cited by 23 | Viewed by 3933
Abstract
Hydrophilic interaction liquid chromatography (HILIC) and electrospray ionization (ESI) coupled to either Fourier-transform (FT) orbital-trap or linear ion-trap tandem mass spectrometry (LIT-MS/MS) was used to characterize the phospholipidome of yellow lupin (Lupinus luteus) seeds. Phosphatidylcholines (PC) were the most abundant species [...] Read more.
Hydrophilic interaction liquid chromatography (HILIC) and electrospray ionization (ESI) coupled to either Fourier-transform (FT) orbital-trap or linear ion-trap tandem mass spectrometry (LIT-MS/MS) was used to characterize the phospholipidome of yellow lupin (Lupinus luteus) seeds. Phosphatidylcholines (PC) were the most abundant species (41 ± 6%), which were followed by lyso-forms LPC (30 ± 11%), phosphatidylethanolamines (PE, 13 ± 4%), phosphatidylglycerols (PG, 5.1 ± 1.7%), phosphatidic acids (PA, 4.9 ± 1.8%), phosphatidylinositols (PI, 4.7 ± 1.1%), and LPE (1.2 ± 0.5%). The occurrence of both isomeric forms of several LPC and LPE was inferred by a well-defined fragmentation pattern observed in negative ion mode. An unprecedented characterization of more than 200 polar lipids including 52 PC, 42 PE, 42 PA, 35 PG, 16 LPC, 13 LPE, and 10 PI, is reported. The most abundant fatty acids (FA) as esterified acyl chains in PL were 18:1 (oleic), 18:2 (linoleic), 16:0 (palmitic), and 18:3 (linolenic) with relatively high contents of long fatty acyl chains such as 22:0 (behenic), 24:0 (lignoceric), 20:1 (gondoic), and 22:1 (erucic). Their occurrence was confirmed by reversed-phase (RP) LC-ESI-FTMS analysis of a chemically hydrolyzed sample extract in acid conditions at 100 °C for 45 min. Full article
(This article belongs to the Special Issue Recent Advances in Food and Natural Product Analysis)
Show Figures

Graphical abstract

15 pages, 1800 KiB  
Article
A Method to Study the Distribution Patterns for Metabolites in Xylem and Phloem of Spatholobi Caulis
by Yuqi Mei, Lifang Wei, Chuan Chai, Lisi Zou, Xunhong Liu, Jiali Chen, Mengxia Tan, Chengcheng Wang, Zhichen Cai, Furong Zhang and Shengxin Yin
Molecules 2020, 25(1), 167; https://doi.org/10.3390/molecules25010167 - 31 Dec 2019
Cited by 17 | Viewed by 2697
Abstract
Spatholobi Caulis (SC), the vine stem of Spatholobus suberectus Dunn, is a widely used traditional Chinese medicine (TCM) for the treatment of blood stasis syndrome and related diseases. Xylem and phloem are the main structures of SC and the color of xylem in [...] Read more.
Spatholobi Caulis (SC), the vine stem of Spatholobus suberectus Dunn, is a widely used traditional Chinese medicine (TCM) for the treatment of blood stasis syndrome and related diseases. Xylem and phloem are the main structures of SC and the color of xylem in SC is red brown or brown while the phloem with resin secretions is reddish brown to dark brown. They are alternately arranged in a plurality of concentric or eccentric rings. In order to investigate the distribution patterns of metabolites in xylem and phloem of SC, an analytical method based on UFLC–QTRAP–MS/MS was established for simultaneous determination of 22 constituents including four flavanols, nine isoflavones, two flavonols, two dihydroflavones, one flavanonol, one chalcone, one pterocarpan, one anthocyanidin and one phenolic acid in the samples (xylem and phloem) from Laos. Furthermore, according to the contents of 22 constituents, heat map, principal components analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS–DA) and t–test were used to evaluate the samples and discover the differences between xylem and phloem of SC. The results indicated that the measured ingredients in xylem and phloem were significantly different. To be specific, the contents of flavonoids in xylem were higher than that in phloem, while the content of protocatechuic acid showed a contrary tendency. This study will not only reveal the distribution patterns of metabolites in xylem and phloem of SC but also facilitate further study on their quality formation. Full article
(This article belongs to the Special Issue Recent Advances in Food and Natural Product Analysis)
Show Figures

Figure 1

15 pages, 3497 KiB  
Article
Rapid Characterization and Discovery of Chemical Markers for Discrimination of Xanthii Fructus by Gas Chromatography Coupled to Mass Spectrometry
by Hayoung Kim, Youngae Jung, So Hyeon Jeon, Geum-Sook Hwang and Yun Gyong Ahn
Molecules 2019, 24(22), 4079; https://doi.org/10.3390/molecules24224079 - 11 Nov 2019
Cited by 4 | Viewed by 2723
Abstract
Xanthii Fructus (XF) is known as a medicinal plant. It has been used as a traditional medicine because of its high biological efficacy. However, there have been few comprehensive studies on the specific chemical composition of the plant and consequently, the information is [...] Read more.
Xanthii Fructus (XF) is known as a medicinal plant. It has been used as a traditional medicine because of its high biological efficacy. However, there have been few comprehensive studies on the specific chemical composition of the plant and consequently, the information is lacking for the mechanism of the natural product metabolites in humans. In this study, an efficient analytical method to characterize and discriminate two species of Xanthii Fructus (Xanthium canadense Mill. and Xanthium sibiricum Patrin ex Widder) was established. Volatile organic compounds (VOCs), polar metabolites, and fatty acids were classified by integrated sample preparation, which allowed a broad range for the detection of metabolites simultaneously. Gas chromatography-mass spectrometry (GC-MS) followed by a multivariate statistical analysis was employed to characterize the chemical compositions and subsequently to discriminate between the two species. The results demonstrate that the two species possess obviously diverse chemical characteristics of three different classifications, and discriminant analysis was successfully applied to a number of chemical markers that could be used for the discrimination of the two species. Additional quantitative results for the selected chemical markers consistently showed significant differences between the two species. Full article
(This article belongs to the Special Issue Recent Advances in Food and Natural Product Analysis)
Show Figures

Graphical abstract

14 pages, 1638 KiB  
Article
Dynamic Variations in Multiple Bioactive Constituents under Salt Stress Provide Insight into Quality Formation of Licorice
by Chengcheng Wang, Lihong Chen, Zhichen Cai, Cuihua Chen, Zixiu Liu, Xunhong Liu, Lisi Zou, Jiali Chen, Mengxia Tan, Lifang Wei and Yuqi Mei
Molecules 2019, 24(20), 3670; https://doi.org/10.3390/molecules24203670 - 11 Oct 2019
Cited by 16 | Viewed by 2314
Abstract
The demand for licorice and its natural product derivatives in domestic and foreign market is considerably huge. The core production areas of licorice are covered with salinity and drought land in northwestern China. Studies have shown that suitable environmental stress can promote the [...] Read more.
The demand for licorice and its natural product derivatives in domestic and foreign market is considerably huge. The core production areas of licorice are covered with salinity and drought land in northwestern China. Studies have shown that suitable environmental stress can promote the accumulation of glycyrrhizin and liquiritin to improve its quality as medicinal materials. However, there are few reports on other bioactive constituents of licorice, not to mention their dynamic accumulation under stressed conditions. To explore the quality formation of licorice from the perspective of salt influence, a reliable method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC–MS/MS) was established for simultaneous determination of sixteen bioactive constituents, including triterpenoids, flavonoids, chalcones and their glycosides. Physiological experiments were performed to investigate salt tolerance of licorice under different salinity treatments. The expressions of crucial genes (bAS and CHS), key enzymes of triterpenoid and flavonoid synthesis, were also tested by qRT-PCR. Our study found that 50 mM NaCl treatment (low stress) was the most favorable to promote the accumulation of bioactive constituents in the long term, without harming the plants. Flavonoid accumulation of non-stressed and low-stressed groups became different in the initial synthesis stage, and glycosyltransferases may have great influence on their downstream synthesis. Furthermore, bAS and CHS also showed higher levels in low-stressed licorice at harvest time. This work provides valuable information on dynamic variations in multiple bioactive constituents in licorice treated by salt and insight into its quality formation under stressed conditions. Full article
(This article belongs to the Special Issue Recent Advances in Food and Natural Product Analysis)
Show Figures

Figure 1

15 pages, 4222 KiB  
Article
Supercritical Carbon Dioxide (scCO2) Extraction of Phenolic Compounds from Lavender (Lavandula angustifolia) Flowers: A Box-Behnken Experimental Optimization
by Katarzyna Tyśkiewicz, Marcin Konkol and Edward Rój
Molecules 2019, 24(18), 3354; https://doi.org/10.3390/molecules24183354 - 15 Sep 2019
Cited by 17 | Viewed by 3544
Abstract
Due to their numerous health benefits associated with various diseases and anti-oxidation properties, the phenolic compounds collectively referred to as phytochemicals have attracted a lot of interest, however, a single extraction method for polyphenols has not been developed yet. Supercritical fluid extraction, a [...] Read more.
Due to their numerous health benefits associated with various diseases and anti-oxidation properties, the phenolic compounds collectively referred to as phytochemicals have attracted a lot of interest, however, a single extraction method for polyphenols has not been developed yet. Supercritical fluid extraction, a green extraction method, provides the final product without organic solvent residues. In this work the extraction of lavender was performed using supercritical carbon dioxide. A statistical experimental design based on the Box-Behnken (B-B) method was planned, and the extraction yields and total phenolic contents were measured for three different variables: pressure, temperature and extraction time. The ranges were 200–300 bar, 40–60 °C and 15–45 min. The extracts yields from scCO2 extraction were in the range of 4.3–9.2 wt.%. The highest yield (9.2 wt.%) was achieved at a temperature of 60 °C under the pressure of 250 bar after 45 min. It also corresponded to the highest total phenolic content (10.17 mg GAE/g extract). Based on the study, the statistically generated optimal extraction conditions to obtain the highest total phenolic compounds concentration from flowers of Lavandula angustifolia were a temperature of 54.5 °C, pressure of 297.9 bar, and the time of 45 min. Based on the scavenging activity percentage (AA%) of scCO2 extracts, it is concluded that the increase of extraction pressure had a positive influence on the increase of AA% values. Full article
(This article belongs to the Special Issue Recent Advances in Food and Natural Product Analysis)
Show Figures

Figure 1

17 pages, 919 KiB  
Article
Characterization of the Key Aroma Compounds in Three Truffle Varieties from China by Flavoromics Approach
by Tao Feng, Mengzhu Shui, Shiqing Song, Haining Zhuang, Min Sun and Lingyun Yao
Molecules 2019, 24(18), 3305; https://doi.org/10.3390/molecules24183305 - 11 Sep 2019
Cited by 38 | Viewed by 4187
Abstract
The volatile compounds of three different fresh-picked truffle varieties (Tuber sinensis, T1, Tuber sinoalbidum, T2 and Tuber sinoexcavatum, T3) were extracted by headspace solid-phase microextraction (HS-SPME). Separation and identification of volatile components and sulfur compounds were investigated by gas [...] Read more.
The volatile compounds of three different fresh-picked truffle varieties (Tuber sinensis, T1, Tuber sinoalbidum, T2 and Tuber sinoexcavatum, T3) were extracted by headspace solid-phase microextraction (HS-SPME). Separation and identification of volatile components and sulfur compounds were investigated by gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC–MS) and gas chromatography with flame photometric detection (GC-FPD). The results showed that 44, 43 and 44 volatile compounds were detected in T1, T2 and T3 samples, respectively. In addition, 9, 10 and 9 sulfur compounds were identified in three samples by GC-FPD, respectively. Combining physicochemical and sensory properties, T1 presented fatty, green and rotten cabbage odor; T2 exhibited mushroom, sulfuric and musty odor notes; T3 had nutty, floral and roasted potato odor. Dimethyl sulfide, 3-methylbutanal, dimethyl disulfide, 3-octanone, bis(methylthio) methane, octanal, 1-octen-3-one, 1-octen-3-ol and benzeneacetaldehyde played indispensable roles in the overall aroma of three truffles. Finally, based on quantitative concentration in T1, odorous compounds (OAV) > 1 were mixed to recombine aroma, demonstrating that these key aroma compounds based on OAV can successfully recombine pretty similar aroma of each variety. Full article
(This article belongs to the Special Issue Recent Advances in Food and Natural Product Analysis)
Show Figures

Graphical abstract

13 pages, 1779 KiB  
Article
Quality Evaluation of Ophiopogonis Radix from Two Different Producing Areas
by Mengxia Tan, Jiali Chen, Chengcheng Wang, Lisi Zou, Shuyu Chen, Jingjing Shi, Yuqi Mei, Lifang Wei and Xunhong Liu
Molecules 2019, 24(18), 3220; https://doi.org/10.3390/molecules24183220 - 04 Sep 2019
Cited by 24 | Viewed by 2841
Abstract
Ophiopogonis Radix, also known as Mai-dong in Chinese, was a commonly used traditional Chinese medicine (TCM) and functional health food. Two products of Ophiopogonis Radix are largely produced in the Sichuan and Zhejiang province, which are called “Chuan maidong (CMD)” and “Zhe maidong [...] Read more.
Ophiopogonis Radix, also known as Mai-dong in Chinese, was a commonly used traditional Chinese medicine (TCM) and functional health food. Two products of Ophiopogonis Radix are largely produced in the Sichuan and Zhejiang province, which are called “Chuan maidong (CMD)” and “Zhe maidong (ZMD)” respectively. To distinguish and evaluate the quality of CMD and ZMD, an analytical method based on ultra-fast performance liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry (UFLC-QTRAP-MS/MS) was established for simultaneous determination of 32 constituents including 4 steroidal saponins, 3 homisoflavonoids, 15 amino acids, and 10 nucleosides in 27 Mai-dong samples from Sichuan and Zhejiang. Furthermore, principal components analysis (PCA), partial least squares discriminant analysis (PLS-DA), t-test, and grey relational analysis (GRA) were applied to discriminate and evaluate the samples from Sichuan and Zhejiang based on the contents of 32 constituents. The results demonstrated that the bioactive constituents in CMD and ZMD were significantly different, and CMD performed better in the quality assessment than ZMD. This study not only provides a basic information for differentiating CMD and ZMD, but offers a new insight into comprehensive evaluation and quality control of Ophiopogonis Radix from two different producing areas. Full article
(This article belongs to the Special Issue Recent Advances in Food and Natural Product Analysis)
Show Figures

Figure 1

14 pages, 3467 KiB  
Article
Transformation Mechanisms of Chemical Ingredients in Steaming Process of Gastrodia elata Blume
by Yun Li, Xiao-Qian Liu, Shan-Shan Liu, Da-hui Liu, Xiao Wang and Zhi-Min Wang
Molecules 2019, 24(17), 3159; https://doi.org/10.3390/molecules24173159 - 30 Aug 2019
Cited by 26 | Viewed by 3502
Abstract
To explore the transformation mechanisms of free gastrodin and combined gastrodin before and after steaming of Gastrodia elata (G. elata), a fresh G. elata sample was processed by the traditional steaming method prescribed by Chinese Pharmacopoeia (2015 version), and HPLC-ESI-TOF/MS method [...] Read more.
To explore the transformation mechanisms of free gastrodin and combined gastrodin before and after steaming of Gastrodia elata (G. elata), a fresh G. elata sample was processed by the traditional steaming method prescribed by Chinese Pharmacopoeia (2015 version), and HPLC-ESI-TOF/MS method was used to identify the chemical composition in steamed and fresh G. elata. Finally, 25 components were identified in G. elata based on the characteristic fragments of the compounds and the changes of the 25 components of fresh and steamed G. elata were compared by the relative content. Hydrolysis experiments and enzymatic hydrolysis experiments of 10 monomer compounds simulating the G. elata steaming process were carried out for the first time. As a result, hydrolysis experiments proved that free gastrodin or p-hydroxybenzyl alcohol could be obtained by breaking ester bond or ether bond during the steaming process of G. elata. Enzymatic experiments showed that steaming played an important role in the protection of gastrodin, confirming the hypothesis that steaming can promote the conversion of chemical constituents of G. elata—inhibiting enzymatic degradation. This experiment clarified the scientific mechanism of the traditional steaming method of G. elata and provided reference for how to apply G. elata decoction to some extent. Full article
(This article belongs to the Special Issue Recent Advances in Food and Natural Product Analysis)
Show Figures

Graphical abstract

Review

Jump to: Research

20 pages, 4464 KiB  
Review
A Comprehensive Review on Infrared Heating Applications in Food Processing
by Salam A. Aboud, Ammar B. Altemimi, Asaad R. S. Al-HiIphy, Lee Yi-Chen and Francesco Cacciola
Molecules 2019, 24(22), 4125; https://doi.org/10.3390/molecules24224125 - 15 Nov 2019
Cited by 129 | Viewed by 12497
Abstract
Infrared (IR) technology is highly energy-efficient, less water-consuming, and environmentally friendly compared to conventional heating. Further, it is also characterized by homogeneity of heating, high heat transfer rate, low heating time, low energy consumption, improved product quality, and food safety. Infrared technology is [...] Read more.
Infrared (IR) technology is highly energy-efficient, less water-consuming, and environmentally friendly compared to conventional heating. Further, it is also characterized by homogeneity of heating, high heat transfer rate, low heating time, low energy consumption, improved product quality, and food safety. Infrared technology is used in many food manufacturing processes, such as drying, boiling, heating, peeling, polyphenol recovery, freeze-drying, antioxidant recovery, microbiological inhibition, sterilization grains, bread, roasting of food, manufacture of juices, and cooking food. The energy throughput is increased using a combination of microwave heating and IR heating. This combination heats food quickly and eliminates the problem of poor quality. This review provides a theoretical basis for the infrared treatment of food and the interaction of infrared technology with food ingredients. The effect of IR on physico-chemical properties, sensory properties, and nutritional values, as well as the interaction of food components under IR radiation can be discussed as a future food processing option. Full article
(This article belongs to the Special Issue Recent Advances in Food and Natural Product Analysis)
Show Figures

Figure 1

Back to TopTop