molecules-logo

Journal Browser

Journal Browser

Biological Activities of Medicinal Plants

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (10 April 2020) | Viewed by 72541

Special Issue Editor

Special Issue Information

Dear Colleagues,

Medicinal plants have been used for many years for therapy and prevention of various human diseases because they have always shown many different biological acitvities (e.g., antimicrobial, antioxidant, anti-inflammatory, anti-cancer). An advantage of their use is that they provide patients with single natural specific compounds (for example, alkaloids, glycosides, saponines, polyphenols, flavonoids), have smoother action, and are better tolerated than synthetic drugs; moreover, they present fewer cumulation problems and can therefore be utilized for a long time. For these reasons, interest in medicinal plants and in their active compounds is currently increasing. The focus of this Special Issue is on current renewed interest concerning medicinal plants, and it is aimed at compiling an exhaustive summary of the potential biological activities of medicinal plants and/or their specific isolated compounds and their current and potential future applications.

Dr. Laura De Martino
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • medicinal plants
  • secondary metabolites
  • natural compounds
  • biological activities
  • bioactive compounds

Published Papers (16 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 3008 KiB  
Article
Effect of Supplementation with Hydroethanolic Extract of Campomanesia xanthocarpa (Berg.) Leaves and Two Isolated Substances from the Extract on Metabolic Parameters of Mice Fed a High-Fat Diet
by Carla Maiara Lopes Cardozo, Aline Carla Inada, Claudia Andrea Lima Cardoso, Wander Fernando de Oliveira Filiú, Bernardo Barcelar de Farias, Flávio Macedo Alves, Mariana Bento Tatara, Júlio Henrique Rosa Croda, Rita de Cássia Avellaneda Guimarães, Priscila Aiko Hiane and Karine de Cássia Freitas
Molecules 2020, 25(11), 2693; https://doi.org/10.3390/molecules25112693 - 10 Jun 2020
Cited by 5 | Viewed by 2985
Abstract
There are still controversies regarding the correlation between the beneficial effects for health and the administration of isolated compounds or crude extracts in therapeutic applications. Campomanesia xanthocarpa, found in the Brazilian Cerrado, demonstrated beneficial effects in metabolic disorders associated with obesity. We [...] Read more.
There are still controversies regarding the correlation between the beneficial effects for health and the administration of isolated compounds or crude extracts in therapeutic applications. Campomanesia xanthocarpa, found in the Brazilian Cerrado, demonstrated beneficial effects in metabolic disorders associated with obesity. We investigated the effects of Campomanesia xanthocarpa hydroethanolic extract and two isolated substances from the extract (S1 and S2) in a diet-induced obesity (DIO) model. Male Swiss mice were divided into five groups: (1) American Institute of Nutrition (AIN-93M) diet, (2) high-fat diet (HF), (3) HF supplemented with C. xanthocarpa hydroethanolic leaf extract at 100 mg/kg (HFE), (4) HF supplemented with S1 at 1 mg/kg (HFS1) and (5) HF supplemented with S2 at 1 mg/kg (HFS2). The HFS1, HFS2 and HFE groups did not present decreasing body weight or visceral adiposity gain. No differences in glycemic and lipid parameters, or in the expression of protein content in two cytokines, interleukin-6 (IL-6) and anti-inflammatory (IL-10), were observed. Only the HFS1 group displayed decreased food intake. Even though substantial effects such as an improvement in obesity features or the metabolic and histological parameters promoted by S1, S2 and the extract were not observed, further investigations are necessary to evaluate the principal genes and protein expressions involved in regulating food behavior promoted by S1. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Figure 1

21 pages, 2399 KiB  
Article
Calpurnia aurea (Aiton) Benth Extracts Reduce Quorum Sensing Controlled Virulence Factors in Pseudomonas aeruginosa
by Sekelwa Cosa, Jostina R. Rakoma, Abdullahi A. Yusuf and Thilivhali E. Tshikalange
Molecules 2020, 25(10), 2283; https://doi.org/10.3390/molecules25102283 - 13 May 2020
Cited by 18 | Viewed by 3227
Abstract
Pseudomonas aeruginosa is the causative agent of several life-threatening human infections. Like many other pathogens, P. aeruginosa exhibits quorum sensing (QS) controlled virulence factors such as biofilm during disease progression, complicating treatment with conventional antibiotics. Thus, impeding the pathogen’s QS circuit appears as [...] Read more.
Pseudomonas aeruginosa is the causative agent of several life-threatening human infections. Like many other pathogens, P. aeruginosa exhibits quorum sensing (QS) controlled virulence factors such as biofilm during disease progression, complicating treatment with conventional antibiotics. Thus, impeding the pathogen’s QS circuit appears as a promising alternative strategy to overcome pseudomonas infections. In the present study, Calpurnia aurea were evaluated for their antibacterial (minimum inhibitory concentrations (MIC)), anti-quorum sensing/antivirulence (AQS), and antibiofilm potential against P. aeruginosa. AQS and antivirulence (biofilm formation, swimming, and swarming motility) activities of plant extracts were evaluated against Chromobacterium violaceum and P. aeruginosa, respectively. The in vitro AQS potential of the individual compounds were validated using in silico molecular docking. Acetone and ethanolic extracts of C. aurea showed MIC at 1.56 mg/mL. The quantitative violacein inhibition (AQS) assay showed ethyl acetate extracts as the most potent at a concentration of 1 mg/mL. GCMS analysis of C. aurea revealed 17 compounds; four (pentadecanol, dimethyl terephthalate, terephthalic acid, and methyl mannose) showed potential AQS through molecular docking against the CviR protein of C. violaceum. Biofilm of P. aeruginosa was significantly inhibited by ≥60% using 1-mg/mL extract of C. aurea. Confocal laser scanning microscopy correlated the findings of crystal violet assay with the extracts significantly altering the swimming motility. C. aurea extracts reduced the virulence of pseudomonas, albeit in a strain- and extract-specific manner, showing their suitability for the identification of lead compounds with QS inhibitory potential for the control of P. aeruginosa infections. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Graphical abstract

15 pages, 1312 KiB  
Article
Intake of Alpha-Linolenic Acid-Rich Perilla frutescens Leaf Powder Decreases Home Blood Pressure and Serum Oxidized Low-Density Lipoprotein in Japanese Adults
by Michio Hashimoto, Yoko Tanabe, Shahdat Hossain, Kentaro Matsuzaki, Miho Ohno, Setsushi Kato, Masanori Katakura and Osamu Shido
Molecules 2020, 25(9), 2099; https://doi.org/10.3390/molecules25092099 - 30 Apr 2020
Cited by 24 | Viewed by 3775
Abstract
Oxidized low-density lipoprotein (Ox-LDL) is known to be highly atherogenic. Thus, decreasing the blood levels of Ox-LDL through dietary means is an important approach to reduce cardiovascular events in high-risk individuals. In this randomized placebo-controlled human interventional trial, we aimed to evaluate whether [...] Read more.
Oxidized low-density lipoprotein (Ox-LDL) is known to be highly atherogenic. Thus, decreasing the blood levels of Ox-LDL through dietary means is an important approach to reduce cardiovascular events in high-risk individuals. In this randomized placebo-controlled human interventional trial, we aimed to evaluate whether Perilla frutescens leaf powder (PLP) ameliorates Ox-LDL and home blood pressure, along with its biological antioxidant potential. Healthy Japanese volunteers aged 30–60 years (n = 60) were randomized to PLP and placebo groups. The PLP group consumed PLP dried using a microwave under reduced pressure, and the placebo group consumed pectin fiber daily for 6 months. Home blood pressure, serum biochemical parameters, and fatty acid profiles of erythrocyte plasma membranes were analyzed. Plasma Ox-LDL levels significantly decreased in the PLP group but not in the placebo group. Mean changes in the biological antioxidant potential and alpha-linolenic acid levels in the erythrocyte plasma membrane were significantly increased in the PLP group than in the placebo group. In subjects with prehypertension (systolic blood pressure [SBP] ≥ 120 mmHg), the mean reduction in morning or nocturnal SBP was significantly greater in the PLP group than in the placebo group. Thus, PLP intake may be an effective intervention to prevent cardiovascular diseases. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Figure 1

15 pages, 2787 KiB  
Article
Potential Antimicrobial and Anticancer Activities of an Ethanol Extract from Bouea macrophylla
by Ngoc Hong Nguyen, Thuy Trang Nguyen, Phu Cuong Ma, Qui Thanh Hoai Ta, Thuc-Huy Duong and Van Giau Vo
Molecules 2020, 25(8), 1996; https://doi.org/10.3390/molecules25081996 - 24 Apr 2020
Cited by 28 | Viewed by 5556
Abstract
Bouea macrophylla is a tree widely grown throughout South East Asia. It is used in folk medicine for the treatment of various illnesses. The present study aimed to identify the chemical constituents and to test the antimicrobial and anticancer activities of an ethanol [...] Read more.
Bouea macrophylla is a tree widely grown throughout South East Asia. It is used in folk medicine for the treatment of various illnesses. The present study aimed to identify the chemical constituents and to test the antimicrobial and anticancer activities of an ethanol extract from B. macrophylla leaves. The extract exhibited excellent antibacterial properties against 9 out of 10 target microorganisms. including four Gram-negative bacteria (Escherichia coli, Shigella flexneri, Vibrio cholera, and Pseudomonas aeruginosa) and four Gram-positive bacteria (Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis, and Bacillus cereus), as well as a fungus (Candida albicans). In addition, the extract was also tested on HeLa and human colorectal carcinoma (HCT116) cells to evaluate its cytostatic effects. The ethanol extract was able to inhibit the proliferation of HeLa and HCT116 cells, showing IC50 = 24 ± 0.8 and 28 ± 0.9 µg/mL, respectively, whereas the IC50 values of doxorubicin (standard) were 13.6 ± 1.3 and 15.8 ± 1.1 µg/mL respectively. Also, we identified various bioactive compounds in the extract such as polyphenols, flavonoids, caryophyllene, phytol, and trans-geranylgeraniol by GC-MS, which could contribute to the extract’s biological activities. Therefore, our findings strongly indicate that the constituents of the B. macrophylla ethanol extract could be active against the tested bacteria and fungi as well as cancer cells. Further investigation is needed to understand the mechanisms mediating the antimicrobial and anticancer effects and identify signaling pathways that could be targeted for therapeutic application. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Figure 1

19 pages, 2284 KiB  
Article
Changes in the Content of Phenolic Compounds and Biological Activity in Traditional Mexican Herbal Infusions with Different Drying Methods
by Sandra N. Jimenez-Garcia, Moisés A. Vazquez-Cruz, Xóchitl S. Ramirez-Gomez, Vicente Beltran-Campos, Luis M. Contreras-Medina, Juan F. Garcia-Trejo and Ana A. Feregrino-Pérez
Molecules 2020, 25(7), 1601; https://doi.org/10.3390/molecules25071601 - 31 Mar 2020
Cited by 14 | Viewed by 3192
Abstract
Mexican spices are used in the supplementation of the human diet and as medicinal herbs for the particularly high amounts of compounds capable of deactivating free radicals. In addition, these spices can have beneficial effects on chronic, no-transmissible diseases such as type II [...] Read more.
Mexican spices are used in the supplementation of the human diet and as medicinal herbs for the particularly high amounts of compounds capable of deactivating free radicals. In addition, these spices can have beneficial effects on chronic, no-transmissible diseases such as type II diabetes and hypertension arterial. The objective of this study is to determine the content of phenolic compounds on the antioxidant activity and inhibitory enzymes of α-amylase, α-glucosidase and angiotensin-converting enzyme in melissa, peppermint, thyme and mint, which are subjected to microwave drying, conventional and freeze-drying to be used as alternative treatments. Spices were evaluated to determine total phenols, flavonoids, tannins, 2,2-Diphenyl-1-picrylhydrazyl (DPPH), (2,2′-azino-bis- (3-ethyl benzothiazolin-6-ammonium sulphonate) (ABTS) and Ferric Reducing/Antioxidant Power (FRAP), enzymatic activity. The investigation showed that conventional drying caused a decrease in antioxidant properties and inhibitory activity, in some species, while remained preserved in microwave drying and freeze-drying. The activity of polyphenol oxides and peroxidase decreases with high temperatures and these increase with the use of cold temperatures. This study aims to determine the extent of optimal drying required to preserve phenolic compounds, and the positive effect on antioxidant activity and enzymatic activity in in vitro models, which will produce benefits for the infusion processing industry and the pharmaceutical industry. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Figure 1

21 pages, 4022 KiB  
Article
Anti-Estrogenic Activity of Guajadial Fraction, from Guava Leaves (Psidium guajava L.)
by Jaqueline Moraes Bazioli, Jonas Henrique Costa, Larissa Shiozawa, Ana Lúcia Tasca Gois Ruiz, Mary Ann Foglio and João Ernesto de Carvalho
Molecules 2020, 25(7), 1525; https://doi.org/10.3390/molecules25071525 - 27 Mar 2020
Cited by 15 | Viewed by 3757
Abstract
The research of natural products has allowed for the discovery of biologically relevant compounds inspired by plant secondary metabolites, which contributes to the development of many chemotherapeutic drugs used in cancer treatment. Psidium guajava leaves present a diverse phytochemical composition including flavonoids, phenolics, [...] Read more.
The research of natural products has allowed for the discovery of biologically relevant compounds inspired by plant secondary metabolites, which contributes to the development of many chemotherapeutic drugs used in cancer treatment. Psidium guajava leaves present a diverse phytochemical composition including flavonoids, phenolics, meroterpenoids, and triterpenes as the major bioactive constituents. Guajadial, a caryophyllene-based meroterpenoid, has been studied for potential anticancer effects tested in tumor cells and animal experimental models. Moreover, guajadial has been reported to have a mechanism of action similar to tamoxifen, suggesting this compound as a promisor phytoestrogen-based therapeutic agent. Herein, the anti-estrogenic action and anti-proliferative activity of guajadial is reported. The enriched guajadial fraction was obtained by sequential chromatographic techniques from the crude P. guajava dichloromethane extract showing promising anti-proliferative activity in vitro with selectivity for human breast cancer cell lines MCF-7 and MCF-7 BUS (Total Growth Inhibition = 5.59 and 2.27 µg·mL−1, respectively). Furthermore, evaluation of anti-estrogenic activity in vivo was performed demonstrating that guajadial enriched fraction inhibited the proliferative effect of estradiol on the uterus of pre-pubescent rats. These results suggest a relationship between anti-proliferative and anti-estrogenic activity of guajadial, which possibly acts in tumor inhibition through estrogen receptors due to the compounds structural similarity to tamoxifen. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Figure 1

18 pages, 2747 KiB  
Article
Antioxidant, α-Glucosidase, and Nitric Oxide Inhibitory Activities of Six Algerian Traditional Medicinal Plant Extracts and 1H-NMR-Based Metabolomics Study of the Active Extract
by Khaoula Hellal, M. Maulidiani, Intan Safinar Ismail, Chin Ping Tan and Faridah Abas
Molecules 2020, 25(5), 1247; https://doi.org/10.3390/molecules25051247 - 10 Mar 2020
Cited by 16 | Viewed by 4046
Abstract
Claims of effective therapy against diabetes using plants including Peganum harmala L., Zygophyllum album, Anacyclus valentinus L., Ammodaucus leucotrichus, Lupinus albus, and Marrubium vulgare in Algerian empirical medicine prompted our interest in evaluating their antidiabetic activity by screening their free radical scavenging [...] Read more.
Claims of effective therapy against diabetes using plants including Peganum harmala L., Zygophyllum album, Anacyclus valentinus L., Ammodaucus leucotrichus, Lupinus albus, and Marrubium vulgare in Algerian empirical medicine prompted our interest in evaluating their antidiabetic activity by screening their free radical scavenging (DPPH), α-glucosidase, and nitric oxide (NO) inhibitory activities as well as the total phenolic content (TPC). Extracts of the selected plants were prepared using different ratios of ethanol (0, 50, 80, and 100%). In this study, 100%, and 80% ethanol extracts of L. albus were found to be the most potent, in inhibiting α-glucosidase activity with IC50 values of 6.45 and 8.66 μg/mL, respectively. The 100% ethanol extract of A. leucotrichus exhibited the highest free radical scavenging activity with an IC50 value of 26.26 μg/mL. Moreover, the highest TPC of 612.84 μg GAE/mg extract was observed in M. vulgare, extracted with 80% ethanol. Metabolite profiling of the active extract was conducted using 1H-NMR metabolomics. Partial least square analysis (PLS) was used to assess the relationship between the α-glucosidase inhibitory activity of L. albus and the metabolites identified in the extract. Based on the PLS model, isoflavonoids (lupinoisoflavone G, lupisoflavone, lupinoisolone C), amino acids (asparagine and thiamine), and several fatty acids (stearic acid and oleic acid) were identified as metabolites that contributed to the inhibition of α-glucosidase activity. The results of this study have clearly strengthened the traditional claim of the antihyperglycemic effects of L. albus. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Figure 1

7 pages, 2608 KiB  
Article
Cytotoxic Activity of Inositol Angelates and Tirucallane-Type Alkaloids from Amoora Dasyclada
by Sheng-Xiang Yang, Cheng-Gang Song, Yi Kuang, Bing Liu, Yan-Xin Zhang, Ming-Zhe Zhang, Chun-Ying Zhang, Gang Ding and Jian-Chun Qin
Molecules 2020, 25(5), 1222; https://doi.org/10.3390/molecules25051222 - 9 Mar 2020
Cited by 2 | Viewed by 2367
Abstract
Three new inositol angelate compounds (1–3) and two new tirucallane-type alkaloids (4 and 5) were isolated from the Amoora dasyclada, and their structures were established mainly by means of combination of 1D and 2D nuclear magnetic resonance and [...] Read more.
Three new inositol angelate compounds (1–3) and two new tirucallane-type alkaloids (4 and 5) were isolated from the Amoora dasyclada, and their structures were established mainly by means of combination of 1D and 2D nuclear magnetic resonance and HR-ESI-MS. Based on cytotoxicity testing, compounds 4 and 5 exhibited significant cytotoxic activity against human cancer cell line HepG2 with IC50 value at 8.4 and 13.2 μM. In addition, compounds 4 and 5 also showed remarkable growth inhibitory activity to Artemia salina larvae. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Figure 1

19 pages, 2174 KiB  
Article
Phytochemical Characterization and Chemotherapeutic Potential of Cinnamomum verum Extracts on the Multiplication of Protozoan Parasites In Vitro and In Vivo
by Gaber El-Saber Batiha, Amany Magdy Beshbishy, Azirwan Guswanto, Arifin Nugraha, Tserendorj Munkhjargal, Mohamed M. Abdel-Daim, Juan Mosqueda and Ikuo Igarashi
Molecules 2020, 25(4), 996; https://doi.org/10.3390/molecules25040996 - 24 Feb 2020
Cited by 25 | Viewed by 5417
Abstract
Cinnamomum verum is a commonly used herbal plant that has several documented properties against various diseases. The existing study evaluated the inhibitory effect of acetonic extract of C. verum (AECV) and ethyl acetate extract of C. verum (EAECV) against piroplasm parasites in vitro [...] Read more.
Cinnamomum verum is a commonly used herbal plant that has several documented properties against various diseases. The existing study evaluated the inhibitory effect of acetonic extract of C. verum (AECV) and ethyl acetate extract of C. verum (EAECV) against piroplasm parasites in vitro and in vivo. The drug-exposure viability assay was tested on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3) and human foreskin fibroblast (HFF) cells. Qualitative phytochemical estimation revealed that AECV and EAECV containing multiple bioactive constituents namely alkaloids, tannins, saponins, terpenoids and remarkable amounts of polyphenols and flavonoids. AECV and EAECV inhibited B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi multiplication at half-maximal inhibitory concentrations (IC50) of 23.1 ± 1.4, 56.6 ± 9.1, 33.4 ± 2.1, 40.3 ± 7.5, 18.8 ± 1.6 µg/mL, and 40.1 ± 8.5, 55.6 ± 1.1, 45.7 ± 1.9, 50.2 ± 6.2, and 61.5 ± 5.2 µg/mL, respectively. In the cytotoxicity assay, AECV and EAECV affected the viability of MDBK, NIH/3T3 and HFF cells with half-maximum effective concentrations (EC50) of 440 ± 10.6, 816 ± 12.7 and 914 ± 12.2 µg/mL and 376 ± 11.2, 610 ± 7.7 and 790 ± 12.4 µg/mL, respectively. The in vivo experiment showed that AECV and EAECV were effective against B. microti in mice at 150 mg/kg. These results showed that C. verum extracts are potential antipiroplasm drugs after further studies in some clinical cases. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Graphical abstract

15 pages, 2678 KiB  
Article
Modulatory Effect of Chelidonium majus Extract and Its Alkaloids on LPS-Stimulated Cytokine Secretion in Human Neutrophils
by Sylwia Zielińska, Monika Ewa Czerwińska, Magdalena Dziągwa-Becker, Andrzej Dryś, Mariusz Kucharski, Anna Jezierska-Domaradzka, Bartosz J. Płachno and Adam Matkowski
Molecules 2020, 25(4), 842; https://doi.org/10.3390/molecules25040842 - 14 Feb 2020
Cited by 21 | Viewed by 3834
Abstract
Due to certain differences in terms of molecular structure, isoquinoline alkaloids from Chelidonium majus engage in various biological activities. Apart from their well-documented antimicrobial potential, some phenanthridine and protoberberine derivatives as well as C. majus extract present with anti-inflammatory and cytotoxic effects. In [...] Read more.
Due to certain differences in terms of molecular structure, isoquinoline alkaloids from Chelidonium majus engage in various biological activities. Apart from their well-documented antimicrobial potential, some phenanthridine and protoberberine derivatives as well as C. majus extract present with anti-inflammatory and cytotoxic effects. In this study, the LC–MS/MS method was used to determine alkaloids, phenolic acids, carboxylic acids, and hydroxybenzoic acids. We investigated five individually tested alkaloids (coptisine, berberine, chelidonine, chelerythrine, and sanguinarine) as well as C. majus root extract for their effect on the secretion of IL-1β, IL-8, and TNF-α in human polymorphonuclear leukocytes (neutrophils). Berberine, chelidonine, and chelerythrine significantly decreased the secretion of TNF-α in a concentration-dependent manner. Sanguinarine was found to be the most potent inhibitor of IL-1β secretion. However, the overproduction of IL-8 and TNF-α and a high cytotoxicity for these compounds were observed. Coptisine was highly cytotoxic and slightly decreased the secretion of the studied cytokines. The extract (1.25–12.5 μg/mL) increased cytokine secretion in a concentration-dependent manner, but an increase in cytotoxicity was also noted. The alkaloids were active at very low concentrations (0.625–2.5 μM), but their potential cytotoxic effects, except for chelidonine and chelerythrine, should not be ignored. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Graphical abstract

18 pages, 2347 KiB  
Article
Phytochemical Characterization and In Vitro Anti-Inflammatory, Antioxidant and Antimicrobial Activity of Combretum Collinum Fresen Leaves Extracts from Benin
by Peter Marquardt, Rick Seide, Cica Vissiennon, Andreas Schubert, Claudia Birkemeyer, Virgile Ahyi and Karin Fester
Molecules 2020, 25(2), 288; https://doi.org/10.3390/molecules25020288 - 10 Jan 2020
Cited by 19 | Viewed by 7258
Abstract
Leaves from Combretum collinum Fresen (Combretaceae) are commonly used for the treatment of inflammatory conditions, wound healing and bacterial infections in traditional West African medicine. This research focuses on the characterization of the phenolic profile and lipophilic compounds of leaves extracts of C. [...] Read more.
Leaves from Combretum collinum Fresen (Combretaceae) are commonly used for the treatment of inflammatory conditions, wound healing and bacterial infections in traditional West African medicine. This research focuses on the characterization of the phenolic profile and lipophilic compounds of leaves extracts of C. collinum. Studies of the in vitro anti-inflammatory activity were performed in TNFα stimulated HaCaT cells and antibacterial activity was evaluated with agar well diffusion and microdilution assays. Antioxidant activity was determined by DPPH and ABTS assays and compared to standards. The phytochemical studies confirmed myricetin-3-O-rhamnoside and myricetin-3-O-glucoside as major components of the leaves extracts, each contributing significantly to the antioxidant activity of the hydrophilic extracts. GC-MS analysis identified 19 substances that were confirmed by comparison with spectral library data and authentic standards. Combretum collinum aqueous leaves extract decreased pro-inflammatory mediators in TNFα stimulated HaCaT cells. Further investigations showed that myricetin-3-O-rhamnoside has an anti-inflammatory effect on IL-8 secretion. In the antimicrobial screening, the largest inhibition zones were found against S. epidermidis, MRSA and S. aureus. MIC values resulted in 275.0 µg/mL for S. epidermidis and 385.5 µg/mL for MRSA. The in vitro anti-inflammatory, antibacterial and antioxidant activity supports topical use of C. collinum leaves extracts in traditional West African medicine. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Graphical abstract

9 pages, 1925 KiB  
Article
Bioactive Plant Compounds in Coffee Charcoal (Coffeae carbo) Extract Inhibit Cytokine Release from Activated Human THP-1 Macrophages
by Laura Schiller, Dima Hammoud Mahdi, Steffen Jankuhn, Bartosz Lipowicz and Cica Vissiennon
Molecules 2019, 24(23), 4263; https://doi.org/10.3390/molecules24234263 - 22 Nov 2019
Cited by 14 | Viewed by 3861
Abstract
The herbal preparation coffee charcoal is produced by over-roasting and milling green dried Coffea arabica L. seeds, and has a long-standing tradition in the treatment of inflammatory and gastrointestinal disorders. Its therapeutic properties are commonly attributed to adsorptive and astringent effects. This insufficiently [...] Read more.
The herbal preparation coffee charcoal is produced by over-roasting and milling green dried Coffea arabica L. seeds, and has a long-standing tradition in the treatment of inflammatory and gastrointestinal disorders. Its therapeutic properties are commonly attributed to adsorptive and astringent effects. This insufficiently explains its mode of action, especially when used in the treatment of inflammatory diseases in lower dosages. Our investigations aimed to identify bioactive secondary plant metabolites affecting cytokine-signaling. Thus, a phytochemical analysis of coffee charcoal extract was conducted using HPLC and LC/MS. Trigonelline, neochlorogenic acid, chlorogenic acid, caffeine, cryptochlorogenic acid, feruloylquinic acid isomers, and a caffeoylquinolacton were identified in the extract. Subsequently, the effects of coffee charcoal extract, chlorogenic acid isomers, their metabolite caffeic acid, caffeine, and trigonelline on cytokine (TNF, IL-6, MCP-1) release from LPS-challenged human THP-1 macrophages were examined to evaluate anti-inflammatory activity. Coffee charcoal showed concentration-dependent mild-to-medium inhibitory effects. The chlorogenic acid isomers and caffeic acid inhibited the TNF release, with cryptochlorogenic acid exerting the most distinct effects, as well as decreasing the release of IL-6 and MCP-1. In addition, scanning electron microscopic images provided an impression of the particle constitution, indicating a larger particle size and less structured surface of coffee charcoal in comparison to activated charcoal. In conclusion, our findings underline that beyond adsorptive effects, coffee charcoal exhibits pharmacological properties, which derive from a spectrum of secondary plant metabolites and support the therapeutic use in inflammatory diseases. Chlorogenic acids, particularly cryptochlorogenic acid, appear as pivotal bioactive compounds. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Figure 1

14 pages, 3142 KiB  
Article
Effects of the Essential Oil from Pistacia lentiscus Var. chia on the Lateral Line System and the Gene Expression Profile of Zebrafish (Danio rerio)
by Iliana Serifi, Eleni Tzima, Haido Bardouki, Evangeli Lampri and Thomais Papamarcaki
Molecules 2019, 24(21), 3919; https://doi.org/10.3390/molecules24213919 - 30 Oct 2019
Cited by 12 | Viewed by 3418
Abstract
Mastic essential oil exhibits anti-bacterial, anti-inflammatory, and anti-oxidant properties. With the growing interest of the use of mastic oil in the food and pharmaceutical industry, systematic in vivo studies are needed to address controlled usage and safety issues. In the present work we [...] Read more.
Mastic essential oil exhibits anti-bacterial, anti-inflammatory, and anti-oxidant properties. With the growing interest of the use of mastic oil in the food and pharmaceutical industry, systematic in vivo studies are needed to address controlled usage and safety issues. In the present work we evaluated the safety of mastic oil using as a model the zebrafish lateral line system. In addition, we studied the gene expression profile of zebrafish fed with mastic oil-supplemented diet using microarray analysis. Our results showed that the hair cells of lateral line neuromasts are functional upon exposure of zebrafish larvae up to 20 ppm of mastic essential oil, while treatment with higher concentrations, 100 and 200 ppm, resulted in increased larvae mortality. Dietary supplementation of zebrafish with mastic essential oil led to differential expression of interferon response-related genes as well as the immune responsive gene 1 (irg1) that links cellular metabolism with immune defense. Notably, mucin 5.2, a constituent of the mucus hydrogel that protects the host against invading pathogens, was up-regulated. Our in vivo work provides information concerning the safety of mastic essential oil use and suggests dietary effects on gene expression related with the physical and immunochemical properties of the gastrointestinal system. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Graphical abstract

Review

Jump to: Research

30 pages, 2519 KiB  
Review
Medicinal Potential of Garcinia Species and Their Compounds
by Bruna Larissa Spontoni do Espirito Santo, Lidiani Figueiredo Santana, Wilson Hino Kato Junior, Felipe de Oliveira de Araújo, Danielle Bogo, Karine de Cássia Freitas, Rita de Cássia Avellaneda Guimarães, Priscila Aiko Hiane, Arnildo Pott, Wander Fernando de Oliveira Filiú, Marcel Arakaki Asato, Patrícia de Oliveira Figueiredo and Paulo Roberto Haidamus de Oliveira Bastos
Molecules 2020, 25(19), 4513; https://doi.org/10.3390/molecules25194513 - 1 Oct 2020
Cited by 49 | Viewed by 6901
Abstract
Garcinia is a genus of Clusiaceae, distributed throughout tropical Asia, Africa, New Caledonia, Polynesia, and Brazil. Garcinia plants contain a broad range of biologically active metabolites which, in the last few decades, have received considerable attention due to the chemical compositions of their [...] Read more.
Garcinia is a genus of Clusiaceae, distributed throughout tropical Asia, Africa, New Caledonia, Polynesia, and Brazil. Garcinia plants contain a broad range of biologically active metabolites which, in the last few decades, have received considerable attention due to the chemical compositions of their extracts, with compounds which have been shown to have beneficial effects in several diseases. Our work had the objective of reviewing the benefits of five Garcinia species (G. brasiliensis, G. gardneriana, G. pedunculata, G. cambogia, and G. mangstana). These species provide a rich natural source of bioactive compounds with relevant therapeutic properties and anti-inflammatory effects, such as for the treatment of skin disorders, wounds, pain, and infections, having demonstrated antinociceptive, antioxidant, antitumoral, antifungal, anticancer, antihistaminic, antiulcerogenic, antimicrobial, antiviral, vasodilator, hypolipidemic, hepatoprotective, nephroprotective, and cardioprotective properties. This demonstrates the relevance of the genus as a rich source of compounds with valuable therapeutic properties, with potential use in the prevention and treatment of nontransmissible chronic diseases. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Figure 1

20 pages, 280 KiB  
Review
The Potential Therapeutic Value of Medicinal Plants in the Management of Metabolic Disorders
by Trevor T. Nyakudya, Thulani Tshabalala, Rachael Dangarembizi, Kennedy H. Erlwanger and Ashwell R. Ndhlala
Molecules 2020, 25(11), 2669; https://doi.org/10.3390/molecules25112669 - 9 Jun 2020
Cited by 48 | Viewed by 6069
Abstract
Metabolic syndrome (MetS) is a prevalent, multifactorial and complex disease that is associated with an increased risk of developing diabetes and other major cardiovascular complications. The rise in the global prevalence of MetS has been attributed to genetic, epigenetic, and environmental factors. The [...] Read more.
Metabolic syndrome (MetS) is a prevalent, multifactorial and complex disease that is associated with an increased risk of developing diabetes and other major cardiovascular complications. The rise in the global prevalence of MetS has been attributed to genetic, epigenetic, and environmental factors. The adoption of sedentary lifestyles that are characterized by low physical activity and the consumption of high-energy diets contributes to MetS development. Current management criteria for MetS risk factors involve changes in lifestyle and the use of pharmacological agents that target specific biochemical pathways involved in the metabolism of nutrients. Pharmaceutical drugs are usually expensive and are associated with several undesirable side effects. Alternative management strategies of MetS risk factors involve the use of medicinal plants that are considered to have multiple therapeutic targets and are easily accessible. Medicinal plants contain several different biologically active compounds that provide health benefits. The impact of phytochemicals present in local medicinal plants on sustainable health and well-being of individuals has been studied for many years and found to involve a plethora of complex biochemical, metabolic, and physiological mechanisms. While some of these phytochemicals are the basis of mainstream prescribed drugs (e.g., metformin, reserpine, quinine, and salicin), there is a need to identify more medicinal plants that can be used for the management of components of MetS and to describe their possible mechanisms of action. In this review, we assess the potential health benefits of South African ethnomedicinal plants in protecting against the development of health outcomes associated with MetS. We aim to provide the state of the current knowledge on the use of medicinal plants and their therapeutically important phytochemicals by discussing the current trends, with critical examples from recent primary references of how medicinal plants are being used in South African rural and urban communities. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
15 pages, 458 KiB  
Review
An Overview of the Potential Use of Ethno-Medicinal Plants Targeting the Renin–Angiotensin System in the Treatment of Hypertension
by Pietro De Lange-Jacobs, Asma Shaikh-Kader, Bianca Thomas and Trevor T. Nyakudya
Molecules 2020, 25(9), 2114; https://doi.org/10.3390/molecules25092114 - 30 Apr 2020
Cited by 13 | Viewed by 4437
Abstract
The development of risk factors associated with cardiovascular disorders present a major public health challenge in both developed countries and countries with emerging economies. Hypertension and associated complications including stroke and myocardial infarction have reached pandemic levels. Current management strategies of hypertension predominantly [...] Read more.
The development of risk factors associated with cardiovascular disorders present a major public health challenge in both developed countries and countries with emerging economies. Hypertension and associated complications including stroke and myocardial infarction have reached pandemic levels. Current management strategies of hypertension predominantly include the utilization of pharmaceutical drugs which are often associated with undesirable side effects. Moreover, the drugs are often too expensive for populations from resource-limited Southern African rural, and some urban, communities. As a result, most patients rely on ethno-medicinal plants for the treatment of a variety of diseases including cardiovascular and metabolic disorders. The effectiveness of these plants in managing several cardiovascular diseases has been attributed to the presence of bioactive phytochemical constituents. In this review, the treatment options that target the renin–angiotensin system (RAS) in the management of hypertension were summarized, with special emphasis on ethno-medicinal plants and their influence on the ACE1 RAS pathway. The dearth of knowledge regarding the effect of ethno-medicinal plants on the ACE2 pathway was also highlighted. Full article
(This article belongs to the Special Issue Biological Activities of Medicinal Plants)
Show Figures

Figure 1

Back to TopTop