molecules-logo

Journal Browser

Journal Browser

New Methodologies in Natural Product Analytics and Structure Elucidation

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (31 August 2017) | Viewed by 157383

Special Issue Editor


E-Mail Website
Guest Editor
Institut für Analytische Chemie, Johannisallee 29, 04103 Leipzig, Germany
Interests: NMR spectroscopy: methods development and application; physical organic chemistry; bioorganic chemistry

Special Issue Information

Dear Colleagues,

Natural products usually occur in complex compositions, which frequently exhibit significant fluctuations, displaying seasonal and geographical variations. In nature, their physiological roles are important in the protection of plants as antivirals, antibacterial, antifungals, insecticides, and also against herbivores, by reducing their appetite for the producing plants. Natural products have a long history of use in traditional medicine.

In recent years, considerable progress has been achieved for the isolation, purification and spectroscopic analysis of these compounds. This Special Issue aims to attract contributions on all aspects of the methodology for isolation and purification, e.g., reflecting advances in chromatography. Similarly, progress in spectroscopic techniques of all kind for structural elucidation is essential to avoid false assignments and incorrect structures.

Prof. Stefan Berger
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • isolation techniques
  • chromatography
  • UV/vis spectroscopy
  • IR/Raman spectroscopy
  • NMR spectroscopy
  • mass spectrometry
  • hyphenated techniques

Published Papers (23 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

2853 KiB  
Communication
Comprehensive Profiling and Quantification of Ginsenosides in the Root, Stem, Leaf, and Berry of Panax ginseng by UPLC-QTOF/MS
by Jae Won Lee, Bo-Ram Choi, Young-Chang Kim, Doo Jin Choi, Young-Seob Lee, Geum-Soog Kim, Nam-In Baek, Seung-Yu Kim and Dae Young Lee
Molecules 2017, 22(12), 2147; https://doi.org/10.3390/molecules22122147 - 04 Dec 2017
Cited by 85 | Viewed by 6312
Abstract
The effective production and usage of ginsenosides, given their distinct pharmacological effects, are receiving increasing amounts of attention. As the ginsenosides content differs in different parts of Panax ginseng, we wanted to assess and compare the ginsenosides content in the ginseng roots, [...] Read more.
The effective production and usage of ginsenosides, given their distinct pharmacological effects, are receiving increasing amounts of attention. As the ginsenosides content differs in different parts of Panax ginseng, we wanted to assess and compare the ginsenosides content in the ginseng roots, leave, stems, and berries. To extract the ginsenosides, 70% (v/v) methanol was used. The optimal ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-QTOF/MS) method was used to profile various ginsenosides from the different parts of P. ginseng. The datasets were then subjected to multivariate analysis including principal component analysis (PCA) and hierarchical clustering analysis (HCA). A UPLC-QTOF/MS method with an in-house library was constructed to profile 58 ginsenosides. With this method, a total of 39 ginsenosides were successfully identified and quantified in the ginseng roots, leave, stem, and berries. PCA and HCA characterized the different ginsenosides compositions from the different parts. The quantitative ginsenoside contents were also characterized from each plant part. The results of this study indicate that the UPLC-QTOF/MS method can be an effective tool to characterize various ginsenosides from the different parts of P. ginseng. Full article
Show Figures

Figure 1

3157 KiB  
Article
In-Silico UHPLC Method Optimization for Aglycones in the Herbal Laxatives Aloe barbadensis Mill., Cassia angustifolia Vahl Pods, Rhamnus frangula L. Bark, Rhamnus purshianus DC. Bark, and Rheum palmatum L. Roots
by Nadja Meier, Beat Meier, Samuel Peter and Evelyn Wolfram
Molecules 2017, 22(11), 1838; https://doi.org/10.3390/molecules22111838 - 27 Oct 2017
Cited by 14 | Viewed by 6559
Abstract
For the European Pharmacopoeia (Ph. Eur.) herbal monograph draft of Cassia angustifolia Vahl. and Cassia senna L. leaves and pods, a safety limitation of aloe-emodin and rhein was proposed, due to toxicological concerns. A quantitative, analytical method of the anthraquinone aglycones in all [...] Read more.
For the European Pharmacopoeia (Ph. Eur.) herbal monograph draft of Cassia angustifolia Vahl. and Cassia senna L. leaves and pods, a safety limitation of aloe-emodin and rhein was proposed, due to toxicological concerns. A quantitative, analytical method of the anthraquinone aglycones in all Ph. Eur. monographed herbal laxatives is of interest. A rational method development for the aglycones aloe-emodin, rhein, emodin, chrysophanol, and physcion in five herbal drugs was realized by using 3D chromatographic modelling (temperature, solvent, and gradient time) and design of experiment (DOE) software (DryLab® 4). A methodical approach suitable for the challenging peak tracking in the chromatograms of the herbal drugs in dependence on the changes in the chromatographic conditions is described by using a combination of mass spectroscopy (MS) data (UHPLC-QDa), UV/Vis-spectra, and peak areas. The model results indicate a low robust range and showed that with the selected chromatographic system, small interferences could not be averted. The separation achieved shows a pure UV/Vis spectrum for all aglycones except for chrysophanol in Aloe barbadensis and emodin in Cassia angustifolia fruit. A gradient with the best resolution of the aglycones in all five drugs is proposed, and its suitability demonstrated for the quantification of aglycones in these herbal drugs. Full article
Show Figures

Figure 1

1226 KiB  
Article
Analysis of Non-Volatile Chemical Constituents of Menthae Haplocalycis Herba by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry
by Lu-Lu Xu, Jing-Jing Xu, Kun-Rui Zhong, Zhan-Peng Shang, Fei Wang, Ru-Feng Wang, Le Zhang, Jia-Yu Zhang and Bin Liu
Molecules 2017, 22(10), 1756; https://doi.org/10.3390/molecules22101756 - 19 Oct 2017
Cited by 46 | Viewed by 7243
Abstract
Menthae Haplocalycis herba, one kind of Chinese edible herbs, has been widely utilized for the clinical use in China for thousands of years. Over the last decades, studies on chemical constituents of Menthae Haplocalycis herba have been widely performed. However, less attention has [...] Read more.
Menthae Haplocalycis herba, one kind of Chinese edible herbs, has been widely utilized for the clinical use in China for thousands of years. Over the last decades, studies on chemical constituents of Menthae Haplocalycis herba have been widely performed. However, less attention has been paid to non-volatile components which are also responsible for its medical efficacy than the volatile constituents. Therefore, a rapid and sensitive method was developed for the comprehensive identification of the non-volatile constituents in Menthae Haplocalycis herba using ultra-high performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap). Separation was performed with Acquity UPLC® BEH C18 column (2.1 mm × 100 mm, 1.7 μm) with 0.2% formic acid aqueous solution and acetonitrile as the mobile phase under gradient conditions. Based on the accurate mass measurement (<5 ppm), MS/MS fragmentation patterns and different chromatographic behaviors, a total of 64 compounds were unambiguously or tentatively characterized, including 30 flavonoids, 20 phenolic acids, 12 terpenoids and two phenylpropanoids. Finally, target isolation of three compounds named Acacetin, Rosmarinic acid and Clemastanin A (first isolated from Menthae Haplocalycis herba) were performed based on the obtained results, which further confirmed the deduction of fragmentation patterns and identified the compounds profile in Menthae Haplocalycis herba. Our research firstly systematically elucidated the non-volatile components of Menthae Haplocalycis herba, which laid the foundation for further pharmacological and metabolic studies. Meanwhile, our established method was useful and efficient to screen and identify targeted constituents from traditional Chinese medicine extracts. Full article
Show Figures

Figure 1

9064 KiB  
Article
Rapid Identification of Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides from Ruditapes philippinarum Hydrolysate
by Rui Liu, Lei Zhou, Yan Zhang, Nai-Juan Sheng, Zhi-Kang Wang, Ti-Zhi Wu, Xin-Zhi Wang and Hao Wu
Molecules 2017, 22(10), 1714; https://doi.org/10.3390/molecules22101714 - 13 Oct 2017
Cited by 45 | Viewed by 4674
Abstract
Dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides were rapidly identified from Ruditapes philippinarum hydrolysate. The hydrolysate was fractionated by ethanol precipitation and preparative reverse phase high-performance liquid chromatography (RP-HPLC). The fraction which showed the highest DPP-IV inhibitory activity was then analyzed by a high-throughput nano-liquid [...] Read more.
Dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides were rapidly identified from Ruditapes philippinarum hydrolysate. The hydrolysate was fractionated by ethanol precipitation and preparative reverse phase high-performance liquid chromatography (RP-HPLC). The fraction which showed the highest DPP-IV inhibitory activity was then analyzed by a high-throughput nano-liquid chromatography electrospray ionization tandem mass spectrometry (nano-LC ESI-MS/MS) method, and the sequences of peptides were identified based on the MS/MS spectra against the Mollusca protein data from the UniProt database. In total, 50 peptides were identified. Furthermore, molecular docking was used to identify potential DPP-IV inhibitors from the identified peptides. Docking results suggested that four peptides: FAGDDAPR, LAPSTM, FAGDDAPRA, and FLMESH, could bind pockets of DPP-IV through hydrogen bonds, π-π bonds, and charge interactions. The four peptides were chemically synthesized and tested for DPP-IV inhibitory activity. The results showed that they possessed DPP-IV inhibitory activity with IC50 values of 168.72 μM, 140.82 μM, 393.30 μM, and >500 μM, respectively. These results indicate that R. philippinarum-derived peptides may have potential as functional food ingredients for the prevention of diabetes. Full article
Show Figures

Figure 1

2263 KiB  
Article
Separation and Enrichment of Lectin from Zihua Snap-Bean (Phaseolus vulgaris) Seeds by PEG 600–Ammonium Sulfate Aqueous Two-Phase System
by Bin Jiang, Yongqiang Yuan, Xiaoqing Zhang, Zhibiao Feng and Chunhong Liu
Molecules 2017, 22(10), 1596; https://doi.org/10.3390/molecules22101596 - 22 Sep 2017
Cited by 10 | Viewed by 5345
Abstract
A fast and efficient method based on a polyethylene glycol (PEG) 600/(NH4)2SO4 aqueous two-phase system for extracting lectin from Zihua snap-bean (Phaseolus vulgaris) seeds was established. According to a Box–Behnken design (BBD), involving four factors at [...] Read more.
A fast and efficient method based on a polyethylene glycol (PEG) 600/(NH4)2SO4 aqueous two-phase system for extracting lectin from Zihua snap-bean (Phaseolus vulgaris) seeds was established. According to a Box–Behnken design (BBD), involving four factors at three levels each subjected to analysis of variance (ANOVA) and response surface analysis, the protein recovery and the purification factor of lectin in the top phase were used as the response values of the variance analysis to acquire the multivariate quadratic regression model. SDS–PAGE electrophoresis and the hemagglutination test were used to detect the distribution of lectin in the aqueous two-phase system (ATPS). The obtained data indicated that lectin was preferentially partitioned into the PEG-rich phase, and the ATPS, composed of 15% (NH4)2SO4 (w/w), 18% PEG 600 (w/w), 0.4 g/5 g NaCl and 1 mL crude extract, showed good selectivity for lectin when the pH value was 7.5. Under the optimal conditions, most of the lectin was assigned to the top phase in the ATPS, and the hemagglutination activity of the purified lectin in the top phase was 3.08 times that of the crude extract. Consequently, the PEG 600/(NH4)2SO4 aqueous two-phase system was an effective method for separating and enriching lectin directly from the crude extract of Zihua snap-bean seeds. Full article
Show Figures

Graphical abstract

4699 KiB  
Article
Early Embryogenesis of Brown Alga Fucus vesiculosus L. is Characterized by Significant Changes in Carbon and Energy Metabolism
by Elena Tarakhovskaya, Valeriya Lemesheva, Tatiana Bilova and Claudia Birkemeyer
Molecules 2017, 22(9), 1509; https://doi.org/10.3390/molecules22091509 - 09 Sep 2017
Cited by 15 | Viewed by 6606
Abstract
Brown algae have an important role in marine environments. With respect to their broad distribution and importance for the environment and human use, brown algae of the order Fucales in particular became a model system for physiological and ecological studies. Thus, several fucoids [...] Read more.
Brown algae have an important role in marine environments. With respect to their broad distribution and importance for the environment and human use, brown algae of the order Fucales in particular became a model system for physiological and ecological studies. Thus, several fucoids have been extensively studied for their composition on the molecular level. However, research of fucoid physiology and biochemistry so far mostly focused on the adult algae, so a holistic view on the development of these organisms, including the crucial first life stages, is still missing. Therefore, we employed non-targeted metabolite profiling by gas chromatography coupled to mass spectrometry to create a non-biased picture of the early development of the fucoid alga Fucus vesiculosus. We found that embryogenic physiology was mainly dominated by a tight regulation of carbon and energy metabolism. The first dramatic changes of zygote metabolism started within 1 h after fertilization, while metabolism of 6–9 days old embryos appeared already close to that of an adult alga, indicated by the intensive production of secondary metabolites and accumulation of mannitol and citric acid. Given the comprehensive description and analysis we obtained in our experiments, our results exhibit an invaluable resource for the design of further experiments related to physiology of early algal development. Full article
Show Figures

Graphical abstract

2360 KiB  
Article
Origin and Formation Mechanism Investigation of Compound Precipitation from the Traditional Chinese Prescription Huang-Lian-Jie-Du-Tang by Isothermal Titration Calorimetry
by Hui Wang, Tong Li, Hongjun Xiang, Xinyu Zhang, Kang Fang, Gaorong Wu, Mengmeng Yan, Nannan Xue, Meng Chen, Tianxin Xie, Yuzhong Zhang, Penglong Wang and Haimin Lei
Molecules 2017, 22(9), 1456; https://doi.org/10.3390/molecules22091456 - 01 Sep 2017
Cited by 20 | Viewed by 4891
Abstract
Previous studies have shown that compounds in the form of precipitate (CFP) from Huang-Lian-Jie-Du-Tang (HLJDT) were stable, and the CFP content reached 2.63% of the whole decoction and had good neuroprotective effects. However, there has been no research on their specific source. In [...] Read more.
Previous studies have shown that compounds in the form of precipitate (CFP) from Huang-Lian-Jie-Du-Tang (HLJDT) were stable, and the CFP content reached 2.63% of the whole decoction and had good neuroprotective effects. However, there has been no research on their specific source. In this study, it was found that HLJDT CFP mainly came from the reaction of Scutellaria baicalensis and Coptis chinensis by studying the separated prescription components (accounting for 81.33% of HLJDT CFP). Unlike previous studies on HLJDT CFP, in this research the chemical composition of Scutellaria baicalensis–Coptis chinensis (SB–CC) CFP was identified by high performance liquid chromatography coupled with mass spectrometry (HPLC-MSn), which further proved that the main source of HLJDT CFP was Scutellaria baicalensis–Coptis chinensis CFP compared with previous HLJDT CFP studies. To explain the reaction mechanism between the decoctions of Scutellaria baicalensis and Coptis chinensis, isothermal titration calorimetry (ITC) was used to analyze their binding heat and the thermodynamic parameters (ΔH, ΔS, ΔG, n, Ka) of the reaction between baicalin and berberine, which are the main components of Scutellaria baicalensis and Coptis chinensis, respectively. The results showed that the reaction between decoctions of Scutellaria baicalensis and Coptis chinensis was exothermic and the reaction between baicalin and berberine was a spontaneous and enthalpy-driven chemical reaction, the binding ratio being 1:1. In addition, HLJDT CFP (EC50 = 14.71 ± 0.91 µg/mL) and SB-CC CFP (EC50 = 6.11 ± 0.12 µg/mL) showed similar protective activities on PC12 cells injured by cobalt chloride (CoCl2). This study provided a new angle to research on the main chemical components and therapeutic values of CFP in Traditional Chinese Medicine compounds. Full article
Show Figures

Figure 1

1160 KiB  
Article
The Potential of α-Spinasterol to Mimic the Membrane Properties of Natural Cholesterol
by Ivan Haralampiev, Holger A. Scheidt, Daniel Huster and Peter Müller
Molecules 2017, 22(8), 1390; https://doi.org/10.3390/molecules22081390 - 22 Aug 2017
Cited by 4 | Viewed by 5049
Abstract
Sterols play a unique role for the structural and dynamical organization of membranes. The current study reports data on the membrane properties of the phytosterol (3β,5α,22E)-stigmasta-7,22-dien-3-β-ol (α-spinasterol), which represents an important component of argan oil and have not been investigated so far in [...] Read more.
Sterols play a unique role for the structural and dynamical organization of membranes. The current study reports data on the membrane properties of the phytosterol (3β,5α,22E)-stigmasta-7,22-dien-3-β-ol (α-spinasterol), which represents an important component of argan oil and have not been investigated so far in molecular detail. In particular, the impact of α-spinasterol on the structure and organization of lipid membranes was investigated and compared with those of cholesterol. Various membrane parameters such as the molecular packing of the phospholipid fatty acyl chains, the membrane permeability toward polar molecules, and the formation of lateral membrane domains were studied. The experiments were performed on lipid vesicles using methods of NMR spectroscopy and fluorescence spectroscopy and microscopy. The results show that α-spinasterol resembles the membrane behavior of cholesterol to some degree. Full article
Show Figures

Figure 1

3056 KiB  
Article
A Novel Fluoroimmunoassay for Detecting Ruscogenin with Monoclonal Antibodies Conjugated with CdSe/ZnS Quantum Dots
by Hongwei Zhang, Tao Xu, Lan Gao, Xiufeng Liu, Jihua Liu and Boyang Yu
Molecules 2017, 22(8), 1250; https://doi.org/10.3390/molecules22081250 - 26 Jul 2017
Cited by 11 | Viewed by 4941
Abstract
Ruscogenin (RUS) is a steroidal sapogenin found in Ruscus aculeatus and Ophiopogon japonicus with several pharmacological activities. In the work reported herein, a novel method termed competitive fluorescence-linked immunosorbent assay (cFLISA) based on monoclonal antibodies (mAbs) coupled with quantum dots (QDs) was developed [...] Read more.
Ruscogenin (RUS) is a steroidal sapogenin found in Ruscus aculeatus and Ophiopogon japonicus with several pharmacological activities. In the work reported herein, a novel method termed competitive fluorescence-linked immunosorbent assay (cFLISA) based on monoclonal antibodies (mAbs) coupled with quantum dots (QDs) was developed for the quick and sensitive determination of RUS in biological samples. The mAbs against RUS were conjugated with CdSe/ZnS QDs by the crossing-linking reagents and an indirect cFLISA method was developed. There was a good linear relationship between inhibition efficiency and logarithm concentration of RUS which was varied from 0.1 to 1000 ng/mL. The IC50 and limit of detection (LOD) were 9.59 ng/mL and 0.016 ng/mL respectively, which much lower than the enzyme-linked immunosorbent assay (ELISA) method. The recoveries in plasma and tissues were ranged from 82.3% to 107.0% and the intra- and inter-day precision values were below 15%. The developed cFLISA has been successfully applied to the measurement of the concentrations of RUS in biological samples of rats, and showed great potential for the tissue distribution study of RUS. The cFLISA method may provide a valuable tool for the analysis of small molecules in biological samples and such an approach could be applied to other natural products. Full article
Show Figures

Graphical abstract

3529 KiB  
Article
Role of the p-Coumaroyl Moiety in the Antioxidant and Cytoprotective Effects of Flavonoid Glycosides: Comparison of Astragalin and Tiliroside
by Xican Li, Yage Tian, Tingting Wang, Qiaoqi Lin, Xiaoyi Feng, Qian Jiang, Yamei Liu and Dongfeng Chen
Molecules 2017, 22(7), 1165; https://doi.org/10.3390/molecules22071165 - 12 Jul 2017
Cited by 34 | Viewed by 6414
Abstract
The aim of this study was to explore the role of p-coumaroyl in the antioxidant and cytoprotective effects of flavonoid glycosides. The antioxidant effects of astragalin and tiliroside were compared using ferric ion reducing antioxidant power, DPPH• scavenging, ABTS•+ scavenging, •O [...] Read more.
The aim of this study was to explore the role of p-coumaroyl in the antioxidant and cytoprotective effects of flavonoid glycosides. The antioxidant effects of astragalin and tiliroside were compared using ferric ion reducing antioxidant power, DPPH• scavenging, ABTS•+ scavenging, •O2 scavenging, and Fe2+-chelating assays. The results of these assays revealed that astragalin and tiliroside both exhibited dose-dependent activities; however, tiliroside exhibited lower IC50 values than astragalin. In the Fe2+-chelating assay, tiliroside gave a larger shoulder-peak at 510 nm than astragalin, and was also found to be darker in color. Both of these compounds were subsequently evaluated in a Fenton-induced mesenchymal stem cell (MSC) damaged assay, where tiliroside performed more effectively as a cytoprotective agent than astragalin. Tiliroside bearing a 6′′-O-p-coumaroyl moiety exhibits higher antioxidant and cytoprotective effects than astragalin. The 6′′-O-p-coumaroyl moiety of tiliroside not only enhances the possibility of electron-transfer and hydrogen-atom-transfer-based multi-pathways, but also enhances the likelihood of Fe-chelating. The p-coumaroylation of the 6"-OH position could therefore be regarded as a potential approach for improving the antioxidant and cytoprotective effects of flavonoid glycosides in MSC implantation therapy. Full article
Show Figures

Figure 1

603 KiB  
Article
New Pinane Derivatives Found in Essential Oils of Calocedrus decurrens
by Gabriel Garcia, Loïc Tissandié, Jean-Jacques Filippi and Félix Tomi
Molecules 2017, 22(6), 921; https://doi.org/10.3390/molecules22060921 - 02 Jun 2017
Cited by 5 | Viewed by 4397
Abstract
The main objective of this study was to determine the chemical composition of essential oils (EOs) obtained from leaf, old branches, and young branches of a coniferous species Calocedrus decurrens acclimated to Corsica. The analytical investigation was conducted by GC(RI), GC-MS, pc-GC, and [...] Read more.
The main objective of this study was to determine the chemical composition of essential oils (EOs) obtained from leaf, old branches, and young branches of a coniferous species Calocedrus decurrens acclimated to Corsica. The analytical investigation was conducted by GC(RI), GC-MS, pc-GC, and NMR. C. decurrens leaf, old branches, and young branches EOs contained α-pinene (11.2; 56.6; 22.3%), myrcene (13.4; 8.4; 9.7%), Δ-3-carene (31.3; 5.2; 11.1%), limonene (6.4; 5.1; 5.5%), terpinolene (6.9; 1.5; 3.2%), and pin-2-en-8-ol (4.2; 4.5; 10.4%) as major components, respectively. Special attention was paid to purifying and identifying four unusual pinane derivatives: pin-2-en-8-ol, pin-2-en-8-yl Acetate, pin-2-en-8-al, and methyl pin-2-en-8-oate. The last two are reported for the first time. Full article
Show Figures

Graphical abstract

1845 KiB  
Article
An Efficient Method for the Preparative Isolation and Purification of Flavonoids from Leaves of Crataegus pinnatifida by HSCCC and Pre-HPLC
by Lei Wen, Yunliang Lin, Ruimin Lv, Huijiao Yan, Jinqian Yu, Hengqiang Zhao, Xiao Wang and Daijie Wang
Molecules 2017, 22(5), 767; https://doi.org/10.3390/molecules22050767 - 09 May 2017
Cited by 35 | Viewed by 6073
Abstract
In this work, flavonoid fraction from the leaves of Crataegus pinnatifida was separated into its seven main constituents using a combination of HSCCC coupled with pre-HPLC. In the first step, the total flavonoid extract was subjected to HSCCC with a two-solvent system of [...] Read more.
In this work, flavonoid fraction from the leaves of Crataegus pinnatifida was separated into its seven main constituents using a combination of HSCCC coupled with pre-HPLC. In the first step, the total flavonoid extract was subjected to HSCCC with a two-solvent system of chloroform/methanol/water/n-butanol (4:3:2:1.5, v/v), yielding four pure compounds, namely (–)-epicatechin (1), quercetin-3-O-(2,6-di-α-l-rhamnopyranosyl)-β-d-galactopyranoside (2), 4′′-O-glucosylvitexin (3) and 2′′-O-rhamnosylvitexin (4) as well as a mixture of three further flavonoids. An extrusion mode was used to rapidly separate quercetin-3-O-(2,6-di-α-l-rhamnopyranosyl)-β-d-galactopyranoside with a big KD-value. In the second step, the mixture that resulted from HSCCC was separated by pre-HPLC, resulting in three pure compounds including: vitexin (5), hyperoside (6) and isoquercitrin (7). The purities of the isolated compounds were established to be over 98%, as determined by HPLC. The structures of these seven flavonoids were elucidated by ESI-MS and NMR spectroscopic analyses. Full article
Show Figures

Figure 1

1589 KiB  
Article
In Vitro Anticancer Activity and Structural Characterization of Ubiquinones from Antrodia cinnamomea Mycelium
by I-Chuan Yen, Shih-Yu Lee, Kuen-Tze Lin, Feng-Yi Lai, Mao-Tien Kuo and Wen-Liang Chang
Molecules 2017, 22(5), 747; https://doi.org/10.3390/molecules22050747 - 06 May 2017
Cited by 11 | Viewed by 5612
Abstract
Two new ubiquinones, named antrocinnamone and 4-acetylantrocamol LT3, were isolated along with six known ubiquinones from Antrodia cinnamomea (Polyporaceae) mycelium. The developed HPLC analysis methods successfully identified eight different ubiquinones, two benzenoids, and one maleic acid derivative from A. cinnamomea. The ubiquinones [...] Read more.
Two new ubiquinones, named antrocinnamone and 4-acetylantrocamol LT3, were isolated along with six known ubiquinones from Antrodia cinnamomea (Polyporaceae) mycelium. The developed HPLC analysis methods successfully identified eight different ubiquinones, two benzenoids, and one maleic acid derivative from A. cinnamomea. The ubiquinones 18 exhibited potential and selective cytotoxic activity against three human cancer cell lines, with IC50 values ranging from 0.001 to 35.883 μM. We suggest that the different cytotoxicity levels were related to their chemical structures, especially the 4-hydroxycyclohex-2-enone ring and the presence of a free hydroxyl group in the side chain. The suppression by 4-acetylantrocamol LT3 stopped the cell cycle at the beginning of the G2-M phase thus making the cell cycle arrest at the sub-G1 phase as compared with control cells. Full article
Show Figures

Graphical abstract

1653 KiB  
Article
Thermo-Oxidative Stability Evaluation of Bullfrog (Rana catesbeiana Shaw) Oil
by Renata Rutckeviski, Francisco H. Xavier-Júnior, Andreza R.V. Morais, Éverton N. Alencar, Lucas Amaral-Machado, Julieta Genre, Amanda D. Gondim and Eryvaldo S.T. Egito
Molecules 2017, 22(4), 606; https://doi.org/10.3390/molecules22040606 - 10 Apr 2017
Cited by 15 | Viewed by 5523
Abstract
Bullfrog oil (BO), a natural product obtained from recycling of adipose tissue from the amphibian Rana catesbeiana Shaw, has been recently evaluated as a therapeutic activity ingredient. This work aimed to evaluate the long-term and accelerated thermal oxidative stabilities of this product, which [...] Read more.
Bullfrog oil (BO), a natural product obtained from recycling of adipose tissue from the amphibian Rana catesbeiana Shaw, has been recently evaluated as a therapeutic activity ingredient. This work aimed to evaluate the long-term and accelerated thermal oxidative stabilities of this product, which is a promising raw material for emulsion technology development. BO was extracted from amphibian adipose tissue at 70 °C with a yield of 60% ± 0.9%. Its main fatty acid compounds were oleic (30.0%) and eicosapentaenoic (17.6%) acids. Using titration techniques, BO showed peroxide, acid, iodine and saponification indices of 1.92 mEq·O2/kg, 2.95 mg·KOH/g oil, 104.2 g I2/100 g oil and 171.2 mg·KOH/g oil, respectively. In order to improve the accelerated oxidative stability of BO, synthetic antioxidants butylhydroxytoluene (BHT) and buthylhydroxyanisole (BHA) were used. The addition of BHT increased the oxidation induction time compared to the pure oil, or the oil containing BHA. From the results, the best oil-antioxidant mixture and concentration to increase the oxidative stability and allow the oil to be a stable raw material for formulation purposes was derived. Full article
Show Figures

Graphical abstract

3092 KiB  
Article
Optimization of Ionic Liquid-Assisted Extraction of Biflavonoids from Selaginella doederleinii and Evaluation of Its Antioxidant and Antitumor Activity
by Dan Li, Yan Qian, Yu-Jia Tian, Shi-Meng Yuan, Wei Wei and Gang Wang
Molecules 2017, 22(4), 586; https://doi.org/10.3390/molecules22040586 - 07 Apr 2017
Cited by 52 | Viewed by 5965
Abstract
As new green solvents, ionic liquids (ILs) have been generally applied in the extraction and separation of natural product. In this study, microwave assisted extraction based on IL (IL-MAE) was firstly employed to extract total biflavonoids from Selaginella doederleinii. Based on single-factor [...] Read more.
As new green solvents, ionic liquids (ILs) have been generally applied in the extraction and separation of natural product. In this study, microwave assisted extraction based on IL (IL-MAE) was firstly employed to extract total biflavonoids from Selaginella doederleinii. Based on single-factor experiment, microwave power (300–700 W), extract time (30–50 min) and extract temperature (40–60 °C) on total bioflavonoids and antioxidant activities of the extracts were further investigated by a Box-Behnken design of response surface methodology (RSM) selecting total bioflavonoids yields and IC50 of radical scavenging as index. Besides antioxidant activity of the extract was evaluated by a 2,2-diphenyl-1-picrylhydarzyl (DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS) radical scavenging assay, ferric reducing power assay and chelation of ferrous ions assay, and then anticaner activity was also researched against A549 cell line and 7721 cell line. The results illustrated that three factors and their interactions could be well suited for second-order polynomial models (p < 0.05). Through process parameters, optimization of the extract (460 W, 40 min, and 45 °C) and detection of bioactivity, the yield of total bioflavonoids was 16.83 mg/g and IC50 value was 56.24 μg/mL, respectively, indicating the extract has better anti-oxidation effect and antitumor activity. Furthermore, IL-MAE was the most efficient extracting method compared with MAE and Soxhlet extraction, which could improve extraction efficiency in a shorter time and at a lower temperature. In general, ILs-MAE was first adopted to establish a novel and green extraction process on the yields of total biflavonoids from S. doederleinii. In addition, the extract of containing biflavones showed potent antioxidant and anticancer capacity as a utilized valuable bioactive source for natural medicine. Full article
Show Figures

Figure 1

1051 KiB  
Article
The Effects of Sweet Foods on the Pharmacokinetics of Glycyrrhizic Acid by icELISA
by Bingqian Jiang, Huihua Qu, Hui Kong, Yue Zhang, Shuchen Liu, Jinjun Cheng, Xin Yan and Yan Zhao
Molecules 2017, 22(3), 498; https://doi.org/10.3390/molecules22030498 - 21 Mar 2017
Cited by 7 | Viewed by 3990
Abstract
The effect of sweet foods, such as honey, was investigated from the perspective of pharmacokinetics on the absorption of glycyrrhizic acid (GA). Due to the unique properties of indirect competitive enzyme-linked immunosorbent assay (icELISA), namely, its: specificity, sensitivity, repeatability, simple pretreatment of samples, [...] Read more.
The effect of sweet foods, such as honey, was investigated from the perspective of pharmacokinetics on the absorption of glycyrrhizic acid (GA). Due to the unique properties of indirect competitive enzyme-linked immunosorbent assay (icELISA), namely, its: specificity, sensitivity, repeatability, simple pretreatment of samples, fast and simple operation, and because it is economic and non-polluting, it has received increased attention. In this study, we used the advantages of this method to see how honey affected the pharmacokinetics of GA. The effects of honey on the pharmacokinetics of GA by ELISA were investigated for the first time. The results indicate that honey can postpone the peak concentration of GA in mouse blood, and this effect correlates well with fructose. As a representative of sweet foods, the result provides the valuable information that honey, or fructose, may act as sustained-releasing drugs in clinical scenarios; and that sweet foods may have some influences on drugs when taken together. Full article
Show Figures

Figure 1

3967 KiB  
Article
GC-MS Metabolomic Analysis to Reveal the Metabolites and Biological Pathways Involved in the Developmental Stages and Tissue Response of Panax ginseng
by Jia Liu, Yang Liu, Yu Wang, Ann Abozeid, Yuan-Gang Zu, Xiao-Ning Zhang and Zhong-Hua Tang
Molecules 2017, 22(3), 496; https://doi.org/10.3390/molecules22030496 - 21 Mar 2017
Cited by 32 | Viewed by 6494
Abstract
Ginsenosides, the major compounds present in ginseng, are known to have numerous physiological and pharmacological effects. The physiological processes, enzymes and genes involved in ginsenoside synthesis in P. ginseng have been well characterized. However, relatively little information is known about the dynamic metabolic [...] Read more.
Ginsenosides, the major compounds present in ginseng, are known to have numerous physiological and pharmacological effects. The physiological processes, enzymes and genes involved in ginsenoside synthesis in P. ginseng have been well characterized. However, relatively little information is known about the dynamic metabolic changes that occur during ginsenoside accumulation in ginseng. To explore this topic, we isolated metabolites from different tissues at different growth stages, and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS). The results showed that a total of 30, 16, 20, 36 and 31 metabolites were identified and involved in different developmental stages in leaf, stem, petiole, lateral root and main root, respectively. To investigate the contribution of tissue to the biosynthesis of ginsenosides, we examined the metabolic changes of leaf, stem, petiole, lateral root and main root during five development stages: 1-, 2-, 3-, 4- and 5-years. The score plots of partial least squares-discriminate analysis (PLS-DA) showed clear discrimination between growth stages and tissue samples. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis in the same tissue at different growth stages indicated profound biochemical changes in several pathways, including carbohydrate metabolism and pentose phosphate metabolism, in addition, the tissues displayed significant variations in amino acid metabolism, sugar metabolism and energy metabolism. These results should facilitate further dissection of the metabolic flux regulation of ginsenoside accumulation in different developmental stages or different tissues of ginseng. Full article
Show Figures

Figure 1

3982 KiB  
Article
Evaluation of Extraction and Degradation Methods to Obtain Chickpeasaponin B1 from Chickpea (Cicer arietinum L.)
by Kun Cheng, Hua Gao, Rong-Rong Wang, Yang Liu, Yu-Xue Hou, Xiao-Hong Liu, Kun Liu and Wei Wang
Molecules 2017, 22(2), 332; https://doi.org/10.3390/molecules22020332 - 21 Feb 2017
Cited by 13 | Viewed by 5959
Abstract
The objective of this research is to implement extraction and degradation methods for the obtainment of 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-galactopyranosyl] soyasapogenol B (chickpeasaponin B1) from chickpea. The effects of microwave-assisted extraction (MAE) processing parameters—such as ethanol concentration, solvent/solid ratio, extraction [...] Read more.
The objective of this research is to implement extraction and degradation methods for the obtainment of 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-galactopyranosyl] soyasapogenol B (chickpeasaponin B1) from chickpea. The effects of microwave-assisted extraction (MAE) processing parameters—such as ethanol concentration, solvent/solid ratio, extraction temperature, microwave irradiation power, and irradiation time—were evaluated. Using 1g of material with 8 mL of 70% aqueous ethanol and an extraction time of 10 min at 70 °C under irradiation power 400W provided optimal extraction conditions. Compared with the conventional extraction techniques, including heat reflux extraction (HRE), Soxhlet extraction (SE), and ultrasonic extraction (UE), MAE produced higher extraction efficiency under a lower extraction time. DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) saponin can be degraded to structurally stable saponin B by the loss of its DDMP group. The influence of pH and the concentration of potassium hydroxide on transformation efficiency of the target compound was investigated. A solution of 0.25 M potassium hydroxide in 75% aqueous ethanol was suitable for converting the corresponding DDMP saponins of chickpeasaponin B1. The implementation by the combining MAE technique and alkaline hydrolysis method for preparing chickpeasaponin B1 provides a convenient technology for future applications. Full article
Show Figures

Figure 1

1910 KiB  
Article
Metabolic Profiling and Identification of Shikonins in Root Periderm of Two Invasive Echium spp. Weeds in Australia
by Dominik Skoneczny, Paul A. Weston, Xiaocheng Zhu, Geoff M. Gurr, Ragan M. Callaway, Russel A. Barrow and Leslie A. Weston
Molecules 2017, 22(2), 330; https://doi.org/10.3390/molecules22020330 - 21 Feb 2017
Cited by 25 | Viewed by 6246
Abstract
Metabolic profiling can be successfully implemented to analyse a living system’s response to environmental conditions by providing critical information on an organism’s physiological state at a particular point in time and allowing for both quantitative and qualitative assessment of a specific subset(s) of [...] Read more.
Metabolic profiling can be successfully implemented to analyse a living system’s response to environmental conditions by providing critical information on an organism’s physiological state at a particular point in time and allowing for both quantitative and qualitative assessment of a specific subset(s) of key metabolites. Shikonins are highly reactive chemicals that affect various cell signalling pathways and possess antifungal, antibacterial and allelopathic activity. Based on previous bioassay results, bioactive shikonins, are likely to play important roles in the regulation of rhizosphere interactions with neighbouring plants, microbes and herbivores. An effective platform allowing for rapid identification and accurate profiling of numerous structurally similar, difficult-to-separate bioactive isohexenylnaphthazarins (shikonins) was developed using UHPLC Q-TOF MS. Root periderm tissues of the invasive Australian weeds Echium plantagineum and its congener E. vulgare were extracted overnight in ethanol for shikonin profiling. Shikonin production was evaluated at seedling, rosette and flowering stages. Five populations of each species were compared for qualitative and quantitative differences in shikonin formation. Each species showed little populational variation in qualitative shikonin production; however, shikonin was considerably low in one population of E. plantagineum from Western New South Wales. Seedlings of all populations produced the bioactive metabolite acetylshikonin and production was upregulated over time. Mature plants of both species produced significantly higher total levels of shikonins and isovalerylshikonin > dimethylacrylshikonin > shikonin > acetylshikonin in mature E. plantagineum. Although qualitative metabolic profiles in both Echium spp. were nearly identical, shikonin abundance in mature plant periderm was approximately 2.5 times higher in perennial E. vulgare extracts in comparison to those of the annual E. plantagineum. These findings contribute to our understanding of the biosynthesis of shikonins in roots of two related invasive plants and their expression in relation to plant phenological stage. Full article
Show Figures

Graphical abstract

924 KiB  
Article
Application of the Crystalline Sponge Method to Revise the Structure of the Phenalenone Fuliginone
by Robert Brkljača, Bernd Schneider, William Hidalgo, Felipe Otálvaro, Felipe Ospina, Shoukou Lee, Manabu Hoshino, Makoto Fujita and Sylvia Urban
Molecules 2017, 22(2), 211; https://doi.org/10.3390/molecules22020211 - 30 Jan 2017
Cited by 13 | Viewed by 7481
Abstract
The structure of fuliginone was revised from a phenyl substituted phenalenone to a hydroxyl substituted phenalenone as a result of its re‐purification via HPLC with subsequent NMR analysis together with an independent synthesis and analysis of the crystal structure, which was secured via [...] Read more.
The structure of fuliginone was revised from a phenyl substituted phenalenone to a hydroxyl substituted phenalenone as a result of its re‐purification via HPLC with subsequent NMR analysis together with an independent synthesis and analysis of the crystal structure, which was secured via the crystalline sponge method. On‐flow High Performance Liquid Chromatography coupled to Nuclear Magnetic Resonance spectroscopy (HPLC‐NMR) was employed to confirm the presence of the natural product in the plant extract and to monitor for any possible degradation or conversion of the compound. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

34169 KiB  
Review
High Resolution NMR Spectroscopy as a Structural and Analytical Tool for Unsaturated Lipids in Solution
by Eleni Alexandri, Raheel Ahmed, Hina Siddiqui, Muhammad I. Choudhary, Constantinos G. Tsiafoulis and Ioannis P. Gerothanassis
Molecules 2017, 22(10), 1663; https://doi.org/10.3390/molecules22101663 - 05 Oct 2017
Cited by 165 | Viewed by 22930
Abstract
Abstract: Mono- and polyunsaturated lipids are widely distributed in Nature, and are structurally and functionally a diverse class of molecules with a variety of physicochemical, biological, medicinal and nutritional properties. High resolution NMR spectroscopic techniques including 1H-, 13C- and 31P-NMR have been successfully [...] Read more.
Abstract: Mono- and polyunsaturated lipids are widely distributed in Nature, and are structurally and functionally a diverse class of molecules with a variety of physicochemical, biological, medicinal and nutritional properties. High resolution NMR spectroscopic techniques including 1H-, 13C- and 31P-NMR have been successfully employed as a structural and analytical tool for unsaturated lipids. The objective of this review article is to provide: (i) an overview of the critical 1H-, 13C- and 31P-NMR parameters for structural and analytical investigations; (ii) an overview of various 1D and 2D NMR techniques that have been used for resonance assignments; (iii) selected analytical and structural studies with emphasis in the identification of major and minor unsaturated fatty acids in complex lipid extracts without the need for the isolation of the individual components; (iv) selected investigations of oxidation products of lipids; (v) applications in the emerging field of lipidomics; (vi) studies of protein-lipid interactions at a molecular level; (vii) practical considerations and (viii) an overview of future developments in the field. Full article
Show Figures

Figure 1

6985 KiB  
Review
Monoclonal Antibodies and Immunoassay for Medical Plant-Derived Natural Products: A Review
by Xin Yan, Yan Zhao, Yue Zhang and Huihua Qu
Molecules 2017, 22(3), 355; https://doi.org/10.3390/molecules22030355 - 26 Feb 2017
Cited by 20 | Viewed by 6229
Abstract
Owing to the widespread application value, monoclonal antibodies (MAbs) have become a tool of increasing importance in modern bioscience research since their emergence. Recently, some researchers have focused on the production of MAbs against medical plant-derived natural products (MPNP), the secondary metabolites of [...] Read more.
Owing to the widespread application value, monoclonal antibodies (MAbs) have become a tool of increasing importance in modern bioscience research since their emergence. Recently, some researchers have focused on the production of MAbs against medical plant-derived natural products (MPNP), the secondary metabolites of medical plants. At the same time, various immunoassay methods were established on the basis of these MPNP MAbs, and then rapidly developed into a novel technique for medical plant and phytomedicine research in the area of quality control, pharmacological analysis, drug discovery, and so on. Dependent on the research works carried out in recent years, this paper aims to provide a comprehensive review of MAbs against MPNP and the application of various immunoassay methods established on the basis of these MAbs, and conclude with a short section on future prospects and research trends in this area. Full article
Show Figures

Figure 1

1100 KiB  
Review
Ligand Fishing: A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products
by Rongjie Zhuo, Hao Liu, Ningning Liu and Yi Wang
Molecules 2016, 21(11), 1516; https://doi.org/10.3390/molecules21111516 - 11 Nov 2016
Cited by 81 | Viewed by 11057
Abstract
Identification of active compounds from natural products is a critical and challenging task in drug discovery pipelines. Besides commonly used bio-guided screening approaches, affinity selection strategy coupled with liquid chromatography or mass spectrometry, known as ligand fishing, has been gaining increasing interest from [...] Read more.
Identification of active compounds from natural products is a critical and challenging task in drug discovery pipelines. Besides commonly used bio-guided screening approaches, affinity selection strategy coupled with liquid chromatography or mass spectrometry, known as ligand fishing, has been gaining increasing interest from researchers. In this review, we summarized this emerging strategy and categorized those methods as off-line or on-line mode according to their features. The separation principles of ligand fishing were introduced based on distinct analytical techniques, including biochromatography, capillary electrophoresis, ultrafiltration, equilibrium dialysis, microdialysis, and magnetic beads. The applications of ligand fishing approaches in the discovery of lead compounds were reviewed. Most of ligand fishing methods display specificity, high efficiency, and require less sample pretreatment, which makes them especially suitable for screening active compounds from complex mixtures of natural products. We also summarized the applications of ligand fishing in the modernization of Traditional Chinese Medicine (TCM), and propose some perspectives of this remarkable technique. Full article
Show Figures

Figure 1

Back to TopTop