Recent Advances in Nanomaterials for Removal of New Emerging Pollutants from Water/Wastewater: Volume II

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Environmental Nanoscience and Nanotechnology".

Deadline for manuscript submissions: 20 December 2024 | Viewed by 1701

Special Issue Editor


E-Mail Website
Guest Editor
Department of Materials, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lucica 1, HR-10000 Zagreb, Croatia
Interests: advanced ceramics; nanomaterials; corrosion mechanisms; wear mechanisms; mechanical characterization; sintering; microstructural characterization of ceramics; manufacturing; forming of ceramics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is focused on recent developments in the synthesis of novel nanostructured materials (photocatalysts and adsorbents) for the removal of emerging pollutants (pharmaceuticals, additives in personal care products, microplastics, pesticides, herbicides, etc.) from water media. It is our pleasure to invite you to submit a manuscript to this Special Issue.

Full papers, short communications, and reviews are welcome in the following areas: 1. Synthesis of novel nanostructured photocatalysts active under visible light using different techniques such as green microwave-assisted crystallization, sol–gel, hydrothermal, solvothermal, physical methods, etc. 2. Synthesis of magnetic composites in the form of particles or immobilized on different substrates with photocatalytic activity under visible light. 3. Modification and functionalization of natural materials in photocatalysis for developing cost-effective reusable technologies. 4. Application of novel photocatalysts and adsorbents in the degradation/removal of emerging pollutants from water media. 5. Studies of the correlation between structural properties and the activity of novel photocatalysts and adsorbents.

Prof. Dr. Lidija Ćurković
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photocatalysts
  • nanoparticles
  • emerging pollutants
  • pharmaceuticals
  • water treatment
  • wastewater

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 7079 KiB  
Article
Optimization of Ciprofloxacin Adsorption on Clinoptilolite-Based Adsorbents Using Response Surface Methodology
by Barbara Kalebić, Arijeta Bafti, Hrvoje Cajner, Marijan Marciuš, Gordana Matijašić and Lidija Ćurković
Nanomaterials 2023, 13(4), 740; https://doi.org/10.3390/nano13040740 - 15 Feb 2023
Viewed by 1431
Abstract
The adsorption of the antibiotic ciprofloxacin (CIP) from water solution by natural zeolite–clinoptilolite (CLI), magnetic clinoptilolite (MAG-CLI), and graphene oxide coated magnetic clinoptilolite (GO-MAG-CLI) was investigated. The novel approach of an environmentally friendly and cost-effective microwave-assisted method was applied for the magnetic composite [...] Read more.
The adsorption of the antibiotic ciprofloxacin (CIP) from water solution by natural zeolite–clinoptilolite (CLI), magnetic clinoptilolite (MAG-CLI), and graphene oxide coated magnetic clinoptilolite (GO-MAG-CLI) was investigated. The novel approach of an environmentally friendly and cost-effective microwave-assisted method was applied for the magnetic composite synthesis. Detailed characterization of the prepared composites was achieved. In order to investigate the effect of the initial CIP concentration, pH, temperature, contact time, and type of adsorbent on the adsorption efficiency of CIP, and to obtain the optimal conditions for CIP removal, the response surface methodology central composite factorial design (RSM-CCF) was applied. The results obtained by the RSM-CCF showed that among the studied adsorbents, GO-MAG-CLI had the highest adsorption capacity for CIP, achieved for the initial concentration of 48.47 mg dm−3 at a pH of 5 and 24.78 °C after 19.20 min of contact time. The adsorption kinetics studied for the initial CIP concentration range of 15–50 mg dm−3 followed Lagergren’s pseudo-second-order model, and the Langmuir isotherm was the most suitable one to describe the CIP adsorption onto GO-MAG-CLI. Full article
Show Figures

Figure 1

Back to TopTop