Synthesis and Applications of Gold Nanoparticles: 2nd Edition

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Synthesis, Interfaces and Nanostructures".

Deadline for manuscript submissions: 20 November 2024 | Viewed by 5214

Special Issue Editor


E-Mail Website
Guest Editor
Department of Applied Chemistry, National Pingtung University, Pingtung, Taiwan
Interests: plasmonic biosensing; gold nanoparticles photoreduction; photoresist
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The pervasive utilization of gold nanoparticles (AuNPs) has stemmed from their distinctive optical, electronic, and physical attributes. AuNP applications continue to evolve, encompassing electronics, sensors, diagnostics, solar cells, catalysis, nanoengineering, photodynamic therapy, therapeutic agent delivery, and more.

In this Special Issue, we eagerly anticipate exceptional contributions centered around the theme of "Synthesis and Applications of Gold Nanoparticles". Encompassing both fundamental principles and the latest advancements, this collection aims to spotlight the highly promising field of gold nanoparticles, with the aim to engage the widest possible audience. Embracing subjects such as AuNP synthesis, their integration with biologically compatible ligands, diagnostics, plasmon-based labeling and imaging, optical and electrochemical sensing, as well as disease-specific therapies, we invite dedicated researchers to submit original research papers or comprehensive review articles, allowing us to collectively present the forefront of progress in this dynamic field.

We look forward to receiving your contributions.

Prof. Dr. Wen-Huei Chang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gold nanoparticles
  • metal nanoparticles
  • photonics
  • green synthesis
  • nanotechnology
  • functional material
  • biomedical applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 2462 KiB  
Article
Development of a Gold Nanoparticle-Based Sensor for Authentication of Organic Milk Based on Differential Levels of miRNA
by Karelmar Lopez-Benitez, Patricia Alcazar-Gonzalez, Loubna Abou el qassim, Mª Teresa Fernandez-Argüelles, Fernando Vicente, Luis J. Royo and Mario Menendez-Miranda
Nanomaterials 2024, 14(16), 1364; https://doi.org/10.3390/nano14161364 - 19 Aug 2024
Viewed by 925
Abstract
Dairy production systems significantly impact environmental sustainability, animal welfare, and human health. Intensive farming maximizes output through high-input practices, raising concerns about environmental degradation, animal welfare, and health risks from antibiotic residues. Conversely, organic farming emphasizes sustainable practices, animal welfare, and minimal synthetic [...] Read more.
Dairy production systems significantly impact environmental sustainability, animal welfare, and human health. Intensive farming maximizes output through high-input practices, raising concerns about environmental degradation, animal welfare, and health risks from antibiotic residues. Conversely, organic farming emphasizes sustainable practices, animal welfare, and minimal synthetic inputs, potentially enhancing biodiversity, soil health, and milk quality. MicroRNAs (miRNAs), non-coding RNAs regulating gene expression, are promising biomarkers due to their response to various conditions. In this study, miRNAs bta-miR-103 and bta-miR-155, which are abundant in milk from pasture-fed cows, were selected. Additionally, bta-miR-215, which is abundant in milk fat from intensive systems, was also studied, in order to differentiate dairy production systems. A novel, cost-effective gold nanoparticle (AuNP)-based sensor was developed for miRNA detection, leveraging the unique plasmonic properties of AuNPs for visual detection. The method involves functionalizing AuNPs with complementary RNA probes and detecting miRNA-induced aggregation through colorimetric changes. This rapid, results in 30 min, and sensitive, visual limit of detection of 200 nM, assay requires minimal instrumentation and can be easily interpreted, offering significant advantages for field implementation in characterizing dairy production systems. This study demonstrates the successful application of this sensor in detecting miRNAs in 350 nM miRNA spiked raw milk, highlighting its potential for in situ dairy industry applications. Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles: 2nd Edition)
Show Figures

Graphical abstract

22 pages, 5266 KiB  
Article
Functionalized Gold Nanoparticles and Halogen Bonding Interactions Involving Fentanyl and Fentanyl Derivatives
by Molly M. Sherard, Jamie S. Kaplan, Jeffrey H. Simpson, Kevin W. Kittredge and Michael C. Leopold
Nanomaterials 2024, 14(11), 917; https://doi.org/10.3390/nano14110917 - 23 May 2024
Viewed by 1356
Abstract
Fentanyl (FTN) and synthetic analogs of FTN continue to ravage populations across the globe, including in the United States where opioids are increasingly being used and abused and are causing a staggering and growing number of overdose deaths each year. This growing pandemic [...] Read more.
Fentanyl (FTN) and synthetic analogs of FTN continue to ravage populations across the globe, including in the United States where opioids are increasingly being used and abused and are causing a staggering and growing number of overdose deaths each year. This growing pandemic is worsened by the ease with which FTN can be derivatized into numerous derivatives. Understanding the chemical properties/behaviors of the FTN class of compounds is critical for developing effective chemical detection schemes using nanoparticles (NPs) to optimize important chemical interactions. Halogen bonding (XB) is an intermolecular interaction between a polarized halogen atom on a molecule and e-rich sites on another molecule, the latter of which is present at two or more sites on most fentanyl-type structures. Density functional theory (DFT) is used to identify these XB acceptor sites on different FTN derivatives. The high toxicity of these compounds necessitated a “fragmentation” strategy where smaller, non-toxic molecules resembling parts of the opioids acted as mimics of XB acceptor sites present on intact FTN and its derivatives. DFT of the fragments’ interactions informed solution measurements of XB using 19F NMR titrations as well as electrochemical measurements of XB at self-assembled monolayer (SAM)-modified electrodes featuring XB donor ligands. Gold NPs, known as monolayer-protected clusters (MPCs), were also functionalized with strong XB donor ligands and assembled into films, and their interactions with FTN “fragments” were studied using voltammetry. Ultimately, spectroscopy and TEM analysis were combined to study whole-molecule FTN interactions with the functionalized MPCs in solution. The results suggested that the strongest XB interaction site on FTN, while common to most of the drug’s derivatives, is not strong enough to induce NP-aggregation detection but may be better exploited in sensing schemes involving films. Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles: 2nd Edition)
Show Figures

Figure 1

11 pages, 2160 KiB  
Communication
A Uni-Micelle Approach for the Controlled Synthesis of Monodisperse Gold Nanocrystals
by Liangang Shan, Wenchao Wang, Lei Qian, Jianguo Tang and Jixian Liu
Nanomaterials 2024, 14(11), 900; https://doi.org/10.3390/nano14110900 - 21 May 2024
Cited by 1 | Viewed by 1026
Abstract
Small-size gold nanoparticles (AuNPs) are showing large potential in various fields, such as photothermal conversion, sensing, and medicine. However, current synthesis methods generally yield lower, resulting in a high cost. Here, we report a novel uni-micelle method for the controlled synthesis of monodisperse [...] Read more.
Small-size gold nanoparticles (AuNPs) are showing large potential in various fields, such as photothermal conversion, sensing, and medicine. However, current synthesis methods generally yield lower, resulting in a high cost. Here, we report a novel uni-micelle method for the controlled synthesis of monodisperse gold nanocrystals, in which there is only one kind micelle containing aqueous solution of reductant while the dual soluble Au (III) precursor is dissolved in oil phase. Our synthesis includes the reversible phase transfer of Au (III) and “uni-micelle” synthesis, employing a Au (III)-OA complex as an oil-soluble precursor. Size-controlled monodisperse AuNPs with a size of 4–11 nm are synthesized by tuning the size of the micelles, in which oleylamine (OA) is adsorbed on the shell of micelles and enhances the rigidity of the micelles, depressing micellar coalescence. Monodisperse AuNPs can be obtained through a one-time separation process with a higher yield of 61%. This method also offers a promising way for the controlled synthesis of small-size alloy nanoparticles and semiconductor heterojunction quantum dots. Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles: 2nd Edition)
Show Figures

Figure 1

16 pages, 3806 KiB  
Article
Shape-Driven Response of Gold Nanoparticles to X-rays
by Simona Tarantino, Caterina Capomolla, Alessandra Carlà, Livia Giotta, Mariafrancesca Cascione, Chiara Ingrosso, Edoardo Scarpa, Loris Rizzello, Anna Paola Caricato, Rosaria Rinaldi and Valeria De Matteis
Nanomaterials 2023, 13(19), 2719; https://doi.org/10.3390/nano13192719 - 7 Oct 2023
Cited by 2 | Viewed by 1479
Abstract
Radiotherapy (RT) involves delivering X-ray beams to the tumor site to trigger DNA damage. In this approach, it is fundamental to preserve healthy cells and to confine the X-ray beam only to the malignant cells. The integration of gold nanoparticles (AuNPs) in the [...] Read more.
Radiotherapy (RT) involves delivering X-ray beams to the tumor site to trigger DNA damage. In this approach, it is fundamental to preserve healthy cells and to confine the X-ray beam only to the malignant cells. The integration of gold nanoparticles (AuNPs) in the X-ray methodology could be considered a powerful tool to improve the efficacy of RT. Indeed, AuNPs have proven to be excellent allies in contrasting tumor pathology upon RT due to their high photoelectric absorption coefficient and unique physiochemical properties. However, an analysis of their physical and morphological reaction to X-ray exposure is necessary to fully understand the AuNPs’ behavior upon irradiation before treating the cells, since there are currently no studies on the evaluation of potential NP morphological changes upon specific irradiations. In this work, we synthesized two differently shaped AuNPs adopting two different techniques to achieve either spherical or star-shaped AuNPs. The spherical AuNPs were obtained with the Turkevich–Frens method, while the star-shaped AuNPs (AuNSs) involved a seed-mediated approach. We then characterized all AuNPs with Transmission Electron Microscopy (TEM), Uv-Vis spectroscopy, Dynamic Light Scattering (DLS), zeta potential and Fourier Transform Infrared (FTIR) spectroscopy. The next step involved the treatment of AuNPs with two different doses of X-radiation commonly used in RT, namely 1.8 Gy and 2 Gy, respectively. Following the X-rays’ exposure, the AuNPs were further characterized to investigate their possible physicochemical and morphological alterations induced with the X-rays. We found that AuNPs do not undergo any alteration, concluding that they can be safely used in RT treatments. Lastly, the actin rearrangements of THP-1 monocytes treated with AuNPs were also assessed in terms of coherency. This is a key proof to evaluate the possible activation of an immune response, which still represents a big limitation for the clinical translation of NPs. Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles: 2nd Edition)
Show Figures

Figure 1

Back to TopTop