New Challenges in Designed Nanointerfaces

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Synthesis, Interfaces and Nanostructures".

Deadline for manuscript submissions: closed (31 May 2024) | Viewed by 7462

Special Issue Editor


E-Mail Website
Guest Editor
Innovation Centre in Photonics and Plasma for Advanced Materials and Eco-Nano Technologies, National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409 Str., 077125 Magurele Ilfov, Romania
Interests: biomaterials; smart interfaces; topographical cues for cells studies; laser processing surfaces; biosensors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to announce a Special Issue in Nanomaterials entitled “New Challenges in Designed Nanointerfaces”. Considering the importance of the characteristics of materials, processing techniques and modulating interface characteristics for specific targeted functions, this Special Issue will provide an overview of nanointerface design, with a focus on fabrication, the assembly of nanomaterials and nanostructures, processing, properties, characterization and integration to obtain multifunctional systems in potential applications, ranging from biosensors, to catalysis and medicine.

Topics of interest include, but are not limited to, the following:

  • Design methods for synthesizing, processing and characterizing biointerfaces and biomaterials;
  • The interaction of cells to form nano–microstructured material interfaces (from coatings to nanofibers, etc.);
  • Design methods for synthesizing, processing and characterizing nanomaterials;
  • Nanoscale mechanisms for the assembly of materials and biomaterials;
  • Active nanointerfaces for various applications: biomedical applications, energy-transforming technologies, electrochemical biosensors and diagnostic platforms in bio-electrochemistry.

Dr. Valentina Dinca
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • designed nanointerfaces
  • bioinstructive interfaces
  • smart stimuli responsive interfaces
  • biomedical applications
  • energy transforming technologies
  • electrochemical biosensors
  • diagnostic platforms

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 5960 KiB  
Article
Lead-Free Perovskite Thin Films for Gas Sensing through Surface Acoustic Wave Device Detection
by Nicoleta Enea, Valentin Ion, Cristian Viespe, Izabela Constantinoiu, Anca Bonciu, Maria Luiza Stîngescu, Ruxandra Bîrjega and Nicu Doinel Scarisoreanu
Nanomaterials 2024, 14(1), 39; https://doi.org/10.3390/nano14010039 - 22 Dec 2023
Viewed by 1717
Abstract
Thin film technology shows great promise in fabricating electronic devices such as gas sensors. Here, we report the fabrication of surface acoustic wave (SAW) sensors based on thin films of (1 − x) Ba(Ti0.8Zr0.2)O3−x(Ba0.7Ca0.3 [...] Read more.
Thin film technology shows great promise in fabricating electronic devices such as gas sensors. Here, we report the fabrication of surface acoustic wave (SAW) sensors based on thin films of (1 − x) Ba(Ti0.8Zr0.2)O3−x(Ba0.7Ca0.3)TiO3 (BCTZ50, x = 50) and Polyethylenimine (PEI). The layers were deposited by two laser-based techniques, namely pulsed laser deposition (PLD) for the lead-free material and matrix assisted pulsed laser evaporation (MAPLE) for the sensitive polymer. In order to assay the impact of the thickness, the number of laser pulses was varied, leading to thicknesses between 50 and 350 nm. The influence of BCTZ film’s crystallographic features on the characteristics and performance of the SAW device was studied by employing substrates with different crystal structures, more precisely cubic Strontium Titanate (SrTiO3) and orthorhombic Gadolinium Scandium Oxide (GdScO3). The SAW sensors were further integrated into a testing system to evaluate the response of the BCTZ thin films with PEI, and then subjected to tests for N2, CO2 and O2 gases. The influence of the MAPLE’s deposited PEI layer on the overall performance was demonstrated. For the SAW sensors based on BCTZ/GdScO3 thin films with a PEI polymer, a maximum frequency shift of 39.5 kHz has been obtained for CO2; eight times higher compared to the sensor without the polymeric layer. Full article
(This article belongs to the Special Issue New Challenges in Designed Nanointerfaces)
Show Figures

Figure 1

21 pages, 4958 KiB  
Article
Mitigation of Cellular and Bacterial Adhesion on Laser Modified Poly (2-Methacryloyloxyethyl Phosphorylcholine)/Polydimethylsiloxane Surface
by Simona Nistorescu, Madalina Icriverzi, Paula Florian, Anca Bonciu, Valentina Marascu, Nicoleta Dumitrescu, Gratiela Gradisteanu Pircalabioru, Laurentiu Rusen, Alexandra Mocanu, Anca Roseanu, Anisoara Cimpean, Florin Grama, Valentina Dinca and Daniel A. Cristian
Nanomaterials 2023, 13(1), 64; https://doi.org/10.3390/nano13010064 - 23 Dec 2022
Cited by 5 | Viewed by 2996
Abstract
Nowadays, using polymers with specific characteristics to coat the surface of a device to prevent undesired biological responses can represent an optimal strategy for developing new and more efficient implants for biomedical applications. Among them, zwitterionic phosphorylcholine-based polymers are of interest due to [...] Read more.
Nowadays, using polymers with specific characteristics to coat the surface of a device to prevent undesired biological responses can represent an optimal strategy for developing new and more efficient implants for biomedical applications. Among them, zwitterionic phosphorylcholine-based polymers are of interest due to their properties to resist cell and bacterial adhesion. In this work, the Matrix-Assisted Laser Evaporation (MAPLE) technique was investigated as a new approach for functionalising Polydimethylsiloxane (PDMS) surfaces with zwitterionic poly(2-Methacryloyloxyethyl-Phosphorylcholine) (pMPC) polymer. Evaluation of the physical–chemical properties of the new coatings revealed that the technique proposed has the advantage of achieving uniform and homogeneous stable moderate hydrophilic pMPC thin layers onto hydrophobic PDMS without any pre-treatment, therefore avoiding the major disadvantage of hydrophobicity recovery. The capacity of modified PDMS surfaces to reduce bacterial adhesion and biofilm formation was tested for Gram-positive bacteria, Staphylococcus aureus (S. aureus), and Gram-negative bacteria, Escherichia coli (E. coli). Cell adhesion, proliferation and morphology of human THP-1 differentiated macrophages and human normal CCD-1070Sk fibroblasts on the different surfaces were also assessed. Biological in vitro investigation revealed a significantly reduced adherence on PDMS–pMPC of both E. coli (from 29 × 10 6 to 3 × 102 CFU/mL) and S. aureus (from 29 × 106 to 3 × 102 CFU/mL) bacterial strains. Additionally, coated surfaces induced a significant inhibition of biofilm formation, an effect observed mainly for E. coli. Moreover, the pMPC coatings improved the capacity of PDMS to reduce the adhesion and proliferation of human macrophages by 50% and of human fibroblast by 40% compared to unmodified scaffold, circumventing undesired cell responses such as inflammation and fibrosis. All these highlighted the potential for the new PDMS–pMPC interfaces obtained by MAPLE to be used in the biomedical field to design new PDMS-based implants exhibiting long-term hydrophilic profile stability and better mitigating foreign body response and microbial infection. Full article
(This article belongs to the Special Issue New Challenges in Designed Nanointerfaces)
Show Figures

Figure 1

15 pages, 3669 KiB  
Article
In Situ Measurements of Strain Evolution in Graphene/Boron Nitride Heterostructures Using a Non-Destructive Raman Spectroscopy Approach
by Marc Mezzacappa, Dheyaa Alameri, Brian Thomas, Yoosuk Kim, Chi-Hou Lei and Irma Kuljanishvili
Nanomaterials 2022, 12(17), 3060; https://doi.org/10.3390/nano12173060 - 3 Sep 2022
Cited by 1 | Viewed by 2138
Abstract
The mechanical properties of engineered van der Waals (vdW) 2D materials and heterostructures are critically important for their implementation into practical applications. Using a non-destructive Raman spectroscopy approach, this study investigates the strain evolution of single-layer graphene (SLGr) and few-layered boron nitride/graphene (FLBN/SLGr) [...] Read more.
The mechanical properties of engineered van der Waals (vdW) 2D materials and heterostructures are critically important for their implementation into practical applications. Using a non-destructive Raman spectroscopy approach, this study investigates the strain evolution of single-layer graphene (SLGr) and few-layered boron nitride/graphene (FLBN/SLGr) heterostructures. The prepared 2D materials are synthesized via chemical vapor deposition (CVD) method and then transferred onto flexible polyethylene terephthalate (PET) substrates for subsequent strain measurements. For this study, a custom-built mechanical device-jig is designed and manufactured in-house to be used as an insert for the 3D piezoelectric stage of the Raman system. In situ investigation of the effects of applied strain in graphene detectable via Raman spectral data in characteristic bonds within SLGr and FLBN/SLGr heterostructures is carried out. The in situ strain evolution of the FLBN/SLGr heterostructures is obtained in the range of (0–0.5%) strain. It is found that, under the same strain, SLG exhibits a higher Raman shift in the 2D band as compared with FLBN/SLGr heterostructures. This research leads to a better understanding of strain dissipation in vertical 2D heterostacks, which could help improve the design and engineering of custom interfaces and, subsequently, control lattice structure and electronic properties. Moreover, this study can provide a new systematic approach for precise in situ strain assessment and measurements of other CVD-grown 2D materials and their heterostructures on a large scale for manufacturing a variety of future micro- and nano-scale devices on flexible substrates. Full article
(This article belongs to the Special Issue New Challenges in Designed Nanointerfaces)
Show Figures

Figure 1

Back to TopTop