Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4095 KiB  
Article
A Bilayer Microarray Patch (MAP) for HIV Pre-Exposure Prophylaxis: The Role of MAP Designs and Formulation Composition in Enhancing Long-Acting Drug Delivery
by Lalitkumar K. Vora, Ismaiel A. Tekko, Fabiana Volpe Zanutto, Akmal Sabri, Robert K. M. Choy, Jessica Mistilis, Priscilla Kwarteng, Courtney Jarrahian, Helen O. McCarthy and Ryan F. Donnelly
Pharmaceutics 2024, 16(1), 142; https://doi.org/10.3390/pharmaceutics16010142 - 20 Jan 2024
Cited by 1 | Viewed by 1182
Abstract
Microarray patches (MAPs) have shown great potential for efficient and patient-friendly drug delivery through the skin; however, improving their delivery efficiency for long-acting drug release remains a significant challenge. This research provides an overview of novel strategies aimed at enhancing the efficiency of [...] Read more.
Microarray patches (MAPs) have shown great potential for efficient and patient-friendly drug delivery through the skin; however, improving their delivery efficiency for long-acting drug release remains a significant challenge. This research provides an overview of novel strategies aimed at enhancing the efficiency of MAP delivery of micronized cabotegravir sodium (CAB Na) for HIV pre-exposure prophylaxis (PrEP). The refinement of microneedle design parameters, including needle length, shape, density, and arrangement, and the formulation properties, such as solubility, viscosity, polymer molecular weight, and stability, are crucial for improving penetration and release profiles. Additionally, a bilayer MAP optimization step was conducted by diluting the CAB Na polymeric mixture to localize the drug into the tips of the needles to enable rapid drug deposition into the skin following MAP application. Six MAP designs were analyzed and investigated with regard to delivery efficiency into the skin in ex vivo and in vivo studies. The improved MAP design and formulations were found to be robust and had more than 30% in vivo delivery efficiency, with plasma levels several-fold above the therapeutic concentration over a month. Repeated weekly dosing demonstrated the robustness of MAPs in delivering a consistent and sustained dose of CAB. In summary, CAB Na MAPs were able to deliver therapeutically relevant levels of drug. Full article
Show Figures

Figure 1

15 pages, 4260 KiB  
Article
Neuroprotective Effect of Polyvalent Immunoglobulins on Mouse Models of Chemotherapy-Induced Peripheral Neuropathy
by Mohamad Mroué, Flavien Bessaguet, Angélique Nizou, Laurence Richard, Franck Sturtz, Laurent Magy, Sylvie Bourthoumieu, Aurore Danigo and Claire Demiot
Pharmaceutics 2024, 16(1), 139; https://doi.org/10.3390/pharmaceutics16010139 - 20 Jan 2024
Viewed by 1014
Abstract
The occurrence of neuropathic pain in chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting effect of many commonly-used anticancer agents. Polyvalent human immunoglobulins (hIg), used in the treatment of several peripheral neuropathies, may alleviate neuropathic pain. The aim of this project was to [...] Read more.
The occurrence of neuropathic pain in chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting effect of many commonly-used anticancer agents. Polyvalent human immunoglobulins (hIg), used in the treatment of several peripheral neuropathies, may alleviate neuropathic pain. The aim of this project was to investigate the preventive effect of hIg in two mouse models of CIPN, induced by vincristine (VCR, 100 µg/kg/d) and oxaliplatin (OXP, 6 mg/kg/3d). Human Ig were administered one day before the first injection of chemotherapy. The onset of CIPN and effects of hIg were assessed via functional tests and morphological analyses of sensory nerves. To evaluate the effect of hIg on chemotherapy cytotoxicity, viability assays were performed using hIg (0 to 12 mg/mL) combined with anticancer agents on human cancer cell lines. The preventive treatment with hIg alleviated tactile hypersensitivity and nerve injuries induced by VCR. It also alleviated tactile/cold hypersensitivities and nerve injuries induced by OXP. Treatment with hIg did not affect the cytotoxicity of either chemotherapy. Furthermore, in combination with VCR, hIg potentiated chemo-induced cell death. In conclusion, hIg is a promising therapy to prevent the onset of CIPN and potentiate chemotherapy effect on cancer, reinforcing the interest in hIg in the management of CIPN. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

22 pages, 4600 KiB  
Article
The Impact of Various Poly(vinylpyrrolidone) Polymers on the Crystallization Process of Metronidazole
by Luiza Orszulak, Taoufik Lamrani, Magdalena Tarnacka, Barbara Hachuła, Karolina Jurkiewicz, Patryk Zioła, Anna Mrozek-Wilczkiewicz, Ewa Kamińska and Kamil Kamiński
Pharmaceutics 2024, 16(1), 136; https://doi.org/10.3390/pharmaceutics16010136 - 19 Jan 2024
Viewed by 1257
Abstract
In this paper, we propose one-step synthetic strategies for obtaining well-defined linear and star-shaped polyvinylpyrrolidone (linPVP and starPVP). The produced macromolecules and a commercial PVP K30 with linear topology were investigated as potential matrices for suppressing metronidazole (MTZ) crystallization. Interestingly, [...] Read more.
In this paper, we propose one-step synthetic strategies for obtaining well-defined linear and star-shaped polyvinylpyrrolidone (linPVP and starPVP). The produced macromolecules and a commercial PVP K30 with linear topology were investigated as potential matrices for suppressing metronidazole (MTZ) crystallization. Interestingly, during the formation of binary mixtures (BMs) containing different polymers and MTZ, we found that linear PVPs exhibit maximum miscibility with the drug at a 50:50 weight ratio (w/w), while the star-shaped polymer mixes with MTZ even at a 30:70 w/w. To explain these observations, comprehensive studies of MTZ-PVP formulations with various contents of both components were performed using Fourier-transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. The obtained results clearly showed that the polymer’s topology plays a significant role in the type of interactions occurring between the matrix and MTZ. Additionally, we established that for MTZ-PVP 50:50 and 75:25 w/w BMs, linear polymers have the most substantial impact on inhibiting the crystallization of API. The star-shaped macromolecule turned out to be the least effective in stabilizing amorphous MTZ at these polymer concentrations. Nevertheless, long-term structural investigations of the MTZ-starPVP 30:70 w/w system (which is not achievable for linear PVPs) demonstrated its complete amorphousness for over one month. Full article
Show Figures

Graphical abstract

35 pages, 10219 KiB  
Review
Chemistry and Art of Developing Lipid Nanoparticles for Biologics Delivery: Focus on Development and Scale-Up
by Rijo John, Jasmin Monpara, Shankar Swaminathan and Rahul Kalhapure
Pharmaceutics 2024, 16(1), 131; https://doi.org/10.3390/pharmaceutics16010131 - 19 Jan 2024
Cited by 2 | Viewed by 3197
Abstract
Lipid nanoparticles (LNPs) have gained prominence as primary carriers for delivering a diverse array of therapeutic agents. Biological products have achieved a solid presence in clinical settings, and the anticipation of creating novel variants is increasing. These products predominantly encompass therapeutic proteins, nucleic [...] Read more.
Lipid nanoparticles (LNPs) have gained prominence as primary carriers for delivering a diverse array of therapeutic agents. Biological products have achieved a solid presence in clinical settings, and the anticipation of creating novel variants is increasing. These products predominantly encompass therapeutic proteins, nucleic acids and messenger RNA. The advancement of efficient LNP-based delivery systems for biologics that can overcome their limitations remains a highly favorable formulation strategy. Moreover, given their small size, biocompatibility, and biodegradation, LNPs can proficiently transport therapeutic moiety into the cells without significant toxicity and adverse reactions. This is especially crucial for the existing and upcoming biopharmaceuticals since large molecules as a group present several challenges that can be overcome by LNPs. This review describes the LNP technology for the delivery of biologics and summarizes the developments in the chemistry, manufacturing, and characterization of lipids used in the development of LNPs for biologics. Finally, we present a perspective on the potential opportunities and the current challenges pertaining to LNP technology. Full article
(This article belongs to the Special Issue Innovative Drug Release and Vaccine Delivery Systems)
Show Figures

Figure 1

21 pages, 10997 KiB  
Article
Mesoporous Silica-Layered Gold Nanorod Core@Silver Shell Nanostructures for Intracellular SERS Imaging and Phototherapy
by Sun-Hwa Seo, Ara Joe, Hyo-Won Han, Panchanathan Manivasagan and Eue-Soon Jang
Pharmaceutics 2024, 16(1), 137; https://doi.org/10.3390/pharmaceutics16010137 - 19 Jan 2024
Viewed by 1113
Abstract
Precision diagnosis-guided efficient treatment is crucial to extending the lives of cancer patients. The integration of surface-enhanced Raman scattering (SERS) imaging and phototherapy into a single nanoplatform has been considered a more accurate diagnosis and treatment strategy for cancer nanotheranostics. Herein, we constructed [...] Read more.
Precision diagnosis-guided efficient treatment is crucial to extending the lives of cancer patients. The integration of surface-enhanced Raman scattering (SERS) imaging and phototherapy into a single nanoplatform has been considered a more accurate diagnosis and treatment strategy for cancer nanotheranostics. Herein, we constructed a new type of mesoporous silica-layered gold nanorod core@silver shell nanostructures loaded with methylene blue (GNR@Ag@mSiO2-MB) as a multifunctional nanotheranostic agent for intracellular SERS imaging and phototherapy. The synthesized GNR@Ag@mSiO2-MB nanostructures possessed a uniform core–shell structure, strong near-infrared (NIR) absorbance, photothermal conversion efficiency (65%), dye loading ability, SERS signal, and Raman stability under phototherapy conditions. Under single 785 nm NIR laser irradiation, the intracellular GNR@Ag@mSiO2-MB nanostructures were dramatically decreased to <9%, which showed excellent photothermal and photodynamic effects toward cancer cell killing, indicating that the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) of the GNR@Ag@mSiO2-MB nanostructures could greatly enhance the therapeutic efficacy of cancer cell death. GNR@Ag@mSiO2-MB nanostructures demonstrated a strong Raman signal at 450 and 502 cm−1, corresponding to the δ(C–N–C) mode, suggesting that the Raman bands of GNR@Ag@mSiO2-MB nanostructures were more efficient to detect CT-26 cell SERS imaging with high specificity. Our results indicate that GNR@Ag@mSiO2-MB nanostructures offer an excellent multifunctional nanotheranostic platform for SERS imaging and synergistic anticancer phototherapy in the future. Full article
(This article belongs to the Special Issue Nanodynamic Therapies against Cancer and Microbial Infections)
Show Figures

Figure 1

33 pages, 3676 KiB  
Review
Micro- and Nanostructured Fibrous Composites via Electro-Fluid Dynamics: Design and Applications for Brain
by Nergis Zeynep Renkler, Stefania Scialla, Teresa Russo, Ugo D’Amora, Iriczalli Cruz-Maya, Roberto De Santis and Vincenzo Guarino
Pharmaceutics 2024, 16(1), 134; https://doi.org/10.3390/pharmaceutics16010134 - 19 Jan 2024
Viewed by 1211
Abstract
The brain consists of an interconnected network of neurons tightly packed in the extracellular matrix (ECM) to form complex and heterogeneous composite tissue. According to recent biomimicry approaches that consider biological features as active components of biomaterials, designing a highly reproducible microenvironment for [...] Read more.
The brain consists of an interconnected network of neurons tightly packed in the extracellular matrix (ECM) to form complex and heterogeneous composite tissue. According to recent biomimicry approaches that consider biological features as active components of biomaterials, designing a highly reproducible microenvironment for brain cells can represent a key tool for tissue repair and regeneration. Indeed, this is crucial to support cell growth, mitigate inflammation phenomena and provide adequate structural properties needed to support the damaged tissue, corroborating the activity of the vascular network and ultimately the functionality of neurons. In this context, electro-fluid dynamic techniques (EFDTs), i.e., electrospinning, electrospraying and related techniques, offer the opportunity to engineer a wide variety of composite substrates by integrating fibers, particles, and hydrogels at different scales—from several hundred microns down to tens of nanometers—for the generation of countless patterns of physical and biochemical cues suitable for influencing the in vitro response of coexistent brain cell populations mediated by the surrounding microenvironment. In this review, an overview of the different technological approaches—based on EFDTs—for engineering fibrous and/or particle-loaded composite substrates will be proposed. The second section of this review will primarily focus on describing current and future approaches to the use of composites for brain applications, ranging from therapeutic to diagnostic/theranostic use and from repair to regeneration, with the ultimate goal of providing insightful information to guide future research efforts toward the development of more efficient and reliable solutions. Full article
(This article belongs to the Special Issue Nanofibrous Scaffolds Application in Biomedicine)
Show Figures

Figure 1

16 pages, 2533 KiB  
Article
Biomolecules to Biomarkers? U87MG Marker Evaluation on the Path towards Glioblastoma Multiforme Pathogenesis
by Markéta Pokorná, Viera Kútna, Saak V. Ovsepian, Radoslav Matěj, Marie Černá and Valerie Bríd O’Leary
Pharmaceutics 2024, 16(1), 123; https://doi.org/10.3390/pharmaceutics16010123 - 18 Jan 2024
Cited by 1 | Viewed by 1059
Abstract
The heterogeneity of the glioma subtype glioblastoma multiforme (GBM) challenges effective neuropathological treatment. The reliance on in vitro studies and xenografted animal models to simulate human GBM has proven ineffective. Currently, a dearth of knowledge exists regarding the applicability of cell line biomolecules [...] Read more.
The heterogeneity of the glioma subtype glioblastoma multiforme (GBM) challenges effective neuropathological treatment. The reliance on in vitro studies and xenografted animal models to simulate human GBM has proven ineffective. Currently, a dearth of knowledge exists regarding the applicability of cell line biomolecules to the realm of GBM pathogenesis. Our study’s objectives were to address this preclinical issue and assess prominin-1, ICAM-1, PARTICLE and GAS5 as potential GBM diagnostic targets. The methodologies included haemoxylin and eosin staining, immunofluorescence, in situ hybridization and quantitative PCR. The findings identified that morphology correlates with malignancy in GBM patient pathology. Immunofluorescence confocal microscopy revealed prominin-1 in pseudo-palisades adjacent to necrotic foci in both animal and human GBM. Evidence is presented for an ICAM-1 association with degenerating vasculature. Significantly elevated nuclear PARTICLE expression from in situ hybridization and quantitative PCR reflected its role as a tumor activator. GAS5 identified within necrotic GBM validated this potential prognostic biomolecule with extended survival. Here we present evidence for the stem cell marker prominin-1 and the chemotherapeutic target ICAM-1 in a glioma animal model and GBM pathology sections from patients that elicited alternative responses to adjuvant chemotherapy. This foremost study introduces the long non-coding RNA PARTICLE into the context of human GBM pathogenesis while substantiating the role of GAS5 as a tumor suppressor. The validation of GBM biomarkers from cellular models contributes to the advancement towards superior detection, therapeutic responders and the ultimate attainment of promising prognoses for this currently incurable brain cancer. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Glioblastoma)
Show Figures

Figure 1

18 pages, 7208 KiB  
Article
Antibiotics against Pseudomonas aeruginosa on Human Skin Cell Lines: Determination of the Highest Non-Cytotoxic Concentrations with Antibiofilm Capacity for Wound Healing Strategies
by María I. Quiñones-Vico, Ana Fernández-González, Ana Ubago-Rodríguez, Kirsten Moll, Anna Norrby-Teglund, Mattias Svensson, José Gutiérrez-Fernández, Jesús M. Torres and Salvador Arias-Santiago
Pharmaceutics 2024, 16(1), 117; https://doi.org/10.3390/pharmaceutics16010117 - 17 Jan 2024
Viewed by 1161
Abstract
Pseudomonas aeruginosa is one of the most common microorganisms causing infections of severe skin wounds. Antibiotic or antiseptic treatments are crucial to prevent and curb these infections. Antiseptics have been reported to be cytotoxic to skin cells and few studies evaluate the impact [...] Read more.
Pseudomonas aeruginosa is one of the most common microorganisms causing infections of severe skin wounds. Antibiotic or antiseptic treatments are crucial to prevent and curb these infections. Antiseptics have been reported to be cytotoxic to skin cells and few studies evaluate the impact of commonly used antibiotics. This study evaluates how clinical antibiotics affect skin cells’ viability, proliferation, migration, and cytokine secretion and defines the highest non-cytotoxic concentrations that maintain antibacterial activity. Cell proliferation, viability, and migration were evaluated on cell monolayers. Cytokines related to the wound healing process were determined. The minimum inhibitory concentrations and the impact on bacterial biofilm were assessed. Results showed that 0.02 mg/mL ciprofloxacin and 1 mg/mL meropenem are the highest non-cytotoxic concentrations for fibroblasts and keratinocytes while 1.25 mg/mL amikacin and 0.034 mg/mL colistin do not affect fibroblasts’ viability and cytokine secretion but have an impact on keratinocytes. These concentrations are above the minimum inhibitory concentration but only amikacin could eradicate the biofilm. For the other antibiotics, cytotoxic concentrations are needed to eradicate the biofilm. Combinations with colistin at non-cytotoxic concentrations effectively eliminate the biofilm. These results provide information about the concentrations required when administering topical antibiotic treatments on skin lesions, and how these antibiotics affect wound management therapies. This study set the basis for the development of novel antibacterial wound healing strategies such as antibiotic artificial skin substitutes. Full article
Show Figures

Graphical abstract

20 pages, 8957 KiB  
Article
Exploring the Ocular Absorption Pathway of Fasudil Hydrochloride towards Developing a Nanoparticulate Formulation with Improved Performance
by Barzan Osi, Ali A. Al-Kinani, Zinah K. Al-Qaysi, Mouhamad Khoder and Raid G. Alany
Pharmaceutics 2024, 16(1), 112; https://doi.org/10.3390/pharmaceutics16010112 - 15 Jan 2024
Viewed by 959
Abstract
Rho-kinase (ROCK) inhibitors represent a new category of anti-glaucoma medications. Among them, Fasudil hydrochloride, a selective ROCK inhibitor, has demonstrated promising outcomes in glaucoma treatment. It works by inhibiting the ROCK pathway, which plays a crucial role in regulating the trabecular meshwork and [...] Read more.
Rho-kinase (ROCK) inhibitors represent a new category of anti-glaucoma medications. Among them, Fasudil hydrochloride, a selective ROCK inhibitor, has demonstrated promising outcomes in glaucoma treatment. It works by inhibiting the ROCK pathway, which plays a crucial role in regulating the trabecular meshwork and canal of Schlemm’s aqueous humor outflow. This study aims to investigate the ocular absorption pathway of Fasudil hydrochloride and, subsequently, develop a nanoparticle-based delivery system for enhanced corneal absorption. Employing the ionic gelation method and statistical experimental design, the factors influencing chitosan nanoparticle (Cs NP) characteristics and performance were explored. Fasudil in vitro release and ex vivo permeation studies were performed, and Cs NP ocular tolerability and cytotoxicity on human lens epithelial cells were evaluated. Permeation studies on excised bovine eyes revealed significantly higher Fasudil permeation through the sclera compared to the cornea (370.0 μg/cm2 vs. 96.8 μg/cm2, respectively). The nanoparticle size (144.0 ± 15.6 nm to 835.9 ± 23.4 nm) and entrapment efficiency range achieved (17.2% to 41.4%) were predominantly influenced by chitosan quantity. Cs NPs showed a substantial improvement in the permeation of Fasudil via the cornea, along with slower release compared to the Fasudil aqueous solution. The results from the Hen’s Egg Test Chorioallantoic Membrane (HET-CAM) and Bovine Corneal Opacity and Permeability (BCOP) tests indicated good conjunctival and corneal biocompatibility of the formulated chitosan nanoparticles, respectively. Lens epithelial cells displayed excellent tolerance to low concentrations of these nanoparticles (>94% cell viability). To the best of our knowledge, this is the first report on the ocular absorption pathway of topically applied Fasudil hydrochloride where the cornea has been identified as a potential barrier that could be overcome using Cs NPs. Full article
Show Figures

Figure 1

17 pages, 3307 KiB  
Article
The Development of an Oral Solution Containing Nirmatrelvir and Ritonavir and Assessment of Its Pharmacokinetics and Stability
by Lili Wang, Zhuang Ding, Zhengping Wang, Yanna Zhao, Hengqian Wu, Qipeng Wei, Lingfeng Gao and Jun Han
Pharmaceutics 2024, 16(1), 109; https://doi.org/10.3390/pharmaceutics16010109 - 14 Jan 2024
Viewed by 1132
Abstract
Paxlovid®, a co-packaged medication comprised of separate tablets containing two active ingredients, nirmatrelvir (NRV) and ritonavir (RTV), exhibits good effectiveness against coronavirus disease 2019 (COVID-19). However, the size of the NRV/RTV tablets makes them difficult for some patients to swallow, especially [...] Read more.
Paxlovid®, a co-packaged medication comprised of separate tablets containing two active ingredients, nirmatrelvir (NRV) and ritonavir (RTV), exhibits good effectiveness against coronavirus disease 2019 (COVID-19). However, the size of the NRV/RTV tablets makes them difficult for some patients to swallow, especially the elderly and those with dysphagia. Therefore, an oral liquid formulation that can overcome this shortcoming and improve patient compliance is required. In this study, we developed a liquid formulation containing NRV and RTV by adopting strategies that used co-solvents and surfactants to enhance the solubility and inhibit possible recrystallization. The in vitro release results showed that NRV and RTV could be maintained at high concentrations in solution for a certain period in the investigated media. In vivo studies in rats showed that the oral bioavailability of NRV/RTV solution was significantly enhanced. Compared to Paxlovid® tablets, the AUC(0–t) of NRV and RTV increased by 6.1 and 3.8 times, respectively, while the Cmax increased by 5.5 times for both. Furthermore, the promoting effect of the absorption of RTV on the bioavailability of NRV was confirmed. Experiments with a beagle showed a similar trend. Stability studies were also conducted at 4 °C, 25 °C, and 40 °C for 90 days, indicating that the oral liquid formulation was physically and chemically stable. This study can be used as a valuable resource for developing and applying oral liquid NRV/RTV formulations in a clinical context. Full article
(This article belongs to the Special Issue Pharmacokinetics of Orally Administered Drugs, 2nd Edition)
Show Figures

Figure 1

17 pages, 3748 KiB  
Article
Enhancing Liver Delivery of Gold Nanoclusters via Human Serum Albumin Encapsulation for Autoimmune Hepatitis Alleviation
by Cong Meng, Yu Liu, Yuping Ming, Cao Lu, Yanggege Li, Yulu Zhang, Dongdong Su, Xueyun Gao and Qing Yuan
Pharmaceutics 2024, 16(1), 110; https://doi.org/10.3390/pharmaceutics16010110 - 14 Jan 2024
Viewed by 1122
Abstract
Peptide-protected gold nanoclusters (AuNCs), possessing exceptional biocompatibility and remarkable physicochemical properties, have demonstrated intrinsic pharmaceutical activity in immunomodulation, making them a highly attractive frontier in the field of nanomedicine exploration. Autoimmune hepatitis (AIH) is a serious autoimmune liver disease caused by the disruption [...] Read more.
Peptide-protected gold nanoclusters (AuNCs), possessing exceptional biocompatibility and remarkable physicochemical properties, have demonstrated intrinsic pharmaceutical activity in immunomodulation, making them a highly attractive frontier in the field of nanomedicine exploration. Autoimmune hepatitis (AIH) is a serious autoimmune liver disease caused by the disruption of immune balance, for which effective treatment options are still lacking. In this study, we initially identified glutathione (GSH)-protected AuNCs as a promising nanodrug candidate for AIH alleviating in a Concanavalin A (Con A)-induced mice model. However, to enhance treatment efficiency, liver-targeted delivery needs to be improved. Therefore, human serum albumin (HSA)-encapsulated AuNCs were constructed to achieve enhanced liver targeting and more potent mitigation of Con A-induced elevations in plasma aspartate transaminase (AST), alanine transaminase (ALT), and liver injury in mice. In vivo and in vitro mechanism studies indicated that AuNCs could suppress the secretion of IFN-γ by Con A-stimulated T cells and subsequently inhibit the activation of the JAK2/STAT1 pathway and eventual hepatocyte apoptosis induced by IFN-γ. These actions ultimately protect the liver from immune cell infiltration and damage caused by Con A. These findings suggest that bio-protected AuNCs hold promise as nanodrugs for AIH therapy, with their liver targeting capabilities and therapeutic efficiency being further improved via rational surface ligand engineering. Full article
(This article belongs to the Special Issue Nanosystems for Drug Delivery)
Show Figures

Figure 1

20 pages, 3698 KiB  
Article
Co-Delivery of a Novel Lipidated TLR7/8 Agonist and Hemagglutinin-Based Influenza Antigen Using Silica Nanoparticles Promotes Enhanced Immune Responses
by Walid M. Abdelwahab, Sarah Auclair, Timothy Borgogna, Karthik Siram, Alexander Riffey, Hélène G. Bazin, Howard B. Cottam, Tomoko Hayashi, Jay T. Evans and David J. Burkhart
Pharmaceutics 2024, 16(1), 107; https://doi.org/10.3390/pharmaceutics16010107 - 13 Jan 2024
Cited by 1 | Viewed by 1728
Abstract
Co-delivery of antigens and adjuvants to the same antigen-presenting cells (APCs) can significantly improve the efficacy and safety profiles of vaccines. Here, we report amine-grafted silica nanoparticles (A-SNP) as a tunable vaccine co-delivery platform for TLR7/8 agonists along with the recombinant influenza antigen [...] Read more.
Co-delivery of antigens and adjuvants to the same antigen-presenting cells (APCs) can significantly improve the efficacy and safety profiles of vaccines. Here, we report amine-grafted silica nanoparticles (A-SNP) as a tunable vaccine co-delivery platform for TLR7/8 agonists along with the recombinant influenza antigen hemagglutinin H7 (H7) to APCs. A-SNP of two different sizes (50 and 200 nm) were prepared and coated with INI-4001 at different coating densities, followed by co-adsorption of H7. Both INI-4001 and H7 showed >90% adsorption to the tested A-SNP formulations. TNF-α and IFN-α cytokine release by human peripheral blood mononuclear cells as well as TNF-α, IL-6, and IL-12 release by mouse bone marrow-derived dendritic cells revealed that the potency of the INI-4001-adsorbed A-SNP (INI-4001/A-SNP) formulations was improved relative to aqueous formulation control. This improved potency was dependent on particle size and ligand coating density. In addition, slow-release profiles of INI-4001 were measured from INI-4001/A-SNP formulations in plasma with 30–50% INI-4001 released after 7 days. In vivo murine immunization studies demonstrated significantly improved H7-specific humoral and Th1/Th17-polarized T cell immune responses with no observed adverse reactions. Low-density 50 nm INI-4001/A-SNP elicited significantly higher IFN-γ and IL-17 induction over that of the H7 antigen-only group and INI-4001 aqueous formulation controls. In summary, this work introduces an effective and biocompatible SNP-based co-delivery platform that enhances the immunogenicity of TLR7/8 agonist-adjuvanted subunit influenza vaccines. Full article
(This article belongs to the Special Issue Innovative Drug Release and Vaccine Delivery Systems)
Show Figures

Graphical abstract

12 pages, 3542 KiB  
Article
The Effect of Systemic Parameters and Baseline Characteristics in Short-Term Response Analysis with Intravitreal Ranibizumab in Treatment-Naive Patients with Neovascular Age-Related Macular Degeneration
by Laura García-Quintanilla, Pablo Almuiña-Varela, María José Rodríguez-Cid, María Gil-Martínez, Maximino J. Abraldes, Francisco Gómez-Ulla, Miguel González-Barcia, Cristina Mondelo-García, Ana Estany-Gestal, Francisco J. Otero-Espinar, Maribel Fernández-Rodríguez and Anxo Fernández-Ferreiro
Pharmaceutics 2024, 16(1), 105; https://doi.org/10.3390/pharmaceutics16010105 - 13 Jan 2024
Viewed by 950
Abstract
Anti-vascular endothelial growth factor drugs keep being the main therapy for neovascular age-related macular degeneration (AMD). Possible predictive parameters (demographic, biochemical and/or inflammatory) could anticipate short-term treatment response with ranibizumab. 46 treatment-naive patients were included in a prospective observational study. They underwent three [...] Read more.
Anti-vascular endothelial growth factor drugs keep being the main therapy for neovascular age-related macular degeneration (AMD). Possible predictive parameters (demographic, biochemical and/or inflammatory) could anticipate short-term treatment response with ranibizumab. 46 treatment-naive patients were included in a prospective observational study. They underwent three monthly injections of intravitreal ranibizumab for neovascular AMD and the clinical examination was made at baseline and one month after the third injection. Demographic characteristics, co-morbidities and concomitant treatments were recorded at the baseline visit. Biochemical parameters, complete blood count and inflammation biomarkers were also measured at these times. Uric Acid was found to be statistically significant with a one-point difference between good and poor responders in both basal and treated patients, but only in basal parameters was statistical significance reached (p = 0.007 vs. p = 0.071 in treated patients). Cholesterol and inflammatory parameters such as white blood cell count and neutrophils were significantly reduced over time when treated with intravitreal ranibizumab. On the other hand, women seemed to have a worse prognosis for short-term response to intravitreal ranibizumab treatment. Uric acid may help identify possible non-responders before initial treatment with ranibizumab, and cholesterol and white blood cells could be good candidates to monitor short-term response to ranibizumab treatment. Full article
Show Figures

Figure 1

15 pages, 4672 KiB  
Article
Engineering Neurotoxin-Functionalized Exosomes for Targeted Delivery to the Peripheral Nervous System
by Mena Asha Krishnan, Olawale A. Alimi, Tianshu Pan, Mitchell Kuss, Zeljka Korade, Guoku Hu, Bo Liu and Bin Duan
Pharmaceutics 2024, 16(1), 102; https://doi.org/10.3390/pharmaceutics16010102 - 12 Jan 2024
Cited by 1 | Viewed by 1684
Abstract
The administration of therapeutics to peripheral nerve tissue is challenging due to the complexities of peripheral neuroanatomy and the limitations imposed by the blood–nerve barrier (BNB). Therefore, there is a pressing need to enhance delivery effectiveness and implement targeted delivery methods. Recently, erythrocyte-derived [...] Read more.
The administration of therapeutics to peripheral nerve tissue is challenging due to the complexities of peripheral neuroanatomy and the limitations imposed by the blood–nerve barrier (BNB). Therefore, there is a pressing need to enhance delivery effectiveness and implement targeted delivery methods. Recently, erythrocyte-derived exosomes (Exos) have gained widespread attention as biocompatible vehicles for therapeutics in clinical applications. However, engineering targeted Exos for the peripheral nervous system (PNS) is still challenging. This study aims to develop a targeted Exo delivery system specifically designed for presynaptic terminals of peripheral nerve tissue. The clostridium neurotoxin, tetanus toxin-C fragment (TTC), was tethered to the surface of red blood cell (RBC)-derived Exos via a facile and efficient bio-orthogonal click chemistry method without a catalyst. Additionally, Cyanine5 (Cy5), a reactive fluorescent tag, was also conjugated to track Exo movement in both in vitro and in vivo models. Subsequently, Neuro-2a, a mouse neuronal cell line, was treated with dye-labeled Exos with/without TTC in vitro, and the results indicated that TTC-Exos exhibited more efficient accumulation along the soma and axonal circumference, compared to their unmodified counterparts. Further investigation, using a mouse model, revealed that within 72 h of intramuscular administration, engineered TTC-Exos were successfully transported into the neuromuscular junction and sciatic nerve tissues. These results indicated that TTC played a crucial role in the Exo delivery system, improving the affinity to peripheral nerves. These promising results underscore the potential of using targeted Exo carriers to deliver therapeutics for treating peripheral neuropathies. Full article
(This article belongs to the Special Issue Advances of Membrane Vesicles in Drug Delivery Systems, 2nd Edition)
Show Figures

Figure 1

32 pages, 2419 KiB  
Review
Assessment of In Vitro Release Testing Methods for Colloidal Drug Carriers: The Lack of Standardized Protocols
by Laura Gómez-Lázaro, Cristina Martín-Sabroso, Juan Aparicio-Blanco and Ana Isabel Torres-Suárez
Pharmaceutics 2024, 16(1), 103; https://doi.org/10.3390/pharmaceutics16010103 - 12 Jan 2024
Viewed by 1469
Abstract
Although colloidal carriers have been in the pipeline for nearly four decades, standardized methods for testing their drug-release properties remain to be established in pharmacopeias. The in vitro assessment of drug release from these colloidal carriers is one of the most important parameters [...] Read more.
Although colloidal carriers have been in the pipeline for nearly four decades, standardized methods for testing their drug-release properties remain to be established in pharmacopeias. The in vitro assessment of drug release from these colloidal carriers is one of the most important parameters in the development and quality control of drug-loaded nano- and microcarriers. This lack of standardized protocols occurs due to the difficulties encountered in separating the released drug from the encapsulated one. This review aims to compare the most frequent types of release testing methods (i.e., membrane diffusion techniques, sample and separate methods and in situ detection techniques) in terms of the advantages and disadvantages of each one and of the key parameters that influence drug release in each case. Full article
Show Figures

Graphical abstract

26 pages, 9454 KiB  
Article
3D-Printed Alginate/Pectin-Based Patches Loaded with Olive Leaf Extracts for Wound Healing Applications: Development, Characterization and In Vitro Evaluation of Biological Properties
by Francesco Patitucci, Marisa Francesca Motta, Marco Dattilo, Rocco Malivindi, Adele Elisabetta Leonetti, Giuseppe Pezzi, Sabrina Prete, Olga Mileti, Domenico Gabriele, Ortensia Ilaria Parisi and Francesco Puoci
Pharmaceutics 2024, 16(1), 99; https://doi.org/10.3390/pharmaceutics16010099 - 11 Jan 2024
Viewed by 1199
Abstract
Traditional wound dressings may lack suitability for diverse wound types and individual patient requirements. In this context, this study aimed to innovate wound care by developing a 3D-printed patch using alginate and pectin and incorporating Olive Leaf Extract (OLE) as an active ingredient. [...] Read more.
Traditional wound dressings may lack suitability for diverse wound types and individual patient requirements. In this context, this study aimed to innovate wound care by developing a 3D-printed patch using alginate and pectin and incorporating Olive Leaf Extract (OLE) as an active ingredient. Different polymer-to-plasticizer ratios were systematically examined to formulate a printable ink with optimal viscosity. The resultant film, enriched with OLE, exhibited a substantial polyphenolic content of 13.15 ± 0.41 mg CAE/g, showcasing significant antioxidant and anti-inflammatory properties. Notably, the film demonstrated potent scavenging abilities against DPPH, ABTS, and NO radicals, with IC50 values of 0.66 ± 0.07, 0.47 ± 0.04, and 2.02 ± 0.14 mg/mL, respectively. In vitro release and diffusion studies were carried out and the release profiles revealed an almost complete release of polyphenols from the patch within 48 h. Additionally, the fabricated film exhibited the capacity to enhance cell motility and accelerate wound healing, evidenced by increased collagen I expression in BJ fibroblast cells. Structural assessments affirmed the ability of the patch to absorb exudates and maintain the optimal moisture balance, while biocompatibility studies underscored its suitability for biomedical applications. These compelling findings endorse the potential application of the developed film in advanced wound care, with the prospect of tailoring patches to individual patient needs. Full article
(This article belongs to the Special Issue Polymer-Based Wound Dressings)
Show Figures

Graphical abstract

27 pages, 8711 KiB  
Review
Electrospun Antimicrobial Drug Delivery Systems and Hydrogels Used for Wound Dressings
by Zahra Moazzami Goudarzi, Angelika Zaszczyńska, Tomasz Kowalczyk and Paweł Sajkiewicz
Pharmaceutics 2024, 16(1), 93; https://doi.org/10.3390/pharmaceutics16010093 - 10 Jan 2024
Viewed by 1570
Abstract
Wounds and chronic wounds can be caused by bacterial infections and lead to discomfort in patients. To solve this problem, scientists are working to create modern wound dressings with antibacterial additives, mainly because traditional materials cannot meet the general requirements for complex wounds [...] Read more.
Wounds and chronic wounds can be caused by bacterial infections and lead to discomfort in patients. To solve this problem, scientists are working to create modern wound dressings with antibacterial additives, mainly because traditional materials cannot meet the general requirements for complex wounds and cannot promote wound healing. This demand is met by material engineering, through which we can create electrospun wound dressings. Electrospun wound dressings, as well as those based on hydrogels with incorporated antibacterial compounds, can meet these requirements. This manuscript reviews recent materials used as wound dressings, discussing their formation, application, and functionalization. The focus is on presenting dressings based on electrospun materials and hydrogels. In contrast, recent advancements in wound care have highlighted the potential of thermoresponsive hydrogels as dynamic and antibacterial wound dressings. These hydrogels contain adaptable polymers that offer targeted drug delivery and show promise in managing various wound types while addressing bacterial infections. In this way, the article is intended to serve as a compendium of knowledge for researchers, medical practitioners, and biomaterials engineers, providing up-to-date information on the state of the art, possibilities of innovative solutions, and potential challenges in the area of materials used in dressings. Full article
(This article belongs to the Special Issue Local Antibacterial and Antimicrobial Drug Delivery Systems)
Show Figures

Figure 1

0 pages, 2576 KiB  
Review
Towards More Precise Targeting of Inhaled Aerosols to Different Areas of the Respiratory System
by Tomasz R. Sosnowski
Pharmaceutics 2024, 16(1), 97; https://doi.org/10.3390/pharmaceutics16010097 - 10 Jan 2024
Viewed by 1392
Abstract
Pharmaceutical aerosols play a key role in the treatment of lung disorders, but also systemic diseases, due to their ability to target specific areas of the respiratory system (RS). This article focuses on identifying and clarifying the influence of various factors involved in [...] Read more.
Pharmaceutical aerosols play a key role in the treatment of lung disorders, but also systemic diseases, due to their ability to target specific areas of the respiratory system (RS). This article focuses on identifying and clarifying the influence of various factors involved in the generation of aerosol micro- and nanoparticles on their regional distribution and deposition in the RS. Attention is given to the importance of process parameters during the aerosolization of liquids or powders and the role of aerosol flow dynamics in the RS. The interaction of deposited particles with the fluid environment of the lung is also pointed out as an important step in the mass transfer of the drug to the RS surface. The analysis presented highlights the technical aspects of preparing the precursors to ensure that the properties of the aerosol are suitable for a given therapeutic target. Through an analysis of existing technical limitations, selected strategies aimed at enhancing the effectiveness of targeted aerosol delivery to the RS have been identified and presented. These strategies also include the use of smart inhaling devices and systems with built-in AI algorithms. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Respiratory Diseases)
Show Figures

Figure 1

15 pages, 766 KiB  
Article
Pharmacokinetic Interpretation of Applying Local Drug Delivery System for the Treatment of Deep Surgical Site Infection in the Spine
by Ahmad Khalid Madadi and Moon-Jun Sohn
Pharmaceutics 2024, 16(1), 94; https://doi.org/10.3390/pharmaceutics16010094 - 10 Jan 2024
Viewed by 1297
Abstract
Surgical site infections (SSIs) after spinal surgery present significant challenges, including poor antibiotic penetration and biofilm formation on implants, leading to frequent treatment failures. Polymethylmethacrylate (PMMA) is widely used for localized drug delivery in bone infections, yet quantifying individual drug release kinetics is [...] Read more.
Surgical site infections (SSIs) after spinal surgery present significant challenges, including poor antibiotic penetration and biofilm formation on implants, leading to frequent treatment failures. Polymethylmethacrylate (PMMA) is widely used for localized drug delivery in bone infections, yet quantifying individual drug release kinetics is often impractical. This retrospective study analyzed 23 cases of deep SSIs (DSSIs) following spinal surgery treated with antibiotic-loaded PMMA. A mathematical model estimated personalized drug release kinetics from PMMA, considering disease types, pathogens, and various antibiotics. The study found that vancomycin (VAN), ceftriaxone (CRO), and ceftazidime (CAZ) reached peak concentrations of 15.43%, 15.42%, and 15.41%, respectively, within the first two days, which was followed by a lag phase (4.91–4.92%) on days 2–3. On days 5–7, concentrations stabilized, with CRO at 3.22% and CAZ/VAN between 3.63% and 3.65%, averaging 75.4 µg/cm2. Key factors influencing release kinetics include solubility, diffusivity, porosity, tortuosity, and bead diameter. Notably, a patient with a low glomerular filtration rate (ASA IV) was successfully treated with a shortened 9-day intravenous VAN regimen, avoiding systemic complications. This study affirms the effectiveness of local drug delivery systems (DDS) in treating DSSIs and underscores the value of mathematical modeling in determining drug release kinetics. Further research is essential to optimize release rates and durations and to mitigate risks of burst release and tissue toxicity. Full article
Show Figures

Figure 1

17 pages, 674 KiB  
Review
Vaccines to Treat Substance Use Disorders: Current Status and Future Directions
by Tangsheng Lu, Xue Li, Wei Zheng, Chenyan Kuang, Bingyi Wu, Xiaoxing Liu, Yanxue Xue, Jie Shi, Lin Lu and Ying Han
Pharmaceutics 2024, 16(1), 84; https://doi.org/10.3390/pharmaceutics16010084 - 8 Jan 2024
Viewed by 1742
Abstract
Addiction, particularly in relation to psychostimulants and opioids, persists as a global health crisis with profound social and economic ramifications. Traditional interventions, including medications and behavioral therapies, often encounter limited success due to the chronic and relapsing nature of addictive disorders. Consequently, there [...] Read more.
Addiction, particularly in relation to psychostimulants and opioids, persists as a global health crisis with profound social and economic ramifications. Traditional interventions, including medications and behavioral therapies, often encounter limited success due to the chronic and relapsing nature of addictive disorders. Consequently, there is significant interest in the development of innovative therapeutics to counteract the effects of abused substances. In recent years, vaccines have emerged as a novel and promising strategy to tackle addiction. Anti-drug vaccines are designed to stimulate the immune system to produce antibodies that bind to addictive compounds, such as nicotine, cocaine, morphine, methamphetamine, and heroin. These antibodies effectively neutralize the target molecules, preventing them from reaching the brain and eliciting their rewarding effects. By obstructing the rewarding sensations associated with substance use, vaccines aim to reduce cravings and the motivation to engage in drug use. Although anti-drug vaccines hold significant potential, challenges remain in their development and implementation. The reversibility of vaccination and the potential for combining vaccines with other addiction treatments offer promise for improving addiction outcomes. This review provides an overview of anti-drug vaccines, their mechanisms of action, and their potential impact on treatment for substance use disorders. Furthermore, this review summarizes recent advancements in vaccine development for each specific drug, offering insights for the development of more effective and personalized treatments capable of addressing the distinct challenges posed by various abused substances. Full article
(This article belongs to the Special Issue Advances in Vaccines for Substance Use Disorders)
Show Figures

Figure 1

0 pages, 5202 KiB  
Article
Combined Role of Interleukin-15 Stimulated Natural Killer Cell-Derived Extracellular Vesicles and Carboplatin in Osimertinib-Resistant H1975 Lung Cancer Cells with EGFR Mutations
by Aakash Nathani, Li Sun, Islauddin Khan, Mounika Aare, Arvind Bagde, Yan Li and Mandip Singh
Pharmaceutics 2024, 16(1), 83; https://doi.org/10.3390/pharmaceutics16010083 - 8 Jan 2024
Viewed by 1714
Abstract
In this study, we evaluated IL-15 stimulated natural killer cell-derived EVs (NK-EVs) as therapeutic agents in vitro and in vivo in Osimertinib-resistant lung cancer (H1975R) with EGFR mutations (L858R) in combination with carboplatin (CBP). NK-EVs were isolated by ultracentrifugation and characterized by nanoparticle [...] Read more.
In this study, we evaluated IL-15 stimulated natural killer cell-derived EVs (NK-EVs) as therapeutic agents in vitro and in vivo in Osimertinib-resistant lung cancer (H1975R) with EGFR mutations (L858R) in combination with carboplatin (CBP). NK-EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis, and atomic force microscopy imaging revealed vesicles with a spherical form and sizes meeting the criteria of exosomal EVs. Further, Western blot studies demonstrated the presence of regular EV markers along with specific NK markers (perforin and granzyme). EVs were also characterized by proteomic analysis, which demonstrated that EVs had proteins for natural killer cell-mediated cytotoxicity (Granzyme B) and T cell activation (perforin and plastin-2). Gene oncology analysis showed that these differentially expressed proteins are involved in programmed cell death and positive regulation of cell death. Further, isolated NK-EVs were cytotoxic to H1975R cells in vitro in 2D and 3D cell cultures. CBP’s IC50 was reduced by approximately in 2D and 3D cell cultures when combined with NK-EVs. The EVs were then combined with CBP and administered by i.p. route to H1975R tumor xenografts, and a significant reduction in tumor volume in vivo was observed. Our findings show for the first time that NK-EVs target the PD-L1/PD-1 immunological checkpoint to induce apoptosis and anti-inflammatory response by downregulation of SOD2, PARP, BCL2, SET, NF-κB, and TGF-ß. The ability to isolate functional NK-EVs on a large scale and use them with platinum-based drugs may lead to new clinical applications. The results of the present study suggest the possibility of the combination of NK-cell-derived EVs and CBP as a viable immunochemotherapeutic strategy for resistant cancers. Full article
(This article belongs to the Special Issue Combination Therapeutic Delivery Systems)
Show Figures

Graphical abstract

13 pages, 3318 KiB  
Article
Flexible Coatings Facilitate pH-Targeted Drug Release via Self-Unfolding Foils: Applications for Oral Drug Delivery
by Carmen Milián-Guimerá, Laura De Vittorio, Reece McCabe, Nuray Göncü, Samvrta Krishnan, Lasse Højlund Eklund Thamdrup, Anja Boisen and Mahdi Ghavami
Pharmaceutics 2024, 16(1), 81; https://doi.org/10.3390/pharmaceutics16010081 - 6 Jan 2024
Viewed by 1557
Abstract
Ingestible self-configurable proximity-enabling devices have been developed as a non-invasive platform to improve the bioavailability of drug compounds via swellable or self-unfolding devices. Self-unfolding foils support unidirectional drug release in close proximity to the intestinal epithelium, the main drug absorption site following oral [...] Read more.
Ingestible self-configurable proximity-enabling devices have been developed as a non-invasive platform to improve the bioavailability of drug compounds via swellable or self-unfolding devices. Self-unfolding foils support unidirectional drug release in close proximity to the intestinal epithelium, the main drug absorption site following oral administration. The foils are loaded with a solid-state formulation containing the active pharmaceutical ingredient and then coated and rolled into enteric capsules. The coated lid must remain intact to ensure drug protection in the rolled state until targeted release in the small intestine after capsule disintegration. Despite promising results in previous studies, the deposition of an enteric top coating that remains intact after rolling is still challenging. In this study, we compare different mixtures of enteric polymers and a plasticizer, PEG 6000, as potential coating materials. We evaluate mechanical properties as well as drug protection and targeted release in gastric and intestinal media, respectively. Commercially available Eudragit® FL30D-55 appears to be the most suitable material due to its high strain at failure and integrity after capsule fitting. In vitro studies of coated foils in gastric and intestinal media confirm successful pH-triggered drug release. This indicates the potential advantage of the selected material in the development of self-unfolding foils for oral drug delivery. Full article
(This article belongs to the Special Issue Nano and Microdevices for Targeted Drug Delivery)
Show Figures

Figure 1

25 pages, 4065 KiB  
Article
Material-Sparing Feasibility Screening for Hot Melt Extrusion
by Amanda Pluntze, Scott Beecher, Maria Anderson, Dillon Wright and Deanna Mudie
Pharmaceutics 2024, 16(1), 76; https://doi.org/10.3390/pharmaceutics16010076 - 5 Jan 2024
Viewed by 1417
Abstract
Hot melt extrusion (HME) offers a high-throughput process to manufacture amorphous solid dispersions. A variety of experimental and model-based approaches exist to predict API solubility in polymer melts, but these methods are typically aimed at determining the thermodynamic solubility and do not take [...] Read more.
Hot melt extrusion (HME) offers a high-throughput process to manufacture amorphous solid dispersions. A variety of experimental and model-based approaches exist to predict API solubility in polymer melts, but these methods are typically aimed at determining the thermodynamic solubility and do not take into account kinetics of dissolution or the associated degradation of the API during thermal processing, both of which are critical considerations in generating a successful amorphous solid dispersion by HME. This work aims to develop a material-sparing approach for screening manufacturability of a given pharmaceutical API by HME using physically relevant time, temperature, and shear. Piroxicam, ritonavir, and phenytoin were used as model APIs with PVP VA64 as the dispersion polymer. We present a screening flowchart, aided by a simple custom device, that allows rapid formulation screening to predict both achievable API loadings and expected degradation from an HME process. This method has good correlation to processing with a micro compounder, a common HME screening industry standard, but only requires 200 mg of API or less. Full article
Show Figures

Graphical abstract

18 pages, 3677 KiB  
Article
New Formulation–Microporation Combination Approaches to Delivering Ciclopirox across Human Nails
by Juliana Kishishita, Camila de Almeida Perez Pimenta, Danielle Patricia Cerqueira Macedo, M. Begoña Delgado-Charro and Leila Bastos Leal
Pharmaceutics 2024, 16(1), 72; https://doi.org/10.3390/pharmaceutics16010072 - 4 Jan 2024
Viewed by 918
Abstract
Topical treatments for onychomycosis are of interest to those seeking to avoid systemic drug interactions and to improve systemic safety. This work aimed to develop aqueous-based, simple, and cost-effective vehicles that provide high solubility for ciclopirox and enable the delivery of an active [...] Read more.
Topical treatments for onychomycosis are of interest to those seeking to avoid systemic drug interactions and to improve systemic safety. This work aimed to develop aqueous-based, simple, and cost-effective vehicles that provide high solubility for ciclopirox and enable the delivery of an active through channels created by nail microporation. Following solubility tests, aqueous gels and thermogels based on hydroxypropylmethylcellulose and poloxamer 407, respectively, were loaded with 8% and 16% ciclopirox. Their performance was then compared to the marketed lacquer Micolamina® in in vitro release tests with artificial membranes and in in vitro permeation tests with human nail clippings with and without poration. Finally, a microbiological assay compared the best gel formulations and the reference product. Little correlation was observed between the in vitro release and the permeation data, and the drug release was highly membrane-dependent. Ciclopirox nail retention in single-dose, porated nails tests was larger than in daily-dosing, non-porated nail conditions. The series of new gel and thermogel vehicles delivered ciclopirox more effectively than Micolamina® in single-dose, porated nail experiments. The inhibition of Trichophyton rubrum activity was significantly increased with microporated nails when the gel formulations were applied but not with Micolamina®. Overall, the results suggest that the new vehicles could be successfully combined with nail microporation to improve the drug delivery and efficacy of topical antifungal medication while reducing the dosing frequency, facilitating patients’ adherence. Full article
(This article belongs to the Special Issue Advances in Topical and Transdermal Drug Delivery, 2nd Edition)
Show Figures

Figure 1

18 pages, 3524 KiB  
Review
Innovative Phosphorene Nanoplatform for Light Antimicrobial Therapy
by Elisa Passaglia and Antonella Sgarbossa
Pharmaceutics 2023, 15(12), 2748; https://doi.org/10.3390/pharmaceutics15122748 - 9 Dec 2023
Viewed by 2001
Abstract
Over the past few years, antibiotic resistance has reached global dimensions as a major threat to public health. Consequently, there is a pressing need to find effective alternative therapies and therapeutic agents to combat drug-resistant pathogens. Photodynamic therapy (PDT), largely employed as a [...] Read more.
Over the past few years, antibiotic resistance has reached global dimensions as a major threat to public health. Consequently, there is a pressing need to find effective alternative therapies and therapeutic agents to combat drug-resistant pathogens. Photodynamic therapy (PDT), largely employed as a clinical treatment for several malignant pathologies, has also gained importance as a promising antimicrobial approach. Antimicrobial PDT (aPDT) relies on the application of a photosensitizer able to produce singlet oxygen (1O2) or other cytotoxic reactive oxygen species (ROS) upon exposure to appropriate light, which leads to cell death after the induced photodamage. Among different types of 2D nanomaterials with antimicrobial properties, phosphorene, the exfoliated form of black phosphorus (bP), has the unique property intrinsic photoactivity exploitable for photothermal therapy (PTT) as well as for PDT against pathogenic bacteria. Full article
(This article belongs to the Special Issue Photodynamic Therapy: Rising Star in Pharmaceutical Applications)
Show Figures

Graphical abstract

22 pages, 4190 KiB  
Article
Investigation on Electrospun and Solvent-Casted PCL-PLGA Blends Scaffolds Embedded with Induced Pluripotent Stem Cells for Tissue Engineering
by Mariella Rosalia, Martina Giacomini, Erika Maria Tottoli, Rossella Dorati, Giovanna Bruni, Ida Genta, Enrica Chiesa, Silvia Pisani, Maurilio Sampaolesi and Bice Conti
Pharmaceutics 2023, 15(12), 2736; https://doi.org/10.3390/pharmaceutics15122736 - 6 Dec 2023
Viewed by 1058
Abstract
The design, production, and characterisation of tissue-engineered scaffolds made of polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL) and their blends obtained through electrospinning (ES) or solvent casting/particulate leaching (SC) manufacturing techniques are presented here. The polymer blend composition was chosen to always obtain a prevalence [...] Read more.
The design, production, and characterisation of tissue-engineered scaffolds made of polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL) and their blends obtained through electrospinning (ES) or solvent casting/particulate leaching (SC) manufacturing techniques are presented here. The polymer blend composition was chosen to always obtain a prevalence of one of the two polymers, in order to investigate the contribution of the less concentrated polymer on the scaffolds’ properties. Physical–chemical characterization of ES scaffolds demonstrated that tailoring of fibre diameter and Young modulus (YM) was possible by controlling PCL concentration in PLGA-based blends, increasing the fibre diameter from 0.6 to 1.0 µm and reducing the YM from about 22 to 9 MPa. SC scaffolds showed a “bubble-like” topography, caused by the porogen spherical particles, which is responsible for decreasing the contact angles from about 110° in ES scaffolds to about 74° in SC specimens. Nevertheless, due to phase separation within the blend, solvent-casted samples displayed less reproducible properties. Furthermore, ES samples were characterised by 10-fold higher water uptake than SC scaffolds. The scaffolds suitability as iPSCs culturing support was evaluated using XTT assay, and pluripotency and integrin gene expression were investigated using RT-PCR and RT-qPCR. Thanks to their higher wettability and appropriate YM, SC scaffolds seemed to be superior in ensuring high cell viability over 5 days, whereas the ability to maintain iPSCs pluripotency status was found to be similar for ES and SC scaffolds. Full article
Show Figures

Graphical abstract

22 pages, 2695 KiB  
Review
Advances in NIR-Responsive Natural Macromolecular Hydrogel Assembly Drugs for Cancer Treatment
by Chenyu Zhao, Boyue Pan, Tianlin Wang, Huazhe Yang, David Vance, Xiaojia Li, Haiyang Zhao, Xinru Hu, Tianchang Yang, Zihao Chen, Liang Hao, Ting Liu and Yang Wang
Pharmaceutics 2023, 15(12), 2729; https://doi.org/10.3390/pharmaceutics15122729 - 4 Dec 2023
Cited by 1 | Viewed by 1369
Abstract
Cancer is a serious disease with an abnormal proliferation of organ tissues; it is characterized by malignant infiltration and growth that affects human life. Traditional cancer therapies such as resection, radiotherapy and chemotherapy have a low cure rate and often cause irreversible damage [...] Read more.
Cancer is a serious disease with an abnormal proliferation of organ tissues; it is characterized by malignant infiltration and growth that affects human life. Traditional cancer therapies such as resection, radiotherapy and chemotherapy have a low cure rate and often cause irreversible damage to the body. In recent years, since the traditional treatment of cancer is still very far from perfect, researchers have begun to focus on non-invasive near-infrared (NIR)-responsive natural macromolecular hydrogel assembly drugs (NIR-NMHADs). Due to their unique biocompatibility and extremely high drug encapsulation, coupling with the spatiotemporal controllability of NIR, synergistic photothermal therapy (PTT), photothermal therapy (PDT), chemotherapy (CT) and immunotherapy (IT) has created excellent effects and good prospects for cancer treatment. In addition, some emerging bioengineering technologies can also improve the effectiveness of drug delivery systems. This review will discuss the properties of NIR light, the NIR-functional hydrogels commonly used in current research, the cancer therapy corresponding to the materials encapsulated in them and the bioengineering technology that can assist drug delivery systems. The review provides a constructive reference for the optimization of NIR-NMHAD experimental ideas and its application to human body. Full article
(This article belongs to the Collection Advanced Pharmaceutical Science and Technology)
Show Figures

Graphical abstract

58 pages, 12931 KiB  
Review
Podophyllotoxin: Recent Advances in the Development of Hybridization Strategies to Enhance Its Antitumoral Profile
by Carolina Miranda-Vera, Ángela Patricia Hernández, Pilar García-García, David Díez, Pablo Anselmo García and María Ángeles Castro
Pharmaceutics 2023, 15(12), 2728; https://doi.org/10.3390/pharmaceutics15122728 - 4 Dec 2023
Cited by 2 | Viewed by 1249
Abstract
Podophyllotoxin is a naturally occurring cyclolignan isolated from rhizomes of Podophyllum sp. In the clinic, it is used mainly as an antiviral; however, its antitumor activity is even more interesting. While podophyllotoxin possesses severe side effects that limit its development as an anticancer [...] Read more.
Podophyllotoxin is a naturally occurring cyclolignan isolated from rhizomes of Podophyllum sp. In the clinic, it is used mainly as an antiviral; however, its antitumor activity is even more interesting. While podophyllotoxin possesses severe side effects that limit its development as an anticancer agent, nevertheless, it has become a good lead compound for the synthesis of derivatives with fewer side effects and better selectivity. Several examples, such as etoposide, highlight the potential of this natural product for chemomodulation in the search for new antitumor agents. This review focuses on the recent chemical modifications (2017–mid-2023) of the podophyllotoxin skeleton performed mainly at the C-ring (but also at the lactone D-ring and at the trimethoxyphenyl E-ring) together with their biological properties. Special emphasis is placed on hybrids or conjugates with other natural products (either primary or secondary metabolites) and other molecules (heterocycles, benzoheterocycles, synthetic drugs, and other moieties) that contribute to improved podophyllotoxin bioactivity. In fact, hybridization has been a good strategy to design podophyllotoxin derivatives with enhanced bioactivity. The way in which the two components are joined (directly or through spacers) was also considered for the organization of this review. This comprehensive perspective is presented with the aim of guiding the medicinal chemistry community in the design of new podophyllotoxin-based drugs with improved anticancer properties. Full article
(This article belongs to the Special Issue Recent Advances in Drug Targeting for Cancer Treatment)
Show Figures

Graphical abstract

10 pages, 746 KiB  
Article
Photodynamic Therapy Supported by Antitumor Lipids
by Mladen Korbelik
Pharmaceutics 2023, 15(12), 2723; https://doi.org/10.3390/pharmaceutics15122723 - 3 Dec 2023
Viewed by 933
Abstract
Photodynamic therapy (PDT) destroys tumors by generating cytotoxic oxidants that induce oxidative stress in targeted cancer cells. Antitumor lipids developed for cancer therapy act also by inflicting similar stress. The present study investigated whether tumor response to PDT can be improved by adjuvant [...] Read more.
Photodynamic therapy (PDT) destroys tumors by generating cytotoxic oxidants that induce oxidative stress in targeted cancer cells. Antitumor lipids developed for cancer therapy act also by inflicting similar stress. The present study investigated whether tumor response to PDT can be improved by adjuvant treatment with such lipids using the prototype molecule edelfosine. Cellular stress intensity following Photofrin-based PDT, edelfosine treatment, or their combination was assessed by the expression of heat shock protein 70 (HSP70) on the surface of treated SCCVII tumor cells by FITC-conjugated anti-HSP70 antibody staining and flow cytometry. Surface HSP70 levels that became elevated after either PDT or edelfosine rose much higher after their combined treatment. The impact of Photofrin-PDT-plus-edelfosine treatment was studied with three types of tumor models grown in syngeneic mice. With both SCCVII squamous cell carcinomas and MCA205 fibrosarcoma, the greatest impact was with edelfosine peritumoral injection at 24 h after PDT, which substantially improved tumor cure rates. With Lewis lung carcinomas, edelfosine was highly effective in elevating PDT-mediated tumor cure rates even when injected peritumorally immediately after PDT. Edelfosine used before PDT was ineffective as adjuvant with all tumor models. The study findings provide proof-in-principle for use of cancer lipids with tumor PDT. Full article
Show Figures

Figure 1

14 pages, 2553 KiB  
Article
Improved Therapeutic Efficacy of MT102, a New Anti-Inflammatory Agent, via a Self-Microemulsifying Drug Delivery System, in Ulcerative Colitis Mice
by Kshitis Chandra Baral, Sang Hoon Lee, Jae Geun Song, Seong Hoon Jeong and Hyo-Kyung Han
Pharmaceutics 2023, 15(12), 2720; https://doi.org/10.3390/pharmaceutics15122720 - 2 Dec 2023
Viewed by 1039
Abstract
MT-102 is a new anti-inflammatory agent derived from Juglans mandshurica and Isatis indigotica. Its therapeutic potential is hindered by low aqueous solubility, impacting its in vivo efficacy. Therefore, this study aimed to develop a self-microemulsifying drug delivery system (SMEDDS) for MT-102 to [...] Read more.
MT-102 is a new anti-inflammatory agent derived from Juglans mandshurica and Isatis indigotica. Its therapeutic potential is hindered by low aqueous solubility, impacting its in vivo efficacy. Therefore, this study aimed to develop a self-microemulsifying drug delivery system (SMEDDS) for MT-102 to enhance its oral efficacy in treating ulcerative colitis. Solubility assessment in different oils, surfactants, and cosurfactants led to a SMEDDS formulation of MT-102 using Capmul MCM, Tween 80, and propylene glycol. Based on a pseudoternary phase diagram, the optimal SMEDDS composition was selected, which consisted of 15% Capmul MCM, 42.5% Tween 80, and 42.5% propylene glycol. The resulting optimized SMEDDS (SMEDDS-F1) exhibited a narrow size distribution (177.5 ± 2.80 nm) and high indirubin content (275 ± 5.58 µg/g, a biomarker). Across an acidic to neutral pH range, SMEDDS-F1 showed rapid and extensive indirubin release, with dissolution rates approximately 15-fold higher than pure MT-102. Furthermore, oral administration of SMEDDS-F1 effectively mitigated inflammatory progression and symptoms in a mouse model of ulcerative colitis, whereas pure MT-102 was ineffective. SMEDDS-F1 minimized body weight loss (less than 5%) without any significant change in colon length and the morphology of colonic tissues, compared to those of the healthy control group. In addition, oral administration of SMEDDS-F1 significantly inhibited the secretion of pro-inflammatory cytokines such as IL-6 and TNF-α. In conclusion, the SMEDDS-F1 formulation employing Capmul MCM, Tween 80, and propylene glycol (15:42.5:42.5, w/w) enhances the solubility and therapeutic efficacy of MT-102. Full article
(This article belongs to the Collection Advanced Pharmaceutical Science and Technology in Korea)
Show Figures

Figure 1

20 pages, 4226 KiB  
Review
Natural Chalcones and Derivatives in Colon Cancer: Pre-Clinical Challenges and the Promise of Chalcone-Based Nanoparticles
by Soufyane Hba, Suzan Ghaddar, Hicham Wahnou, Aline Pinon, Riad El Kebbaj, Christelle Pouget, Vincent Sol, Bertrand Liagre, Mounia Oudghiri and Youness Limami
Pharmaceutics 2023, 15(12), 2718; https://doi.org/10.3390/pharmaceutics15122718 - 1 Dec 2023
Cited by 2 | Viewed by 1241
Abstract
Colon cancer poses a complex and substantial global health challenge, necessitating innovative therapeutic approaches. Chalcones, a versatile class of compounds with diverse pharmacological properties, have emerged as promising candidates for addressing colon cancer. Their ability to modulate pivotal signaling pathways in the development [...] Read more.
Colon cancer poses a complex and substantial global health challenge, necessitating innovative therapeutic approaches. Chalcones, a versatile class of compounds with diverse pharmacological properties, have emerged as promising candidates for addressing colon cancer. Their ability to modulate pivotal signaling pathways in the development and progression of colon cancer makes them invaluable as targeted therapeutics. Nevertheless, it is crucial to recognize that although chalcones exhibit promise, further pre-clinical studies are required to validate their efficacy and safety. The journey toward effective colon cancer treatment is multifaceted, involving considerations such as optimizing the sequencing of therapeutic agents, comprehending the resistance mechanisms, and exploring combination therapies incorporating chalcones. Furthermore, the integration of nanoparticle-based drug delivery systems presents a novel avenue for enhancing the effectiveness of chalcones in colon cancer treatment. This review delves into the mechanisms of action of natural chalcones and some derivatives. It highlights the challenges associated with their use in pre-clinical studies, while also underscoring the advantages of employing chalcone-based nanoparticles for the treatment of colon cancer. Full article
(This article belongs to the Special Issue Novel Anticancer Strategies (Volume III))
Show Figures

Graphical abstract

20 pages, 1049 KiB  
Review
Recent Advancements in the Development of Nanocarriers for Mucosal Drug Delivery Systems to Control Oral Absorption
by Hideyuki Sato, Kohei Yamada, Masateru Miyake and Satomi Onoue
Pharmaceutics 2023, 15(12), 2708; https://doi.org/10.3390/pharmaceutics15122708 - 30 Nov 2023
Cited by 1 | Viewed by 1051
Abstract
Oral administration of active pharmaceutical ingredients is desirable because it is easy, safe, painless, and can be performed by patients, resulting in good medication adherence. The mucus layer in the gastrointestinal (GI) tract generally acts as a barrier to protect the epithelial membrane [...] Read more.
Oral administration of active pharmaceutical ingredients is desirable because it is easy, safe, painless, and can be performed by patients, resulting in good medication adherence. The mucus layer in the gastrointestinal (GI) tract generally acts as a barrier to protect the epithelial membrane from foreign substances; however, in the absorption process after oral administration, it can also disturb effective drug absorption by trapping it in the biological sieve structured by mucin, a major component of mucus, and eliminating it by mucus turnover. Recently, functional nanocarriers (NCs) have attracted much attention due to their immense potential and effectiveness in the field of oral drug delivery. Among them, NCs with mucopenetrating and mucoadhesive properties are promising dosage options for controlling drug absorption from the GI tracts. Mucopenetrating and mucoadhesive NCs can rapidly deliver encapsulated drugs to the absorption site and/or prolong the residence time of NCs close to the absorption membrane, providing better medications than conventional approaches. The surface characteristics of NCs are important factors that determine their functionality, owing to the formation of various kinds of interactions between the particle surface and mucosal components. Thus, a deeper understanding of surface modifications on the biopharmaceutical characteristics of NCs is necessary to develop the appropriate mucosal drug delivery systems (mDDS) for the treatment of target diseases. This review summarizes the basic information and functions of the mucosal layer, highlights the recent progress in designing functional NCs for mDDS, and discusses their performance in the GI tract. Full article
Show Figures

Figure 1

18 pages, 3311 KiB  
Article
Temoporfin-Conjugated Upconversion Nanoparticles for NIR-Induced Photodynamic Therapy: Studies with Pancreatic Adenocarcinoma Cells In Vitro and In Vivo
by Oleksandr Shapoval, David Větvička, Vitalii Patsula, Hana Engstová, Olga Kočková, Magdalena Konefał, Martina Kabešová and Daniel Horák
Pharmaceutics 2023, 15(12), 2694; https://doi.org/10.3390/pharmaceutics15122694 - 28 Nov 2023
Cited by 1 | Viewed by 1046
Abstract
Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case [...] Read more.
Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case using poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and temoporfin (THPC) photosensitizer to ensure the colloidal and chemical stability of the particles in aqueous media and the formation of singlet oxygen after NIR irradiation, respectively. Codoping of Fe2+, Yb3+, and Er3+ ions in the NaYF4 host induced upconversion emission of particles in the red region, which is dominant for achieving direct excitation of THPC. Novel monodisperse PMVEMA-coated upconversion NaYF4:Yb3+,Er3+,Fe2+ nanoparticles (UCNPs) with chemically bonded THPC were found to efficiently transfer energy and generate singlet oxygen. The cytotoxicity of the UCNPs was determined in the human pancreatic adenocarcinoma cell lines Capan-2, PANC-01, and PA-TU-8902. In vitro data demonstrated enhanced uptake of UCNP@PMVEMA-THPC particles by rat INS-1E insulinoma cells, followed by significant cell destruction after excitation with a 980 nm laser. Intratumoral administration of these nanoconjugates into a mouse model of human pancreatic adenocarcinoma caused extensive necrosis at the tumor site, followed by tumor suppression after NIR-induced PDT. In vitro and in vivo results thus suggest that this nanoconjugate is a promising candidate for NIR-induced PDT of cancer. Full article
(This article belongs to the Special Issue Advanced Nanopharmaceutics for Anticancer Therapy)
Show Figures

Figure 1

24 pages, 5567 KiB  
Article
Study of the Molecular Architectures of 2-(4-Chlorophenyl)-5-(pyrrolidin-1-yl)-2H-1,2,3-triazole-4-carboxylic Acid Using Their Vibrational Spectra, Quantum Chemical Calculations and Molecular Docking with MMP-2 Receptor
by Mauricio Alcolea Palafox, Nataliya P. Belskaya and Irena P. Kostova
Pharmaceutics 2023, 15(12), 2686; https://doi.org/10.3390/pharmaceutics15122686 - 27 Nov 2023
Viewed by 967
Abstract
1,2,3-triazole skeleton is a valuable building block for the discovery of new promising anticancer agents. In the present work, the molecular structure of the synthesized anticancer drug 2-(4-chlorophenyl)-5-(pyrrolidin-1-yl)-2H-1,2,3-triazole-4-carboxylic acid (1b) and its anionic form (2b) was characterized [...] Read more.
1,2,3-triazole skeleton is a valuable building block for the discovery of new promising anticancer agents. In the present work, the molecular structure of the synthesized anticancer drug 2-(4-chlorophenyl)-5-(pyrrolidin-1-yl)-2H-1,2,3-triazole-4-carboxylic acid (1b) and its anionic form (2b) was characterized by means of the B3LYP, M06-2X and MP2 quantum chemical methods, optimizing their monomer, cyclic dimer and stacking forms using the Gaussian16 program package. The molecular structure was found to be slightly out of plane. The good agreement between the IR and Raman bands experimentally observed in the solid state with those calculated theoretically confirms the synthesized structures. All of the bands were accurately assigned according to functional calculations (DFT) in the monomer and dimer forms, together with the polynomic scaling equation procedure (PSE). Therefore, the effect of the substituents on the triazole ring and the effect of the chlorine atom on the molecular structure and on the vibrational spectra were evaluated through comparison with its non-substituted form. Through molecular docking calculations, it was evaluated as to how molecule 1b interacts with few amino acids of the MMP-2 metalloproteinase receptor, using Sybyl-X 2.0 software. Thus, the relevance of triazole scaffolds in established hydrogen bond-type interactions was demonstrated. Full article
Show Figures

Figure 1

17 pages, 656 KiB  
Review
Intradermal Delivery of Naked mRNA Vaccines via Iontophoresis
by Mahadi Hasan, Anowara Khatun and Kentaro Kogure
Pharmaceutics 2023, 15(12), 2678; https://doi.org/10.3390/pharmaceutics15122678 - 26 Nov 2023
Cited by 1 | Viewed by 1787
Abstract
Messenger RNA (mRNA) vaccines against infectious diseases and for anticancer immunotherapy have garnered considerable attention. Currently, mRNA vaccines encapsulated in lipid nanoparticles are administrated via intramuscular injection using a needle. However, such administration is associated with pain, needle phobia, and lack of patient [...] Read more.
Messenger RNA (mRNA) vaccines against infectious diseases and for anticancer immunotherapy have garnered considerable attention. Currently, mRNA vaccines encapsulated in lipid nanoparticles are administrated via intramuscular injection using a needle. However, such administration is associated with pain, needle phobia, and lack of patient compliance. Furthermore, side effects such as fever and anaphylaxis associated with the lipid nanoparticle components are also serious problems. Therefore, noninvasive, painless administration of mRNA vaccines that do not contain other problematic components is highly desirable. Antigen-presenting cells reside in the epidermis and dermis, making the skin an attractive vaccination site. Iontophoresis (ItP) uses weak electric current applied to the skin surface and offers a noninvasive permeation technology that enables intradermal delivery of hydrophilic and ionic substances. ItP-mediated intradermal delivery of biological macromolecules has also been studied. Herein, we review the literature on the use of ItP technology for intradermal delivery of naked mRNA vaccines which is expected to overcome the challenges associated with mRNA vaccination. In addition to the physical mechanism, we discuss novel biological mechanisms of iontophoresis, particularly ItP-mediated opening of the skin barriers and the intracellular uptake pathway, and how the combined mechanisms can allow for effective intradermal delivery of mRNA vaccines. Full article
(This article belongs to the Special Issue Advances in the Development of mRNA Medicines and mRNA Vaccines)
Show Figures

Figure 1

28 pages, 7654 KiB  
Review
Topoisomeric Membrane-Active Peptides: A Review of the Last Two Decades
by Adam Carrera-Aubesart, Maria Gallo, Sira Defaus, Toni Todorovski and David Andreu
Pharmaceutics 2023, 15(10), 2451; https://doi.org/10.3390/pharmaceutics15102451 - 12 Oct 2023
Cited by 1 | Viewed by 1034
Abstract
In recent decades, bioactive peptides have been gaining recognition in various biomedical areas, such as intracellular drug delivery (cell-penetrating peptides, CPPs) or anti-infective action (antimicrobial peptides, AMPs), closely associated to their distinct mode of interaction with biological membranes. Exploiting the interaction of membrane-active [...] Read more.
In recent decades, bioactive peptides have been gaining recognition in various biomedical areas, such as intracellular drug delivery (cell-penetrating peptides, CPPs) or anti-infective action (antimicrobial peptides, AMPs), closely associated to their distinct mode of interaction with biological membranes. Exploiting the interaction of membrane-active peptides with diverse targets (healthy, tumoral, bacterial or parasitic cell membranes) is opening encouraging prospects for peptides in therapeutics. However, ordinary peptides formed by L-amino acids are easily decomposed by proteases in biological fluids. One way to sidestep this limitation is to use topoisomers, namely versions of the peptide made up of D-amino acids in either canonic (enantio) or inverted (retroenantio) sequence. Rearranging peptide sequences in this fashion provides a certain degree of native structure mimicry that, in appropriate contexts, may deliver desirable biological activity while avoiding protease degradation. In this review, we will focus on recent accounts of membrane-active topoisomeric peptides with therapeutic applications as CPP drug delivery vectors, or as antimicrobial and anticancer candidates. We will also discuss the most common modes of interaction of these peptides with their membrane targets. Full article
(This article belongs to the Special Issue State of the Art of Membrane Active Peptides)
Show Figures

Graphical abstract

14 pages, 1226 KiB  
Review
IL-17 Inhibition: A Valid Therapeutic Strategy in the Management of Hidradenitis Suppurativa
by Dalma Malvaso, Laura Calabrese, Andrea Chiricozzi, Flaminia Antonelli, Giulia Coscarella, Pietro Rubegni and Ketty Peris
Pharmaceutics 2023, 15(10), 2450; https://doi.org/10.3390/pharmaceutics15102450 - 11 Oct 2023
Cited by 2 | Viewed by 2192
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease with a significant negative impact on the quality of life of patients. To date, the therapeutic landscape for the management of the disease has been extremely limited, resulting in a profound unmet need. Indeed, [...] Read more.
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease with a significant negative impact on the quality of life of patients. To date, the therapeutic landscape for the management of the disease has been extremely limited, resulting in a profound unmet need. Indeed, adalimumab, an anti-tumor necrosis factor (TNF)-α monoclonal antibody, is the only approved biologic agent for HS, obtaining a therapeutic response in only 50% of HS patients. Numerous clinical trials are currently ongoing to test novel therapeutic targets in HS. The IL-17-mediated cascade is the target of several biologic agents that have shown efficacy and safety in treating moderate-to-severe HS. Both bimekizumab and secukinumab, targeting IL-17 in different manners, have successfully completed phase III trials with promising results; the latter has recently been approved by EMA for the treatment of HS. The aim of this review is to summarize the current state of knowledge concerning the relevant role of IL-17 in HS pathogenesis, highlighting the key clinical evidence of anti-IL-17 agents in the treatment of this disease. Full article
Show Figures

Figure 1

19 pages, 2126 KiB  
Review
Strategies for Drug Delivery into the Brain: A Review on Adenosine Receptors Modulation for Central Nervous System Diseases Therapy
by Mercedes Fernandez, Manuela Nigro, Alessia Travagli, Silvia Pasquini, Fabrizio Vincenzi, Katia Varani, Pier Andrea Borea, Stefania Merighi and Stefania Gessi
Pharmaceutics 2023, 15(10), 2441; https://doi.org/10.3390/pharmaceutics15102441 - 10 Oct 2023
Viewed by 1890
Abstract
The blood–brain barrier (BBB) is a biological barrier that protects the central nervous system (CNS) by ensuring an appropriate microenvironment. Brain microvascular endothelial cells (ECs) control the passage of molecules from blood to brain tissue and regulate their concentration-versus-time profiles to guarantee proper [...] Read more.
The blood–brain barrier (BBB) is a biological barrier that protects the central nervous system (CNS) by ensuring an appropriate microenvironment. Brain microvascular endothelial cells (ECs) control the passage of molecules from blood to brain tissue and regulate their concentration-versus-time profiles to guarantee proper neuronal activity, angiogenesis and neurogenesis, as well as to prevent the entry of immune cells into the brain. However, the BBB also restricts the penetration of drugs, thus presenting a challenge in the development of therapeutics for CNS diseases. On the other hand, adenosine, an endogenous purine-based nucleoside that is expressed in most body tissues, regulates different body functions by acting through its G-protein-coupled receptors (A1, A2A, A2B and A3). Adenosine receptors (ARs) are thus considered potential drug targets for treating different metabolic, inflammatory and neurological diseases. In the CNS, A1 and A2A are expressed by astrocytes, oligodendrocytes, neurons, immune cells and ECs. Moreover, adenosine, by acting locally through its receptors A1 and/or A2A, may modulate BBB permeability, and this effect is potentiated when both receptors are simultaneously activated. This review showcases in vivo and in vitro evidence supporting AR signaling as a candidate for modifying endothelial barrier permeability in the treatment of CNS disorders. Full article
Show Figures

Figure 1

18 pages, 3570 KiB  
Review
Recent Progress in Diatom Biosilica: A Natural Nanoporous Silica Material as Sustained Release Carrier
by Hayeon Lim, Yoseph Seo, Daeryul Kwon, Sunggu Kang, Jiyun Yu, Hyunjun Park, Sang Deuk Lee and Taek Lee
Pharmaceutics 2023, 15(10), 2434; https://doi.org/10.3390/pharmaceutics15102434 - 9 Oct 2023
Cited by 1 | Viewed by 1429
Abstract
A drug delivery system (DDS) is a useful technology that efficiently delivers a target drug to a patient’s specific diseased tissue with minimal side effects. DDS is a convergence of several areas of study, comprising pharmacy, medicine, biotechnology, and chemistry fields. In the [...] Read more.
A drug delivery system (DDS) is a useful technology that efficiently delivers a target drug to a patient’s specific diseased tissue with minimal side effects. DDS is a convergence of several areas of study, comprising pharmacy, medicine, biotechnology, and chemistry fields. In the traditional pharmacological concept, developing drugs for disease treatment has been the primary research field of pharmacology. The significance of DDS in delivering drugs with optimal formulation to target areas to increase bioavailability and minimize side effects has been recently highlighted. In addition, since the burst release found in various DDS platforms can reduce drug delivery efficiency due to unpredictable drug loss, many recent DDS studies have focused on developing carriers with a sustained release. Among various drug carriers, mesoporous silica DDS (MS-DDS) is applied to various drug administration routes, based on its sustained releases, nanosized porous structures, and excellent solubility for poorly soluble drugs. However, the synthesized MS-DDS has caused complications such as toxicity in the body, long-term accumulation, and poor excretion ability owing to acid treatment-centered manufacturing methods. Therefore, biosilica obtained from diatoms, as a natural MS-DDS, has recently emerged as an alternative to synthesized MS-DDS. This natural silica carrier is an optimal DDS platform because culturing diatoms is easy, and the silica can be separated from diatoms using a simple treatment. In this review, we discuss the manufacturing methods and applications to various disease models based on the advantages of biosilica. Full article
(This article belongs to the Special Issue Functionalized Polymers in Drug Delivery)
Show Figures

Figure 1

17 pages, 3858 KiB  
Article
Selection of Excipients for the Preparation of Vancomycin-Loaded Poly(D,L-lactide-co-glycolide) Microparticles with Extended Release by Emulsion Spray Drying
by Ana Jurić Simčić, Iva Erak, Biserka Cetina Čižmek, Anita Hafner and Jelena Filipović-Grčić
Pharmaceutics 2023, 15(10), 2438; https://doi.org/10.3390/pharmaceutics15102438 - 9 Oct 2023
Viewed by 952
Abstract
The aim of this study was to relate the composition of the W/O emulsion used as a starting fluid in the spray-drying process to the quality of the dry polymer particles obtained in terms of physical–chemical properties, compatibility and drug release performance. Four [...] Read more.
The aim of this study was to relate the composition of the W/O emulsion used as a starting fluid in the spray-drying process to the quality of the dry polymer particles obtained in terms of physical–chemical properties, compatibility and drug release performance. Four W/O emulsions containing vancomycin hydrochloride (VAN), an encapsulating PLGA polymer and Poloxamer® 407, chitosan and/or sorbitan monooleate as stabilisers were spray-dried using an ultrasonic atomising nozzle. The microparticles obtained were micron-sized, with a volume mean diameter between 43.2 ± 0.3 and 64.0 ± 12.6 µm, and spherical with a mostly smooth, non-porous surface and with high drug loading (between 14.5 ± 0.6 and 17.1 ± 1.9% w/w). All formulations showed a prolonged and biphasic VAN release profile, with diffusion being the primary release mechanism. Microparticles prepared from the emulsions with Poloxamer® 407 and sorbitan monooleate released VAN rapidly and completely within one day. The release of VAN from microparticles prepared from the emulsion without additives or with chitosan in the inner aqueous phase was significantly decreased; after four days, a cumulative release of 65% and 61%, respectively, was achieved. Microparticles with encapsulated chitosan had the largest mean particle diameter and the slowest release of VAN. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

11 pages, 1502 KiB  
Article
Systems Biology and Peptide Engineering to Overcome Absorption Barriers for Oral Peptide Delivery: Dosage Form Optimization Case Study Preceding Clinical Translation
by Puneet Tyagi, Chandresh Patel, Kimberly Gibson, Fiona MacDougall, Sergei Y. Pechenov, Sarah Will, Jefferson Revell, Yue Huang, Anton I. Rosenbaum, Kemal Balic, Umar Maharoof, Joseph Grimsby and J. Anand Subramony
Pharmaceutics 2023, 15(10), 2436; https://doi.org/10.3390/pharmaceutics15102436 - 9 Oct 2023
Viewed by 1402
Abstract
Oral delivery of peptides and biological molecules promises significant benefits to patients as an alternative to daily injections, but the development of these formulations is challenging due to their low bioavailability and high pharmacokinetic variability. Our earlier work focused on the discovery of [...] Read more.
Oral delivery of peptides and biological molecules promises significant benefits to patients as an alternative to daily injections, but the development of these formulations is challenging due to their low bioavailability and high pharmacokinetic variability. Our earlier work focused on the discovery of MEDI7219, a stabilized, lipidated, glucagon-like peptide 1 agonist peptide, and the selection of sodium chenodeoxycholate (Na CDC) and propyl gallate (PG) as permeation enhancer combinations. We hereby describe the development of the MEDI7219 tablet formulations and composition optimization via in vivo studies in dogs. We designed the MEDI7219 immediate-release tablets with the permeation enhancers Na CDC and PG. Immediate-release tablets were coated with an enteric coating that dissolves at pH ≥ 5.5 to target the upper duodenal region of the gastrointestinal tract and sustained-release tablets with a Carbopol bioadhesive polymer were coated with an enteric coating that dissolves at pH ≥ 7.0 to provide a longer presence at the absorption site in the gastrointestinal tract. In addition to immediate- and enteric-coated formulations, we also tested a proprietary delayed release erodible barrier layer tablet (OralogiKTM) to deliver the payload to the target site in the gastrointestinal tract. The design of tablet dosage forms based on the optimization of formulations resulted in up to 10.1% absolute oral bioavailability in dogs with variability as low as 26% for MEDI7219, paving the way for its clinical development. Full article
(This article belongs to the Special Issue New Technology for Prolonged Drug Release)
Show Figures

Figure 1

50 pages, 8242 KiB  
Review
Pediatric Drug Development: Reviewing Challenges and Opportunities by Tracking Innovative Therapies
by Cátia Domingues, Ivana Jarak, Francisco Veiga, Marília Dourado and Ana Figueiras
Pharmaceutics 2023, 15(10), 2431; https://doi.org/10.3390/pharmaceutics15102431 - 6 Oct 2023
Cited by 1 | Viewed by 4672
Abstract
The paradigm of pediatric drug development has been evolving in a “carrot-and-stick”-based tactic to address population-specific issues. However, the off-label prescription of adult medicines to pediatric patients remains a feature of clinical practice, which may compromise the age-appropriate evaluation of treatments. Therefore, the [...] Read more.
The paradigm of pediatric drug development has been evolving in a “carrot-and-stick”-based tactic to address population-specific issues. However, the off-label prescription of adult medicines to pediatric patients remains a feature of clinical practice, which may compromise the age-appropriate evaluation of treatments. Therefore, the United States and the European Pediatric Formulation Initiative have recommended applying nanotechnology-based delivery systems to tackle some of these challenges, particularly applying inorganic, polymeric, and lipid-based nanoparticles. Connected with these, advanced therapy medicinal products (ATMPs) have also been highlighted, with optimistic perspectives for the pediatric population. Despite the results achieved using these innovative therapies, a workforce that congregates pediatric patients and/or caregivers, healthcare stakeholders, drug developers, and physicians continues to be of utmost relevance to promote standardized guidelines for pediatric drug development, enabling a fast lab-to-clinical translation. Therefore, taking into consideration the significance of this topic, this work aims to compile the current landscape of pediatric drug development by (1) outlining the historic regulatory panorama, (2) summarizing the challenges in the development of pediatric drug formulation, and (3) delineating the advantages/disadvantages of using innovative approaches, such as nanomedicines and ATMPs in pediatrics. Moreover, some attention will be given to the role of pharmaceutical technologists and developers in conceiving pediatric medicines. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

19 pages, 3214 KiB  
Article
Systemic Dendrimer-Peptide Therapies for Wet Age-Related Macular Degeneration
by Tony Wu, Chang Liu and Rangaramanujam M. Kannan
Pharmaceutics 2023, 15(10), 2428; https://doi.org/10.3390/pharmaceutics15102428 - 5 Oct 2023
Viewed by 1030
Abstract
Wet age-related macular degeneration (AMD) is an end-stage event in a complex pathogenesis of macular degeneration, involving the abnormal growth of blood vessels at the retinal pigment epithelium driven by vascular endothelial growth factor (VEGF). Current therapies seek to interrupt VEGF signaling to [...] Read more.
Wet age-related macular degeneration (AMD) is an end-stage event in a complex pathogenesis of macular degeneration, involving the abnormal growth of blood vessels at the retinal pigment epithelium driven by vascular endothelial growth factor (VEGF). Current therapies seek to interrupt VEGF signaling to halt the progress of neovascularization, but a significant patient population is not responsive. New treatment modalities such as integrin-binding peptides (risuteganib/Luminate/ALG-1001) are being explored to address this clinical need but these treatments necessitate the use of intravitreal injections (IVT), which carries risks of complications and restricts its availability in less-developed countries. Successful systemic delivery of peptide-based therapeutics must overcome obstacles such as degradation by proteinases in circulation and off-target binding. In this work, we present a novel dendrimer-integrin-binding peptide (D-ALG) synthesized with a noncleavable, “clickable” linker. In vitro, D-ALG protected the peptide payload from enzymatic degradation for up to 1.5 h (~90% of the compound remained intact) in a high concentration of proteinase (2 mg/mL) whereas ~90% of free ALG-1001 was degraded in the same period. Further, dendrimer conjugation preserved the antiangiogenic activity of ALG-1001 in vitro with significant reductions in endothelial vessel network formation compared to untreated controls. In vivo, direct intravitreal injections of ALG-1001 and D-ALG produced reductions in the CNV lesion area but in systemically dosed animals, only D-ALG produced significant reductions of CNV lesion area at 14 days. Imaging data suggested that the difference in efficacy may be due to more D-ALG remaining in the target area than ALG-1001 after administration. The results presented here offer a clinically relevant route for peptide therapeutics by addressing the major obstacles that these therapies face in delivery. Full article
Show Figures

Figure 1

23 pages, 4805 KiB  
Article
Development, Characterization and Pharmacological Evaluation of Cannabidiol-Loaded Long Circulating Niosomes
by Viliana Gugleva, Katerina Ahchiyska, Dilyana Georgieva, Rositsa Mihaylova, Spiro Konstantinov, Erik Dimitrov, Natalia Toncheva-Moncheva, Stanislav Rangelov, Aleksander Forys, Barbara Trzebicka and Denitsa Momekova
Pharmaceutics 2023, 15(10), 2414; https://doi.org/10.3390/pharmaceutics15102414 - 3 Oct 2023
Cited by 1 | Viewed by 1338
Abstract
Cannabidiol (CBD) is a promising drug candidate with pleiotropic pharmacological activity, whose low aqueous solubility and unfavorable pharmacokinetics have presented obstacles to its full clinical implementation. The rational design of nanocarriers, including niosomes for CBD encapsulation, can provide a plausible approach to overcoming [...] Read more.
Cannabidiol (CBD) is a promising drug candidate with pleiotropic pharmacological activity, whose low aqueous solubility and unfavorable pharmacokinetics have presented obstacles to its full clinical implementation. The rational design of nanocarriers, including niosomes for CBD encapsulation, can provide a plausible approach to overcoming these limitations. The present study is focused on exploring the feasibility of copolymer-modified niosomes as platforms for systemic delivery of CBD. To confer steric stabilization, the niosomal membranes were grafted with newly synthesized amphiphilic linear or star-shaped 3- and 4-arm star-shaped copolymers based on polyglycidol (PG) and poly(ε-caprolactone) (PCL) blocks. The niosomes were prepared by film hydration method and were characterized by DLS, cryo-TEM, encapsulation efficacy, and in vitro release. Free and formulated cannabidiol were further investigated for cytotoxicity and pro-apoptotic and anti-inflammatory activities in vitro in three human tumor cell lines. The optimal formulation, based on Tween 60:Span60:Chol (3.5:3.5:3 molar ration) modified with 2.5 mol% star-shaped 3-arm copolymer, is characterized by a size of 235 nm, high encapsulation of CBD (94%), and controlled release properties. Niosomal cannabidiol retained the antineoplastic activity of the free agent, but noteworthy superior apoptogenic and inflammatory biomarker-modulating effects were established at equieffective exposure vs. the free drug. Specific alterations in key signaling molecules, implicated in programmed cell death, cancer cell biology, and inflammation, were recorded with the niosomal formulations. Full article
(This article belongs to the Special Issue Self-Assembled Amphiphilic Copolymers in Drug Delivery)
Show Figures

Graphical abstract

30 pages, 7651 KiB  
Article
Mucoadhesive Alginate/Pectin Films Crosslinked by Calcium Carbonate as Carriers of a Model Antifungal Drug—Posaconazole
by Marta Szekalska, Anna Czajkowska-Kośnik, Bartosz Maciejewski, Iwona Misztalewska-Turkowicz, Agnieszka Zofia Wilczewska, Jurga Bernatoniene and Katarzyna Winnicka
Pharmaceutics 2023, 15(10), 2415; https://doi.org/10.3390/pharmaceutics15102415 - 3 Oct 2023
Viewed by 1147
Abstract
The mucosal membrane of the oral cavity, due to its unique structure and availability, constitutes an appropriate site for the delivery of drugs, both with local and systemic effects. Mucoadhesive buccal films are drug dosage forms that due to their convenience of application, [...] Read more.
The mucosal membrane of the oral cavity, due to its unique structure and availability, constitutes an appropriate site for the delivery of drugs, both with local and systemic effects. Mucoadhesive buccal films are drug dosage forms that due to their convenience of application, flexibility and size, are characterized by patients’ compliance. Sodium alginate and pectin are natural polymers from the polysaccharides group, with mucoadhesive properties, that are widely applied to obtain buccal films. However, their hydrophilic nature and poor water resistance limit their application in sustained drug release formulations. Hence, the aim of this investigation was to design alginate/pectin buccal films by a one-step crosslinking technique—with the application of calcium carbonate. This technique was applied to prepare crosslinked alginate and alginate/pectin mucoadhesive films with a model antifungal drug—posaconazole. The obtained formulations were evaluated for the impact of crosslinking and pectin’s presence on their pharmaceutical, mucoadhesive, mechanical and physicochemical properties. Additionally, the antifungal activity of the prepared films against Candida spp. was evaluated. It was shown that pectin’s presence in the formulations improved flexibility, mucoadhesion and antifungal activity. The crosslinking process reduced mucoadhesiveness and antifungal activity but significantly enhanced the mechanical properties and stability and enabled prolonged drug release. Full article
(This article belongs to the Special Issue New Technology for Prolonged Drug Release, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 12498 KiB  
Article
Lipid-Coated Polymeric Nanoparticles for the Photodynamic Therapy of Head and Neck Squamous Cell Carcinomas
by Valeri Roschenko, Abdallah M. Ayoub, Konrad Engelhardt, Jens Schäfer, Muhammad Umair Amin, Eduard Preis, Robert Mandic and Udo Bakowsky
Pharmaceutics 2023, 15(10), 2412; https://doi.org/10.3390/pharmaceutics15102412 - 2 Oct 2023
Viewed by 1161
Abstract
Next to alcohol and tobacco abuse, infection with human papillomaviruses (HPVs) is a major risk factor for developing head and neck squamous cell carcinomas (HNSCCs), leading to 350,000 casualties worldwide each year. Limited therapy options and drug resistance raise the urge for alternative [...] Read more.
Next to alcohol and tobacco abuse, infection with human papillomaviruses (HPVs) is a major risk factor for developing head and neck squamous cell carcinomas (HNSCCs), leading to 350,000 casualties worldwide each year. Limited therapy options and drug resistance raise the urge for alternative methods such as photodynamic therapy (PDT), a minimally invasive procedure used to treat HNSCC and other cancers. We prepared lipid-coated polymeric nanoparticles encapsulating curcumin as the photosensitizer (CUR-LCNPs). The prepared CUR-LCNPs were in the nanometer range (153.37 ± 1.58 nm) and showed an encapsulation efficiency of 92.69 ± 0.03%. Proper lipid coating was visualized using atomic force microscopy (AFM). The CUR-LCNPs were tested in three HPVpos and three HPVneg HNSCC lines regarding their uptake capabilities and in vitro cell killing capacity, revealing a variable but highly significant tumor cell inhibiting effect in all tested HNSCC cell lines. No significant differences were detected between the HPVpos and HPVneg HNSCC groups (mean IC50: (9.34 ± 4.73 µmol/L vs. 6.88 ± 1.03 µmol/L), suggesting CUR-LCNPs/PDT to be a promising therapeutic option for HNSCC patients independent of their HPV status. Full article
(This article belongs to the Special Issue Photodynamic Therapy: Rising Star in Pharmaceutical Applications)
Show Figures

Graphical abstract

20 pages, 4517 KiB  
Article
Efficacy of Apremilast Gels in Mouse Model of Imiquimod-Induced Psoriasis Skin Inflammation
by Marcelle Silva-Abreu, Lilian Sosa, Lupe Carolina Espinoza, María-José Fábrega, María J. Rodríguez-Lagunas, Mireia Mallandrich, Ana Cristina Calpena, María Luisa Garduño-Ramírez and María Rincón
Pharmaceutics 2023, 15(10), 2403; https://doi.org/10.3390/pharmaceutics15102403 - 29 Sep 2023
Cited by 1 | Viewed by 1775
Abstract
Apremilast (APM) is a novel drug for the treatment of psoriasis and psoriatic arthritis. APM is a phosphodiesterase 4 (PDE4) inhibitor, raising intracellular cAMP levels and thereby decreasing the inflammatory response by modulating the expression of TNF-α, IL-17, IL-23, and other inflammatory cytokines. [...] Read more.
Apremilast (APM) is a novel drug for the treatment of psoriasis and psoriatic arthritis. APM is a phosphodiesterase 4 (PDE4) inhibitor, raising intracellular cAMP levels and thereby decreasing the inflammatory response by modulating the expression of TNF-α, IL-17, IL-23, and other inflammatory cytokines. The goal of this study is to develop APM gels as a new pharmaceutical formulation for the treatment of topical psoriasis. APM was solubilized in Transcutol-P and incorporated into Pluronic F127, Sepigel, and carbomer bases at different proportions. All formulations were characterized physiochemically. A biopharmaceutical study (release profile) was performed, and ex vivo permeation was evaluated using a human skin model. A toxicity assay was carried out on the HaCaT cell line. A mouse model of imiquimod-induced psoriasis skin inflammation was carried out to determine its efficacy by histological analysis, RNA extraction, and RT-qPCR assays. APM gel formulations showed good physicochemical characteristics and a sustained release profile. There was no permeation of any gel measured through human skin, indicating a high retained amount of APM on the skin. Cell viability was greater than 80% at most dilution concentrations. APM gels treated the psoriasis mouse model, and it shows a reduction in the proinflammatory cytokines (IL-8, IL-17A, IL-17F, and IL-23). APM gels could be a new approach for the treatment of topical psoriasis. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

50 pages, 10633 KiB  
Review
Resurgence and Repurposing of Antifungal Azoles by Transition Metal Coordination for Drug Discovery
by Youri Cortat and Fabio Zobi
Pharmaceutics 2023, 15(10), 2398; https://doi.org/10.3390/pharmaceutics15102398 - 28 Sep 2023
Cited by 1 | Viewed by 899
Abstract
Coordination compounds featuring one or more antifungal azole (AA) ligands constitute an interesting family of candidate molecules, given their medicinal polyvalence and the viability of drug complexation as a strategy to improve and repurpose available medications. This review reports the work performed in [...] Read more.
Coordination compounds featuring one or more antifungal azole (AA) ligands constitute an interesting family of candidate molecules, given their medicinal polyvalence and the viability of drug complexation as a strategy to improve and repurpose available medications. This review reports the work performed in the field of coordination derivatives of AAs synthesized for medical purposes by discussing the corresponding publications and emphasizing the most promising compounds discovered so far. The resulting overview highlights the efficiency of AAs and their metallic species, as well as the potential still lying in this research area. Full article
Show Figures

Figure 1

38 pages, 4754 KiB  
Review
Challenges in Permeability Assessment for Oral Drug Product Development
by Mirko Koziolek, Patrick Augustijns, Constantin Berger, Rodrigo Cristofoletti, David Dahlgren, Janneke Keemink, Pär Matsson, Fiona McCartney, Marco Metzger, Mario Mezler, Janis Niessen, James E. Polli, Maria Vertzoni, Werner Weitschies and Jennifer Dressman
Pharmaceutics 2023, 15(10), 2397; https://doi.org/10.3390/pharmaceutics15102397 - 28 Sep 2023
Cited by 1 | Viewed by 2283
Abstract
Drug permeation across the intestinal epithelium is a prerequisite for successful oral drug delivery. The increased interest in oral administration of peptides, as well as poorly soluble and poorly permeable compounds such as drugs for targeted protein degradation, have made permeability a key [...] Read more.
Drug permeation across the intestinal epithelium is a prerequisite for successful oral drug delivery. The increased interest in oral administration of peptides, as well as poorly soluble and poorly permeable compounds such as drugs for targeted protein degradation, have made permeability a key parameter in oral drug product development. This review describes the various in vitro, in silico and in vivo methodologies that are applied to determine drug permeability in the human gastrointestinal tract and identifies how they are applied in the different stages of drug development. The various methods used to predict, estimate or measure permeability values, ranging from in silico and in vitro methods all the way to studies in animals and humans, are discussed with regard to their advantages, limitations and applications. A special focus is put on novel techniques such as computational approaches, gut-on-chip models and human tissue-based models, where significant progress has been made in the last few years. In addition, the impact of permeability estimations on PK predictions in PBPK modeling, the degree to which excipients can affect drug permeability in clinical studies and the requirements for colonic drug absorption are addressed. Full article
(This article belongs to the Special Issue Recent Advances in Oral Biopharmaceutics)
Show Figures

Figure 1

24 pages, 1792 KiB  
Review
Fc-Engineered Therapeutic Antibodies: Recent Advances and Future Directions
by Dalia T. Abdeldaim and Katharina Schindowski
Pharmaceutics 2023, 15(10), 2402; https://doi.org/10.3390/pharmaceutics15102402 - 28 Sep 2023
Cited by 7 | Viewed by 4105
Abstract
Monoclonal therapeutic antibodies have revolutionized the treatment of cancer and other diseases. Fc engineering aims to enhance the effector functions or half-life of therapeutic antibodies by modifying their Fc regions. Recent advances in the Fc engineering of modern therapeutic antibodies can be considered [...] Read more.
Monoclonal therapeutic antibodies have revolutionized the treatment of cancer and other diseases. Fc engineering aims to enhance the effector functions or half-life of therapeutic antibodies by modifying their Fc regions. Recent advances in the Fc engineering of modern therapeutic antibodies can be considered the next generation of antibody therapy. Various strategies are employed, including altering glycosylation patterns via glycoengineering and introducing mutations to the Fc region, thereby enhancing Fc receptor or complement interactions. Further, Fc engineering strategies enable the generation of bispecific IgG-based heterodimeric antibodies. As Fc engineering techniques continue to evolve, an expanding portfolio of Fc-engineered antibodies is advancing through clinical development, with several already approved for medical use. Despite the plethora of Fc-based mutations that have been analyzed in in vitro and in vivo models, we focus here in this review on the relevant Fc engineering strategies of approved therapeutic antibodies to finetune effector functions, to modify half-life and to stabilize asymmetric bispecific IgGs. Full article
(This article belongs to the Special Issue Recent Advances in Therapeutic Antibody)
Show Figures

Graphical abstract

Back to TopTop