New Insights into Plant Resistance to Stress

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Physiology and Metabolism".

Deadline for manuscript submissions: closed (31 May 2023) | Viewed by 33713

Special Issue Editors


E-Mail Website
Guest Editor
Department of Plant Physiology and Molecular Plant Biology, Eotvos Lorand University (ELTE), Pazmany Peter setany 1/C, H-1117 Budapest, Hungary
Interests: plant stress; plant molecular biology; plant physiology

E-Mail Website
Guest Editor
Department of Plant Breeding, IFZ Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, 35392 Giessen, Germany
Interests: plant genome editing; trait improvement; abiotic stress tolerance
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Louvain Institute of Biomolecular Sciences, Catholic University of Louvain, 1348 Louvain La Neuve, Belgium
Interests: ABA; plant development; autophagy; stress genomics and crop improvement

Special Issue Information

Dear Colleagues,

How the plants cope with stress and how scientifically we could ensure their success are research interest at the frontline of modern plant science. Our intriguing thrust to understand fundamentals of stress adaptation and economy oriented human interest fuel such investigations. Global climate change is, however, now posing an inevitable challenge in our efforts to produce sufficient food and forage. New perspectives on plant mechanisms to adapt against environmental cues and our capability to genetically improve crop resistance may not be able to solve all the issues associated with plant stress but might nevertheless be effective for the development of novel tools in efforts to create more sustainable agriculture. The focus of this Special Issue of Plants is on new insights and perspectives about the resistance mechanisms of plants and new strategies and tools with which resistance against the different abiotic and biotic stressors could be improved.

Dr. Szabolcs Rudnóy
Dr. Sruthy Maria Augustine
Dr. Kaushal Bhati
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • crops
  • environment-friendly treatments
  • new perspectives
  • stress resistance
  • sustainable agriculture

Published Papers (21 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 6497 KiB  
Article
Water Deficit at Vegetative Stage Induces Tolerance to High Temperature during Anthesis in Rice
by Anderson da Rosa Feijó, Vívian Ebeling Viana, Andrisa Balbinot, Marcus Vinicius Fipke, Gustavo Maia Souza, Luciano do Amarante and Luis Antonio de Avila
Plants 2023, 12(17), 3133; https://doi.org/10.3390/plants12173133 - 31 Aug 2023
Cited by 1 | Viewed by 944
Abstract
Background: Crop yields have been affected by many different biotic and abiotic factors. Generally, plants experience more than one stress during their life cycle, and plants can tolerate multiple stresses and develop cross-tolerance. The expected rise in atmospheric CO2 concentration ([CO2 [...] Read more.
Background: Crop yields have been affected by many different biotic and abiotic factors. Generally, plants experience more than one stress during their life cycle, and plants can tolerate multiple stresses and develop cross-tolerance. The expected rise in atmospheric CO2 concentration ([CO2]) can contribute to cross-tolerance. Priming is a strategy to increase yield or to maintain yield under stress conditions. Thus, our objective was to evaluate if priming the rice plants with water deficit during the vegetative stage can induce tolerance to heat stress at anthesis and to evaluate the contribution of e[CO2]. Methods: The experiment was arranged in a completely randomized design in a factorial arrangement. Factor A consisted of the following treatments: water deficit at four-leaf stage (no-stress, and drought stress), heat at anthesis (normal temperature, high temperature), and priming with water deficit at four-leaf stage and heat stress at anthesis; and Factor B was two [CO2] treatments: a[CO2] = 400 ± 40 μmol mol−1 and e[CO2] = 700 ± 40 μmol mol−1. We assessed the effect of the treatments on plant growth, yield, biochemical, and transcriptome alterations. Results: Although e[CO2] affected rice growth parameters, it did not affect the priming effect. Primed plants showed an increase in yield and number of panicles per plant. Primed plants showed upregulation of OsHSP16.9A, OsHSP70.1, and OsHSP70.6. These results showed induced cross-tolerance. Conclusions: Water deficit at the rice vegetative stage reduces the effect of heat stress at the reproductive stage. Water deficit at the vegetative stage can be used, after further testing in field conditions, to reduce the effect of heat stress during flowering in rice. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Graphical abstract

19 pages, 2063 KiB  
Article
Soybean Plants Exposed to Low Concentrations of Potassium Iodide Have Better Tolerance to Water Deficit through the Antioxidant Enzymatic System and Photosynthesis Modulation
by Jucelino de Sousa Lima, Otávio Vitor Souza Andrade, Leônidas Canuto dos Santos, Everton Geraldo de Morais, Gabryel Silva Martins, Yhan S. Mutz, Vitor L. Nascimento, Paulo Eduardo Ribeiro Marchiori, Guilherme Lopes and Luiz Roberto Guimarães Guilherme
Plants 2023, 12(13), 2555; https://doi.org/10.3390/plants12132555 - 05 Jul 2023
Cited by 2 | Viewed by 1691
Abstract
Water deficit inhibits plant growth by affecting several physiological processes, which leads to the overproduction of reactive oxygen species (ROS) that may cause oxidative stress. In this regard, iodine (I) is already known to possibly enhance the antioxidant defense system of plants and [...] Read more.
Water deficit inhibits plant growth by affecting several physiological processes, which leads to the overproduction of reactive oxygen species (ROS) that may cause oxidative stress. In this regard, iodine (I) is already known to possibly enhance the antioxidant defense system of plants and promote photosynthetic improvements under adverse conditions. However, its direct effect on water deficit responses has not yet been demonstrated. To verify the efficiency of I concerning plant tolerance to water deficit, we exposed soybean plants to different concentrations of potassium iodide (KI) fed to pots with a nutrient solution and subsequently submitted them to water deficit. A decline in biomass accumulation was observed in plants under water deficit, while exposure to KI (10 and 20 μmol L−1) increased plant biomass by an average of 40%. Furthermore, exposure to KI concentrations of up to 20 μM improved gas exchange (~71%) and reduced lipid peroxidation. This is related to the higher enzymatic antioxidant activities found at 10 and 20 μM KI concentrations. However, when soybean plants were properly irrigated, KI concentrations greater than 10 μM promoted negative changes in photosynthetic efficiency, as well as in biomass accumulation and partition. In sum, exposure of soybean plants to 10 μM KI improved tolerance to water deficit, and up to this concentration, there is no evidence of phytotoxicity in plants grown under adequate irrigation. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

14 pages, 4652 KiB  
Article
Molecular Cloning and Expression Analysis of the Typical Class III Chitinase Genes from Three Mangrove Species under Heavy Metal Stress
by Yue-Yue Zhou, You-Shao Wang and Cui-Ci Sun
Plants 2023, 12(8), 1681; https://doi.org/10.3390/plants12081681 - 17 Apr 2023
Cited by 1 | Viewed by 1153
Abstract
Chitinases are considered to act as defense proteins when plants are exposed to heavy metal stresses. Typical class III chitinase genes were cloned from Kandelia obovate, Bruguiera gymnorrhiza, and Rhizophora stylosa by using RT-PCR and RACE and named KoCHI III, [...] Read more.
Chitinases are considered to act as defense proteins when plants are exposed to heavy metal stresses. Typical class III chitinase genes were cloned from Kandelia obovate, Bruguiera gymnorrhiza, and Rhizophora stylosa by using RT-PCR and RACE and named KoCHI III, BgCHI III, and RsCHI III. Bioinformatics analysis revealed that the three genes encoding proteins were all typical class III chitinases with the characteristic catalytic structure belonging to the family GH18 and located outside the cell. In addition, there are heavy metal binding sites in the three-dimensional spatial structure of the type III chitinase gene. Phylogenetic tree analysis indicated that CHI had the closest relationship with chitinase in Rhizophora apiculata. In mangrove plants, the balance of the oxidative system in the body is disrupted under heavy metal stress, resulting in increased H2O2 content. Real-time PCR illustrated that the expression level under heavy metal stress was significantly higher than that in the control group. Expression levels of CHI III were higher in K. obovate than in B. gymnorrhiza and R. stylosa. With the increase in heavy metal stress time, the expression level increased continuously. These results suggest that chitinase plays an important role in improving the heavy metal tolerance of mangrove plants. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

20 pages, 13116 KiB  
Article
Characterization of Banana SNARE Genes and Their Expression Analysis under Temperature Stress and Mutualistic and Pathogenic Fungal Colonization
by Bin Wang, Yanbing Xu, Shiyao Xu, Huan Wu, Pengyan Qu, Zheng Tong, Peitao Lü and Chunzhen Cheng
Plants 2023, 12(8), 1599; https://doi.org/10.3390/plants12081599 - 10 Apr 2023
Cited by 1 | Viewed by 1376
Abstract
SNAREs (soluble N-ethylmaleimide-sensitive-factor attachment protein receptors) are engines for almost all of the membrane fusion and exocytosis events in organism cells. In this study, we identified 84 SNARE genes from banana (Musa acuminata). Gene expression analysis revealed that the expression of [...] Read more.
SNAREs (soluble N-ethylmaleimide-sensitive-factor attachment protein receptors) are engines for almost all of the membrane fusion and exocytosis events in organism cells. In this study, we identified 84 SNARE genes from banana (Musa acuminata). Gene expression analysis revealed that the expression of MaSNAREs varied a lot in different banana organs. By analyzing their expression patterns under low temperature (4 °C), high temperature (45 °C), mutualistic fungus (Serendipita indica, Si) and fungal pathogen (Fusarium oxysporum f. sp. Cubense Tropical Race 4, FocTR4) treatments, many MaSNAREs were found to be stress responsive. For example, MaBET1d was up-regulate by both low and high temperature stresses; MaNPSN11a was up-regulated by low temperature but down-regulated by high temperature; and FocTR4 treatment up-regulated the expression of MaSYP121 but down-regulated MaVAMP72a and MaSNAP33a. Notably, the upregulation or downregulation effects of FocTR4 on the expression of some MaSNAREs could be alleviated by priorly colonized Si, suggesting that they play roles in the Si-enhanced banana wilt resistance. Foc resistance assays were performed in tobacco leaves transiently overexpressing MaSYP121, MaVAMP72a and MaSNAP33a. Results showed that transient overexpression of MaSYP121 and MaSNPA33a suppressed the penetration and spread of both Foc1 (Foc Race 1) and FocTR4 in tobacco leaves, suggesting that they play positive roles in resisting Foc infection. However, the transient overexpression of MaVAMP72a facilitated Foc infection. Our study can provide a basis for understanding the roles of MaSNAREs in the banana responses to temperature stress and mutualistic and pathogenic fungal colonization. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

21 pages, 2258 KiB  
Article
Heat-Stress-Induced Changes in Physio-Biochemical Parameters of Mustard Cultivars and Their Role in Heat Stress Tolerance at the Seedling Stage
by Ashwini Sakpal, Sangita Yadav, Ravish Choudhary, Navinder Saini, Sujata Vasudev, Devendra K. Yadava, Sezai Ercişli, Romina Alina Marc and Shiv K. Yadav
Plants 2023, 12(6), 1400; https://doi.org/10.3390/plants12061400 - 21 Mar 2023
Cited by 1 | Viewed by 1860
Abstract
In the era of global warming, heat stress, particularly at the seedling stage, is a major problem that affects the production and productivity of crops such as mustard that are grown in cooler climates. Nineteen mustard cultivars were exposed to contrasting temperature regimes—20 [...] Read more.
In the era of global warming, heat stress, particularly at the seedling stage, is a major problem that affects the production and productivity of crops such as mustard that are grown in cooler climates. Nineteen mustard cultivars were exposed to contrasting temperature regimes—20 °C, 30 °C, 40 °C and a variable range of 25–40 °C—and evaluated for changes in physiological and biochemical parameters at the seedling stage to study their role in heat-stress tolerance. Exposure to heat stress showed detrimental effects on seedling growth as revealed by reduced vigor indices, survival percentages, antioxidant activity and proline content. The cultivars were grouped into tolerant, moderately tolerant and susceptible based on the survival percentage and biochemical parameters. All the conventional and three single-zero cultivars were found to be tolerant and moderately tolerant, respectively, while double-zero cultivars were reckoned to be susceptible except for two cultivars. Significant increases in proline content and catalase and peroxidase activities were found associated with thermo-tolerant cultivars. More efficient antioxidant system activity and proline accumulation were noticed in conventional along with three single-zero (PM-21, PM-22, PM-30) and two double-zero (JC-21, JC-33) cultivars that might have provided better protection to them under heat stress than the remaining one single- and nine double-zero cultivars. Tolerant cultivars also resulted in significantly higher values of most of the yield attributing traits. Heat-stress-tolerant cultivars could easily be selected based on the survival percentage, proline and antioxidants at the seedling stage and included as efficient cultivars in breeding programs. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

13 pages, 1916 KiB  
Article
Lipidome Profiling of Phosphorus Deficiency-Tolerant Rice Cultivars Reveals Remodeling of Membrane Lipids as a Mechanism of Low P Tolerance
by Soichiro Honda, Yumiko Yamazaki, Takumi Mukada, Weiguo Cheng, Masaru Chuba, Yozo Okazaki, Kazuki Saito, Akira Oikawa, Hayato Maruyama, Jun Wasaki, Tadao Wagatsuma and Keitaro Tawaraya
Plants 2023, 12(6), 1365; https://doi.org/10.3390/plants12061365 - 18 Mar 2023
Cited by 1 | Viewed by 1207
Abstract
Plants have evolved various mechanisms for low P tolerance, one of which is changing their membrane lipid composition by remodeling phospholipids with non-phospholipids. The objective of this study was to investigate the remodeling of membrane lipids among rice cultivars under P deficiency. Rice [...] Read more.
Plants have evolved various mechanisms for low P tolerance, one of which is changing their membrane lipid composition by remodeling phospholipids with non-phospholipids. The objective of this study was to investigate the remodeling of membrane lipids among rice cultivars under P deficiency. Rice (Oryza sativa L.) cultivars (Akamai, Kiyonishiki, Akitakomachi, Norin No. 1, Hiyadateine, Koshihikari, and Netaro) were grown in 0 (−P) and 8 (+P) mg P L−1 solution cultures. Shoots and roots were collected 5 and 10 days after transplanting (DAT) in solution culture and subjected to lipidome profiling using liquid chromatography-mass spectrometry. Phosphatidylcholine (PC)34, PC36, phosphatidylethanolamine (PE)34, PE36, phosphatidylglycerol (PG)34, phosphatidylinositol (PI)34 were the major phospholipids and digalactosyldiacylglycerol (DGDG)34, DGDG36, 1,2-diacyl-3-O-alpha-glucuronosylglycerol (GlcADG)34, GlcADG36, monogalactosyldiacylglycerol (MGDG)34, MGDG36, sulfoquinovosyldiacylglycerol (SQDG)34 and SQDG36 were the major non-phospholipids. Phospholipids were lower in the plants that were grown under −P conditions than that in the plants that were grown under +P for all cultivars at 5 and 10 DAT. The levels of non-phospholipids were higher in −P plants than that in +P plants of all cultivars at 5 and 10 DAT. Decomposition of phospholipids in roots at 5 DAT correlated with low P tolerance. These results suggest that rice cultivars remodel membrane lipids under P deficiency, and the ability of remodeling partly contributes to low P tolerance. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

14 pages, 2254 KiB  
Article
High-Nitrate-Supply-Induced Transcriptional Upregulation of Ascorbic Acid Biosynthetic and Recycling Pathways in Cucumber
by Neda Hesari, Anita Szegő, Iman Mirmazloum, Zsolt Pónya, Erzsébet Kiss-Bába, Henriett Kolozs, Márta Gyöngyik, Dominika Vasas and István Papp
Plants 2023, 12(6), 1292; https://doi.org/10.3390/plants12061292 - 13 Mar 2023
Cited by 3 | Viewed by 1393
Abstract
Nowadays open field and protected vegetable cultivation practices require and use genotypes which are precisely tailored to their intended growth environments. Variability of this kind provides a rich source of material to uncover molecular mechanisms supporting the necessarily divergent physiological traits. In this [...] Read more.
Nowadays open field and protected vegetable cultivation practices require and use genotypes which are precisely tailored to their intended growth environments. Variability of this kind provides a rich source of material to uncover molecular mechanisms supporting the necessarily divergent physiological traits. In this study, typical field-optimized and glasshouse-cultivated cucumber F1 hybrids were investigated, and displayed slower growth (‘Joker’) and faster growth (‘Oitol’) in seedlings. Antioxidant capacity was lower in ‘Joker’ and higher in ‘Oitol’, pointing to a potential redox regulation of growth. The growth response of seedlings to paraquat treatment indicated stronger oxidative stress tolerance in the fast-growing ‘Oitol’. To test whether protection against nitrate-induced oxidative stress was also different, fertigation with increasing potassium nitrate content was applied. This treatment did not change growth but decreased the antioxidant capacities of both hybrids. Bioluminescence emission revealed stronger lipid peroxidation triggered by high nitrate fertigation in the leaves of ‘Joker’ seedlings. To explore the background of the more effective antioxidant protection of ‘Oitol’, levels of ascorbic acid (AsA), as well as transcriptional regulation of relevant genes of the Smirnoff–Wheeler biosynthetic pathway and ascorbate recycling, were investigated. Genes related to AsA biosynthesis were strongly upregulated at an elevated nitrate supply in ‘Oitol’ leaves only, but this was only reflected in a small increase in total AsA content. High nitrate provision also triggered expression of ascorbate–glutathion cycle genes with stronger or exclusive induction in ‘Oitol’. AsA/dehydro–ascorbate ratios were higher in ‘Oitol’ for all treatments, with a more pronounced difference at high nitrate levels. Despite strong transcriptional upregulation of ascorbate peroxidase genes (APX) in ‘Oitol’, APX activity only increased significantly in ‘Joker’. This suggests potential inhibition of APX enzyme activity specifically in ‘Oitol’ at a high nitrate supply. Our results uncover an unexpected variability in redox stress management in cucumbers, including nitrate inducibility of AsA biosynthetic and recycling pathways in certain genotypes. Possible connections between AsA biosynthesis, recycling and nitro-oxidative stress protection are discussed. Cucumber hybrids emerge as an excellent model system for studying the regulation of AsA metabolism and the roles of AsA in growth and stress tolerance. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

12 pages, 2336 KiB  
Article
Climate Refuges in Nigeria for Oil Palm in Response to Future Climate and Fusarium Wilt Stresses
by Robert Russell Monteith Paterson and Nnamdi Ifechukwude Chidi
Plants 2023, 12(4), 764; https://doi.org/10.3390/plants12040764 - 08 Feb 2023
Cited by 2 | Viewed by 1630
Abstract
The detrimental stresses of future climate change are well known and decisions are required to reduce their effects. Climate and disease stresses cause severe damage to plants and it is essential to understand how they will respond. Oil palm (OP) is an Fusarium [...] Read more.
The detrimental stresses of future climate change are well known and decisions are required to reduce their effects. Climate and disease stresses cause severe damage to plants and it is essential to understand how they will respond. Oil palm (OP) is an Fusarium important crop for many countries. The palm originated in Africa, where palm oil is produced in the largest amount within the continent by Nigeria. OP becomes stressed by climate change and wilt, a devastating disease of OP in Africa. Previous methods to determine the suitability of future climate on OP in continents and whole countries were applied to Nigeria, which is the first time an individual country has been assessed in this manner. Climate maps of Nigeria were divided equally into 16 regions from north to south and east to west to determine the future suitable climate for growing OP. CLIMEX and narrative modelling were used to determine suitability for growing OP and Fusarium wilt incidence for current time and 2050. Maps from published papers were employed directly thereby facilitating the procedure. A distinct latitudinal increasing trend from north to south in suitable climate was observed, which was unexpected. A decreasing longitudinal trend from west to east was also observed. These differences in suitable climates may allow refuges for OP in the future. The growth of OP in the south of Nigeria may be largely unaffected by climate change by 2050, unlike the north. The procedures allow policy decisions at state and national levels to be made from empirical data, which do not otherwise exist. States with low amounts of OP and where the climate deteriorates greatly, could usefully be abandoned. Other low palm oil producers, where the climate does not deteriorate greatly, could be encouraged to develop OP. Little requires to be done in the high producing states where the climate does not deteriorate. In all cases, the environmental impacts require thorough assessment. Climate change requires reduction as indicated in recent Conference of the Parties meetings. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

19 pages, 2473 KiB  
Article
Protein Changes in Shade and Sun Haberlea rhodopensis Leaves during Dehydration at Optimal and Low Temperatures
by Gergana Mihailova, Ádám Solti, Éva Sárvári, Éva Hunyadi-Gulyás and Katya Georgieva
Plants 2023, 12(2), 401; https://doi.org/10.3390/plants12020401 - 15 Jan 2023
Cited by 3 | Viewed by 1918
Abstract
Haberlea rhodopensis is a unique resurrection plant of high phenotypic plasticity, colonizing both shady habitats and sun-exposed rock clefts. H. rhodopensis also survives freezing winter temperatures in temperate climates. Although survival in conditions of desiccation and survival in conditions of frost share high [...] Read more.
Haberlea rhodopensis is a unique resurrection plant of high phenotypic plasticity, colonizing both shady habitats and sun-exposed rock clefts. H. rhodopensis also survives freezing winter temperatures in temperate climates. Although survival in conditions of desiccation and survival in conditions of frost share high morphological and physiological similarities, proteomic changes lying behind these mechanisms are hardly studied. Thus, we aimed to reveal ecotype-level and temperature-dependent variations in the protective mechanisms by applying both targeted and untargeted proteomic approaches. Drought-induced desiccation enhanced superoxide dismutase (SOD) activity, but FeSOD and Cu/ZnSOD-III were significantly better triggered in sun plants. Desiccation resulted in the accumulation of enzymes involved in carbohydrate/phenylpropanoid metabolism (enolase, triosephosphate isomerase, UDP-D-apiose/UDP-D-xylose synthase 2, 81E8-like cytochrome P450 monooxygenase) and protective proteins such as vicinal oxygen chelate metalloenzyme superfamily and early light-induced proteins, dehydrins, and small heat shock proteins, the latter two typically being found in the latest phases of dehydration and being more pronounced in sun plants. Although low temperature and drought stress-induced desiccation trigger similar responses, the natural variation of these responses in shade and sun plants calls for attention to the pre-conditioning/priming effects that have high importance both in the desiccation responses and successful stress recovery. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

16 pages, 5093 KiB  
Article
Ranunculus sceleratus as a Model Species to Decrypt the Role of Ethylene in Plant Adaptation to Salinity
by Veronika Prokopoviča and Gederts Ievinsh
Plants 2023, 12(2), 370; https://doi.org/10.3390/plants12020370 - 12 Jan 2023
Cited by 2 | Viewed by 1750
Abstract
The aim of the present study was to develop an experimental system for an exploration of ethylene-dependent responses using intact growing Ranunculus sceleratus plants and to approbate the system for assessing the role of ethylene in salinity tolerance and ion accumulation. Plants were [...] Read more.
The aim of the present study was to develop an experimental system for an exploration of ethylene-dependent responses using intact growing Ranunculus sceleratus plants and to approbate the system for assessing the role of ethylene in salinity tolerance and ion accumulation. Plants were cultivated in sealed plastic containers in a modified gaseous atmosphere by introducing ethylene or 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action. High humidity inside the containers induced a fast elongation of the leaf petioles of R. sceleratus. The effect was ethylene-dependent, as 1-MCP completely blocked it, but exogenous ethylene further promoted petiole elongation. Exogenous ethylene decreased (by 48%) but 1-MCP increased (by 48%) the Na+ accumulation in leaf blades of NaCl-treated plants. The experimental system was further calibrated with ethylene and silica xerogel, and the optimum concentrations were found for inducing leaf petiole elongation (10 μL L–1 ethylene) and preventing leaf petiole elongation (200 g silica xerogel per 24 L), respectively. The second experiment involved a treatment with NaCl in the presence of 1-MCP, ethylene, or 1-MCP + ethylene, both in normal and high air humidity conditions. In high humidity conditions, NaCl inhibited petiole elongation by 25% and ethylene treatment fully reversed this inhibition and stimulated elongation by 12% in comparison to the response of the control plants. Treatment with 1-MCP fully prevented this ethylene effect. In normal humidity conditions, NaCl inhibited petiole elongation by 20%, which was reversed by ethylene without additional elongation stimulation. However, 1-MCP only partially inhibited the ethylene effect on petiole elongation. In high humidity conditions, ethylene inhibited Na+ accumulation in NaCl-treated plants by 14%, but 1-MCP reversed this effect. In conclusion, the stimulation of endogenous ethylene production in R. sceleratus plants at a high air humidity or in flooded conditions reverses the inhibitory effect of salinity on plant growth and concomitantly inhibits the accumulation of Na+ in tissues. R. sceleratus is a highly promising model species for use in studies regarding ethylene-dependent salinity responses and ion accumulation potential involving the manipulation of a gaseous environment. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Graphical abstract

22 pages, 5969 KiB  
Article
Morpho-Physiological and Biochemical Responses of Field Pea Genotypes under Terminal Heat Stress
by Vijay Sharma, Chandra Mohan Singh, Vishal Chugh, Kamaluddin, Pawan Kumar Prajapati, Anuj Mishra, Prashant Kaushik, Parmdeep Singh Dhanda, Alpa Yadav and Satyendra
Plants 2023, 12(2), 256; https://doi.org/10.3390/plants12020256 - 05 Jan 2023
Cited by 11 | Viewed by 2288
Abstract
Field pea is one of the important short-duration cool season pulse crops which contributes significantly towards food and nutritional security. Two heat-susceptible (HS) and two heat-tolerant (HT) genotypes were selected from the previous study for further characterization. A significant variation was observed for [...] Read more.
Field pea is one of the important short-duration cool season pulse crops which contributes significantly towards food and nutritional security. Two heat-susceptible (HS) and two heat-tolerant (HT) genotypes were selected from the previous study for further characterization. A significant variation was observed for morpho-physiological traits studied. Principal component analysis explained that first two principal components, i.e., PC1 and PC2 showed 76.5% of the total variance in optimal condition, whereas 91.2% of the total variance was covered by the first two PCs in heat stress environment. The seed yield per plant determined significant and positive association with superoxide dismutase and number of seeds per pod under optimal conditions, whereas under heat stress condition, it was positively associated with number of effective pods per plant, biological yield per plant, proline, pod length, number of seeds per pod, superoxide dismutase, and peroxidase. The significant reduction was noticed in the susceptible genotypes, whereas tolerant genotypes showed stable and non-significant reduction in chlorophyll content. Further, minimum cell damage and higher hydrogen peroxide production was noticed in the susceptible genotypes. In addition, the biochemical characterization of HS and HT genotypes revealed that the higher expression of peroxidase, superoxide dismutase, and catalase modulates the tolerant responses in HT genotypes. These genotypes were further used in developing heat-tolerant field pea genotypes. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

17 pages, 2887 KiB  
Article
Changes in the Physiological and Morphometric Characteristics and Biomass Distribution of Forage Grasses Growing under Conditions of Drought and Silicon Application
by Grażyna Mastalerczuk, Barbara Borawska-Jarmułowicz and Ahmad Darkalt
Plants 2023, 12(1), 16; https://doi.org/10.3390/plants12010016 - 20 Dec 2022
Cited by 9 | Viewed by 1215
Abstract
Research on mitigating the effects of water scarcity by applying silicon to perennial grasses is still insufficient. This study was conducted to investigate the effect of spring and summer droughts and silicon applications on gas exchange parameters; the morphometric characteristics of root systems; [...] Read more.
Research on mitigating the effects of water scarcity by applying silicon to perennial grasses is still insufficient. This study was conducted to investigate the effect of spring and summer droughts and silicon applications on gas exchange parameters; the morphometric characteristics of root systems; and the biomass distribution of Festulolium braunii, Festuca arundinacea, and Lolium perenne cultivars. Plants were treated with a drought during the tillering phase once a year (during spring or summer regrowth) for 21 days. Foliar nutrition with silicon was applied twice under the drought conditions. Grasses in a pot experiment were cut three times during vegetation. The plants that were exposed to the drought had lower values of the gas exchange parameters than those that were well watered. The beneficial effect of silicon was related to the reduction of excessive water loss through transpiration during the spring drought. Under the drought and silicon applications, the water use efficiency, root dry mass, and length increased compared to the control. Moreover, silicon increased the proportion of both the finer and thicker roots in F. braunii and L. perenne, while the distribution of the root diameter changed least in the more resistant F. arundinacea. Silicon also reduced the carbon content in the roots and increased root carbon accumulation. Our results indicated that Si may help perennial forage grasses cope better with drought stress. This was due to the allocation of carbon to the roots to develop the fine root network, increasing the length and root biomass and improving the water use efficiency. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

17 pages, 2152 KiB  
Article
Iron Status Affects the Zinc Accumulation in the Biomass Plant Szarvasi-1
by Flóra Kolberg, Brigitta Tóth, Deepali Rana, Vitor Arcoverde Cerveira Sterner, Anita Gerényi, Ádám Solti, Imre Szalóki, Gyula Sipos and Ferenc Fodor
Plants 2022, 11(23), 3227; https://doi.org/10.3390/plants11233227 - 25 Nov 2022
Viewed by 1223
Abstract
Thinopyrum obtusiflorum (syn. Elymus elongatus subsp. ponticus) cv. Szarvasi-1 (Poaceae, Triticeae) is a biomass plant with significant tolerance to certain metals. To reveal its accumulation capacity, we investigated its Zn uptake and tolerance in a wide range: 0.2 to 1000 µM Zn [...] Read more.
Thinopyrum obtusiflorum (syn. Elymus elongatus subsp. ponticus) cv. Szarvasi-1 (Poaceae, Triticeae) is a biomass plant with significant tolerance to certain metals. To reveal its accumulation capacity, we investigated its Zn uptake and tolerance in a wide range: 0.2 to 1000 µM Zn concentration. The root and shoot weight, shoot length, shoot water content and stomatal conductance proved to be only sensitive to the highest applied Zn concentrations, whereas the concentration of malondialdehyde increased only at the application of 1 mM Zn in the leaves. Although physiological status proved to be hardy against Zn exposure, shoot Zn content significantly increased in parallel with the applied Zn treatment, reaching the highest Zn concentration at 1.9 mg g−1 dry weight. The concentration of K, Mg and P considerably decreased in the shoot at the highest Zn exposures, where that of K and P also correlated with a decrease in water content. Although the majority of microelements remained unaffected, Mn decreased in the root and Fe content had a negative correlation with Zn both in the shoot and root. In turn, the application of excessive EDTA maintained a proper Fe supply for the plants but lowered Zn accumulation both in roots and shoots. Thus, the Fe-Zn competition for Fe chelating phytosiderophores and/or for root uptake transporters fundamentally affects the Zn accumulation properties of Szarvasi-1. Indeed, the considerable Zn tolerance of Szarvasi-1 has a high potential in Zn accumulation. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

13 pages, 2464 KiB  
Article
Response of Cnidium officinale Makino Plants to Heat Stress and Selection of Superior Clones Using Morphological and Molecular Analysis
by Hyung-Eun Kim, Jong-Eun Han, Hosakatte Niranjana Murthy, Hyuk-Joon Kwon, Gun-Myung Lee and So-Young Park
Plants 2022, 11(22), 3119; https://doi.org/10.3390/plants11223119 - 15 Nov 2022
Cited by 1 | Viewed by 1381
Abstract
Cnidium officinale is a medicinal plant cultivated for its rhizomes, which are used in Chinese, Japanese, and Korean traditional medicine. This medicinal crop is highly susceptible to heat stress and cannot be cultivated in regions of higher temperatures. In the present study, ten [...] Read more.
Cnidium officinale is a medicinal plant cultivated for its rhizomes, which are used in Chinese, Japanese, and Korean traditional medicine. This medicinal crop is highly susceptible to heat stress and cannot be cultivated in regions of higher temperatures. In the present study, ten clones from Korea (clones 1, 2, 5, 6, 8, 11, 14, 15, 22, and 26) were evaluated for their heat tolerance in vitro at 25, 30, 32.5, and 35 °C, and growth characteristics including plant height, the number of leaves and roots were evaluated. The initial experiment was conducted to find the threshold level for significant damage to the plant, while the second experiment was to screen the germplasm to select heat-tolerant clones. Most of the clones were sensitive to heat stress (clones 1, 2, 8, 11, 14, 15, 22, and 26), and few clones (clones 5 and 6) could perform well at an elevated temperature of 32.5 °C. Molecular analysis of the expression of heat-responsive genes, including heat shock protein (CoHSP), catalase (CoCAT), and cystine protease (CoCP), was performed by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) carried out with heat-tolerant and heat-sensitive clones. Two of the heat-tolerant clones (clones 5 and 6) showed significant expression of CoHSP and CoCAT genes at elevated temperature treatment. These clones can be used for further evaluation and cultivation. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

19 pages, 1988 KiB  
Article
The Molecular, Morphological and Genetic Characterization of Glyphosate Resistance in Conyza bonariensis from South Africa
by Martha N. Okumu, Petrus J. Robbertse, Barend J. Vorster and Carl F. Reinhardt
Plants 2022, 11(21), 2830; https://doi.org/10.3390/plants11212830 - 24 Oct 2022
Cited by 4 | Viewed by 1253
Abstract
Six Conyza bonariensis (L.) Cronquist populations were screened in a pot experiment at the University of Pretoria’s Hatfield experimental farm to evaluate and confirm the degree of glyphosate response. Resistance factors ranged from 2.7- to 24.8-fold compared to the most susceptible biotype. Partial [...] Read more.
Six Conyza bonariensis (L.) Cronquist populations were screened in a pot experiment at the University of Pretoria’s Hatfield experimental farm to evaluate and confirm the degree of glyphosate response. Resistance factors ranged from 2.7- to 24.8-fold compared to the most susceptible biotype. Partial sequencing of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene found no mutation at the Thr102, Ala103 or Pro106 positions. EPSPS mRNA expression levels in glyphosate-resistant biotypes (Swellendam and Piketberg seed sampling sites) were comparable or lower than those in susceptible biotypes (George and Fauresmith sites). Additionally, the highest expression level was reported in the susceptible Fauresmith biotype. These results indicate that glyphosate resistance in the tested resistant biotypes is not caused by target-site mutations and EPSPS gene amplification. Leaf surface characteristics can influence the spread and subsequent absorption of glyphosate. The study established non-significant results in the amount of leaf wax and insufficient mean separations in cuticle thickness and trichome density data. Therefore, the observed differences in response of biotypes to glyphosate treatment could not be attributed conclusively to differences in the leaf morphological characteristics investigated. Results from the inheritance study were consistent with glyphosate resistance being inherited in an incompletely dominant manner when plants were treated with glyphosate herbicide at 900 g ae ha−1. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

13 pages, 1021 KiB  
Article
Relationship between the Antioxidant Activity and Allelopathic Activities of 55 Chinese Pharmaceutical Plants
by Aniya, Yoshihiro Nomura, Kwame Sarpong Appiah, Fuerdeng, Yoko Suzuki, Yoshiharu Fujii and Qile Xia
Plants 2022, 11(19), 2481; https://doi.org/10.3390/plants11192481 - 22 Sep 2022
Cited by 4 | Viewed by 1523
Abstract
Pharmaceutical plants contain several phytochemicals that are sources of myriad biological activities. These biological activities can be explored in multiple fields for the benefit of mankind. Pharmaceutical plants with high ethnobotanical indices (i.e., use value and relative frequency of citation) were reported with [...] Read more.
Pharmaceutical plants contain several phytochemicals that are sources of myriad biological activities. These biological activities can be explored in multiple fields for the benefit of mankind. Pharmaceutical plants with high ethnobotanical indices (i.e., use value and relative frequency of citation) were reported with the potential to inhibit lettuce elongation through leachates and volatiles. The focus of the study was to assess Chinese pharmaceutical plants for both antioxidants, as well as allelopathic potentials to explore any underlying relationship. The estimation of antioxidative capacity and content of total phenolics (TPC) for the 55 Chinese pharmaceutical plants was conducted by the assays of DPPH radical scavenging activity (DPPH-RSA), oxygen radical absorbance capacity (ORAC) and the means of Folin–Ciocalteu. The estimation of the activity of allelopathy for collected medicinal plants was done by adopting the sandwich method for plant leachates and the dishpack method for volatile constituents, respectively. The fruits of sea buckthorn (Hippophae rhamnoides) had the most remarkable ORAC value (168 ± 7.04 μmol TE/g) and DPPH radical scavenging activity (440 ± 7.32 μmol TE/g) and contained the highest contents of total phenolic compounds (236 ± 7.62 mg GAE/g) in the 55 pharmaceutical plant species according to the results. In addition, sea buckthorn showed dominant allelopathic potential through plant leachates evaluated by using the sandwich method. Star anise (Illicium verum Hook. f.) showed conspicuous allelopathic activity through plant volatiles assessed by the dishpack bioassay method. Among the same plant species, antioxidative ability and total phenolics, in comparison with potential allelopathy of medicinal herbs indicated that volatile allelochemical had a weak active effect (r = 0.407 to 0.472, p < 0.01), with antioxidant capacity by the dishpack method. However, the evaluation by the sandwich method showed a significant positive correlation (r = 0.718 to 0.809, p < 0.001) with antioxidant capacity. Based on these results, a new hypothesis is that the antioxidant activity of plants may have an involvement with the potential allelopathic activity. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

18 pages, 2482 KiB  
Article
Silicon-Induced Mitigation of NaCl Stress in Barley (Hordeum vulgare L.), Associated with Enhanced Enzymatic and Non-Enzymatic Antioxidant Activities
by Muhammad Salim Akhter, Sibgha Noreen, Ume Ummara, Muhammad Aqeel, Nawishta Saleem, Muhammad Mahboob Ahmed, Seema Mahmood, Habib-ur-Rehman Athar, Mohammed Nasser Alyemeni, Prashant Kaushik and Parvaiz Ahmad
Plants 2022, 11(18), 2379; https://doi.org/10.3390/plants11182379 - 12 Sep 2022
Cited by 9 | Viewed by 1995
Abstract
Salt stress obstructs plant’s growth by affecting metabolic processes, ion homeostasis and over-production of reactive oxygen species. In this regard silicon (Si) has been known to augment a plant’s antioxidant defense system to combat adverse effects of salinity stress. In order to quantify [...] Read more.
Salt stress obstructs plant’s growth by affecting metabolic processes, ion homeostasis and over-production of reactive oxygen species. In this regard silicon (Si) has been known to augment a plant’s antioxidant defense system to combat adverse effects of salinity stress. In order to quantify the Si-mediated salinity tolerance, we studied the role of Si (200 ppm) applied through rooting media on antioxidant battery system of barley genotypes; B-10008 (salt-tolerant) and B-14011 (salt-sensitive) subjected to salt stress (200 mM NaCl). A significant decline in the accumulation of shoot (35–74%) and root (30–85%) biomass was observed under salinity stress, while Si application through rooting media enhancing biomass accumulation of shoots (33–49%) and root (32–37%) under salinity stress. The over-accumulation reactive oxygen species i.e., hydrogen peroxide (H2O2) is an inevitable process resulting into lipid peroxidation, which was evident by enhanced malondialdehyde levels (13–67%) under salinity stress. These events activated a defense system, which was marked by higher levels of total soluble proteins and uplifted activities of antioxidants enzymatic (SOD, POD, CAT, GR and APX) and non-enzymatic (α-tocopherol, total phenolics, AsA, total glutathione, GSH, GSSG and proline) in roots and leaves under salinity stress. The Si application through rooting media further strengthened the salt stressed barley plant’s defense system by up-regulating the activities of enzymatic and non-enzymatic antioxidant in order to mitigate excessive H2O2 efficiently. The results revealed that although salt-tolerant genotype (B-10008) was best adopted to tolerate salt stress, comparably the response of salt-sensitive genotype (B-14011) was more prominent (accumulation of antioxidant) after application of Si through rooting media under salinity stress. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

21 pages, 17884 KiB  
Article
Brassinosteroid Supplementation Alleviates Chromium Toxicity in Soybean (Glycine max L.) via Reducing Its Translocation
by Farwa Basit, Javaid Akhter Bhat, Jin Hu, Prashant Kaushik, Ajaz Ahmad, Yajing Guan and Parvaiz Ahmad
Plants 2022, 11(17), 2292; https://doi.org/10.3390/plants11172292 - 01 Sep 2022
Cited by 10 | Viewed by 1491
Abstract
Chromium (Cr) phytotoxicity severely inhibits plant growth and development which makes it a prerequisite to developing techniques that prevent Cr accumulation in food chains. However, little is explored related to the protective role of brassinosteroids (BRs) against Cr-induced stress in soybean plants. Herein, [...] Read more.
Chromium (Cr) phytotoxicity severely inhibits plant growth and development which makes it a prerequisite to developing techniques that prevent Cr accumulation in food chains. However, little is explored related to the protective role of brassinosteroids (BRs) against Cr-induced stress in soybean plants. Herein, the morpho-physiological, biochemical, and molecular responses of soybean cultivars with/without foliar application of BRs under Cr toxicity were intensely investigated. Our outcomes deliberated that BRs application noticeably reduced Cr-induced phytotoxicity by lowering Cr uptake (37.7/43.63%), accumulation (63.92/81.73%), and translocation (26.23/38.14%) in XD-18/HD-19, plant tissues, respectively; besides, improved seed germination ratio, photosynthetic attributes, plant growth, and biomass, as well as prevented nutrient uptake inhibition under Cr stress, especially in HD-19 cultivar. Furthermore, BRs stimulated antioxidative defense systems, both enzymatic and non-enzymatic, the compartmentalization of ion chelation, diminished extra production of reactive oxygen species (ROS), and electrolyte leakage in response to Cr-induced toxicity, specifically in HD-19. In addition, BRs improved Cr stress tolerance in soybean seedlings by regulating the expression of stress-related genes involved in Cr accumulation, and translocation. Inclusively, by considering the above-mentioned biomarkers, foliar spray of BRs might be considered an effective inhibitor of Cr-induced damages in soybean cultivars, even in Cr polluted soil. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

14 pages, 1898 KiB  
Article
Plant Growth Regulators Improve Grain Production and Water Use Efficiency of Foeniculum vulgare Mill. under Water Stress
by Ghasem Parmoon, Ali Ebadi, Masoud Hashemi, Barbara Hawrylak-Nowak, Carol Baskin and Soodabe Jahanbakhsh
Plants 2022, 11(13), 1718; https://doi.org/10.3390/plants11131718 - 28 Jun 2022
Cited by 8 | Viewed by 1868
Abstract
The development of methods increasing plant water use efficiency (WUE) would enhance the ability to grow wild aromatic and medicinally important species. The aim of this research was to determine the effect of plant growth regulators (PGRs) applied by spraying on stress resistance [...] Read more.
The development of methods increasing plant water use efficiency (WUE) would enhance the ability to grow wild aromatic and medicinally important species. The aim of this research was to determine the effect of plant growth regulators (PGRs) applied by spraying on stress resistance and WUE of fennel subjected to water stress. Plants in the generative stage were more drought tolerant than those in the vegetative stage. Water stress at vegetative stage decreased plant biomass and grain yield by 60% and 61%, respectively. Severe water stress in vegetative stage reduced grain production by 56%, and grains had 43% lower mass than those from non-stressed plants. Application of PGRs at both stages of growth increased grain yield and biomass, but the magnitude of increase depended on the type and application time of PGRs. Plants grown in well-watered conditions and sprayed with methyl jasmonate during the vegetative stage had the highest grain production (2.7 g plant−1), whereas under moderate water stress, plants yielded the best (2.1 g plant−1) when sprayed with epibrassinolide. The maximum WUE for grain (0.91 g L−1) and essential oil production (20 mg L−1) was noted in plants exposed to moderate stress and treated with methyl jasmonate during the vegetative stage. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

Review

Jump to: Research

12 pages, 1462 KiB  
Review
Ketols Emerge as Potent Oxylipin Signals Regulating Diverse Physiological Processes in Plants
by Katherine M. Berg-Falloure and Michael V. Kolomiets
Plants 2023, 12(11), 2088; https://doi.org/10.3390/plants12112088 - 24 May 2023
Cited by 4 | Viewed by 1153
Abstract
Plants produce an array of oxylipins implicated in defense responses against various stresses, with about 600 oxylipins identified in plants to date. Most known oxylipins are the products of lipoxygenase (LOX)-mediated oxygenation of polyunsaturated fatty acids. One of the most well-characterized oxylipins produced [...] Read more.
Plants produce an array of oxylipins implicated in defense responses against various stresses, with about 600 oxylipins identified in plants to date. Most known oxylipins are the products of lipoxygenase (LOX)-mediated oxygenation of polyunsaturated fatty acids. One of the most well-characterized oxylipins produced by plants is the hormone jasmonic acid (JA); however, the function of the vast majority of oxylipins remains a mystery. One of the lesser-studied groups of oxylipins is comprised of ketols produced by the sequential action of LOX, allene oxide synthase (AOS), followed by non-enzymatic hydrolysis. For decades, ketols were mostly considered mere by-products of JA biosynthesis. Recent accumulating evidence suggests that ketols exhibit hormone-like signaling activities in the regulation of diverse physiological processes, including flowering, germination, plant–symbiont interactions, and defense against biotic and abiotic stresses. To complement multiple reviews on jasmonate and overall oxylipin biology, this review focuses specifically on advancing our understanding of ketol biosynthesis, occurrence, and proposed functions in diverse physiological processes. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

12 pages, 4711 KiB  
Review
Structural Characteristics of Reaction Tissue in Plants
by Litong Liu, Yu Luan, Changhua Fang, Jinbo Hu, Shanshan Chang and Benhua Fei
Plants 2023, 12(8), 1705; https://doi.org/10.3390/plants12081705 - 20 Apr 2023
Cited by 2 | Viewed by 1487
Abstract
To maintain or adjust posture under the challenges of gravity and increased self-weight, or the effects of light, snow, and slope, plants have the ability to develop a special type of tissue called reaction tissue. The formation of reaction tissue is a result [...] Read more.
To maintain or adjust posture under the challenges of gravity and increased self-weight, or the effects of light, snow, and slope, plants have the ability to develop a special type of tissue called reaction tissue. The formation of reaction tissue is a result of plant evolution and adaptation. The identification and study of plant reaction tissue are of great significance for understanding the systematics and evolution of plants, the processing and utilization of plant-based materials, and the exploration of new biomimetic materials and biological templates. Trees’ reaction tissues have been studied for many years, and recently, many new findings regarding these tissues have been reported. However, reaction tissue requires further detailed exploration, particularly due to their complex and diverse nature. Moreover, the reaction tissues in gymnosperms, vines, herbs, etc., which display unique biomechanical behavior, have also garnered the attention of research. After summarizing the existing literature, this paper provides an outline of the reaction tissues in woody plants and non-woody plants, and lays emphasis on alternations in the cell wall structure of the xylem in softwood and hardwood. The purpose of this paper is to provide a reference for the further exploration and study of reaction tissues with great diversity. Full article
(This article belongs to the Special Issue New Insights into Plant Resistance to Stress)
Show Figures

Figure 1

Back to TopTop