Emerging Technologies in the Hydrometallurgical Recycling of Critical Metals

A special issue of Recycling (ISSN 2313-4321).

Deadline for manuscript submissions: 30 June 2024 | Viewed by 566

Special Issue Editor


E-Mail Website
Guest Editor
Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande C8, 1749-016 Lisboa, Portugal
Interests: spent catalysts; metals recycling; hydrometallurgy; liquid–liquid (solvent) extraction; organic synthesis; platinum-group metals; silver; iron; chloride media
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The concept of critical material was created by the related expert commissions of the European Union in 2011. Since then, the number of identified critical materials included in the lists published every three years has been increasing. Metals occupy a major part of those lists, since many hold significant importance for key sectors in the European economy, are hardly replaceable, and have highly threatened supply. It is crucial to invest in the creation and development of sustainable technologies to reuse and recycle metals from end-of-life devices, residues, gaseous and liquid effluents, wastes, and scraps to effectively establish a circular economy and protect the future of the planet and all living species.

In recent years, hydrometallurgy has been playing a key role in the sustainable recycling of metals from several secondary sources. Hence, an updated state of the art of emerging hydrometallurgical technologies collected in a Special Issue is of great value.

This Special Issue welcomes critical reviews, original research, and case study articles dealing with innovative and emerging hydrometallurgical trends to efficiently and selectively recycle metals from secondary sources. Fundamental and applied investigations on hydrometallurgical methodologies would be highly appreciated and may also include solvometallurgical and biological approaches.

Dr. Ana Paula Paiva
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Recycling is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • secondary resources
  • critical metals
  • metals recycling
  • sustainable metals recovery
  • hydrometallurgy
  • solvometallurgy
  • bio-hydrometallurgy

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4531 KiB  
Article
Recycling of Rhenium from Superalloys and Manganese from Spent Batteries to Produce Manganese(II) Perrhenate Dihydrate
by Katarzyna Leszczyńska-Sejda, Arkadiusz Palmowski, Michał Ochmański, Grzegorz Benke, Alicja Grzybek, Szymon Orda, Karolina Goc, Joanna Malarz and Dorota Kopyto
Recycling 2024, 9(3), 36; https://doi.org/10.3390/recycling9030036 - 30 Apr 2024
Viewed by 269
Abstract
This work presents the research results on the development of an innovative, hydrometallurgical technology for the production of manganese(II) perrhenate dihydrate from recycled waste. These wastes are scraps of Ni-based superalloys containing Re and scraps of Li–ion batteries containing Mn—specifically, solutions from the [...] Read more.
This work presents the research results on the development of an innovative, hydrometallurgical technology for the production of manganese(II) perrhenate dihydrate from recycled waste. These wastes are scraps of Ni-based superalloys containing Re and scraps of Li–ion batteries containing Mn—specifically, solutions from the leaching of black mass. This work presents the conditions for the production of Mn(ReO4)2·2H2O. Thus, to obtain Mn(ReO4)2·2H2O, manganese(II) oxide was used, precipitated from the solutions obtained after the leaching of black mass from Li–ion batteries scrap and purified from Cu, Fe and Al (pH = 5.2). MnO2 precipitation was carried out at a temperature < 50 °C for 30 min using a stoichiometric amount of KMnO4 in the presence of H2O2. MnO2 precipitated in this way was purified using a 20% H2SO4 solution and then H2O. Purified MnO2 was then added alternately with a 30% H2O2 solution to an aqueous HReO4 solution. The reaction was conducted at room temperature for 30 min to obtain a pH of 6–7. Mn(ReO4)2·2H2O precipitated by evaporating the solution to dryness was purified by recrystallization from H2O with the addition of H2O2 at least twice. Purified Mn(ReO4)2·2H2O was dried at a temperature of 100–110 °C. Using the described procedure, Mn(ReO4)2·2H2O was obtained with a purity of >99.0%. This technology is an example of the green transformation method, taking into account the 6R principles. Full article
Show Figures

Figure 1

Back to TopTop