Effects of Harmful Algal Blooms on Aquatic Organisms

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Marine and Freshwater Toxins".

Deadline for manuscript submissions: closed (1 August 2022) | Viewed by 40519

Special Issue Editor


E-Mail Website
Guest Editor
Independent Researcher, Perth, Western Australia, Australia
Interests: phytoplankton; harmful algal blooms; aquatic toxicology; biotoxins; detection methods; seafood safety

Special Issue Information

Dear Colleagues,  

Aquatic organisms are exposed to an extent of processes and phenomena in their natural environment. Harmful algal blooms are natural phenomena that have been increasing in intensity and spatial distribution, affecting organisms directly or through the food chain or by altering physicochemical variables in aquatic ecosystems. Some organisms are able to escape the impacted areas and others may suffer lethal or sublethal effects upon acute or chronic exposure to the harmful components present or produced by the algae. These algal components can be anatomical features, chemical compounds and toxins with significant effects on wild and farmed organisms.

This Special Issue welcomes all research that involves the discovery of harmful algal compounds and their adverse effects, which may include lethal, sublethal or threshold levels; new algal species showing detrimental effects on the aquatic biota and new toxic mechanisms, as well as the accumulation of harmful algal compounds by aquatic organisms and depuration processes. The results from laboratory and field experiments, as well as natural examinations, are welcome.

Dr. Juan José Dorantes-Aranda
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Harmful algae
  • Phycotoxins
  • Algal compounds
  • Aquatic toxicology
  • Bioaccumulation
  • Ichthyotoxic

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

6 pages, 277 KiB  
Editorial
Harmful Algae Impacting Aquatic Organisms: Recent Field and Laboratory Observations
by Juan José Dorantes-Aranda
Toxins 2023, 15(5), 339; https://doi.org/10.3390/toxins15050339 - 15 May 2023
Cited by 1 | Viewed by 2048
Abstract
Algal blooms formed by some phytoplankton species can produce toxins or alter environmental conditions that can affect aquatic organisms and water quality, with impacts on the aquaculture and fisheries industries that can pose a risk to public health [...] Full article
(This article belongs to the Special Issue Effects of Harmful Algal Blooms on Aquatic Organisms)

Research

Jump to: Editorial, Review

17 pages, 3540 KiB  
Article
Paralytic Shellfish Toxins of Pyrodinium bahamense (Dinophyceae) in the Southeastern Gulf of Mexico
by Erick J. Núñez-Vázquez, Carlos A. Poot-Delgado, Andrew D. Turner, Francisco E. Hernández-Sandoval, Yuri B. Okolodkov, Leyberth J. Fernández-Herrera and José J. Bustillos-Guzmán
Toxins 2022, 14(11), 760; https://doi.org/10.3390/toxins14110760 - 03 Nov 2022
Cited by 2 | Viewed by 2969
Abstract
In September and November 2016, eight marine sampling sites along the coast of the southeastern Gulf of Mexico were monitored for the presence of lipophilic and hydrophilic toxins. Water temperature, salinity, hydrogen potential, dissolved oxygen saturation, inorganic nutrients and phytoplankton abundance were also [...] Read more.
In September and November 2016, eight marine sampling sites along the coast of the southeastern Gulf of Mexico were monitored for the presence of lipophilic and hydrophilic toxins. Water temperature, salinity, hydrogen potential, dissolved oxygen saturation, inorganic nutrients and phytoplankton abundance were also determined. Two samples filtered through glass fiber filters were used for the extraction and analysis of paralytic shellfish toxins (PSTs) by lateral flow immunochromatography (IFL), HPLC with post-column oxidation and fluorescent detection (FLD) and UHPLC coupled to tandem mass spectrometry (UHPLC-MS/MS). Elevated nutrient contents were associated with the sites of rainwater discharge or those near anthropogenic activities. A predominance of the dinoflagellate Pyrodinium bahamense was found with abundances of up to 104 cells L−1. Identification of the dinoflagellate was corroborated by light and scanning electron microscopy. Samples for toxins were positive by IFL, and the analogs NeoSTX and STX were identified and quantified by HPLC-FLD and UHPLC-MS/MS, with a total PST concentration of 6.5 pg cell−1. This study is the first report that confirms the presence of PSTs in P. bahamense in Mexican waters of the Gulf of Mexico. Full article
(This article belongs to the Special Issue Effects of Harmful Algal Blooms on Aquatic Organisms)
Show Figures

Graphical abstract

14 pages, 1432 KiB  
Article
Heterosigma akashiwo in Patagonian Fjords: Genetics, Growth, Pigment Signature and Role of PUFA and ROS in Ichthyotoxicity
by Ana Flores-Leñero, Valentina Vargas-Torres, Javier Paredes-Mella, Luis Norambuena, Gonzalo Fuenzalida, Kim Lee-Chang and Jorge I. Mardones
Toxins 2022, 14(9), 577; https://doi.org/10.3390/toxins14090577 - 23 Aug 2022
Cited by 8 | Viewed by 2020
Abstract
Heterosigma akashiwo is the only raphidophyte described for Chilean waters. A recent 2021 fish-killing bloom event of this raphidophyte ignited scientific research, but the ichthyotoxic mechanism and environmental conditions that promote its growth are still unclear. This is the first study confirming the [...] Read more.
Heterosigma akashiwo is the only raphidophyte described for Chilean waters. A recent 2021 fish-killing bloom event of this raphidophyte ignited scientific research, but the ichthyotoxic mechanism and environmental conditions that promote its growth are still unclear. This is the first study confirming the occurrence of H. akashiwo in Chilean waters on the basis of the region D1/D2 of the 28S ribosomal gene. The pigment signature of the CREAN_HA03 strain revealed chlorophyll-a, fucoxanthin, and violaxanthin as the most abundant pigments, but profiles were variable depending on culture and field conditions. A factorial temperature–salinity growth experiment showed a maximal growth rate of 0.48 d−1 at 17 °C and 35 in salinity, but reached a maximal cell abundance of ~50,000 cells mL−1 at 12 °C and 25 in salinity. The fatty acid profile included high levels of saturated (16:0) and polyunsaturated (18:4 ω3; 20:5 ω3) fatty acids, but superoxide production in this strain was low (~0.3 pmol O2– cell−1 h−1). The RTgill-W1 bioassay showed that the H. akashiwo strain was cytotoxic only at high cell concentrations (>47,000 cells mL−1) and after cell rupture. In conclusion, salmon mortality during H. akashiwo bloom events in Patagonian fjords is likely explained by the high production of long-chain PUFAs at high cell densities, but only in the presence of high ROS production. Full article
(This article belongs to the Special Issue Effects of Harmful Algal Blooms on Aquatic Organisms)
Show Figures

Figure 1

20 pages, 2267 KiB  
Article
Effect of Different N:P Ratios on the Growth, Toxicity, and Toxin Profile of Gymnodinium catenatum (Dinophyceae) Strains from the Gulf of California
by Francisco E. Hernández-Sandoval, José J. Bustillos-Guzmán, Christine J. Band-Schmidt, Erick J. Núñez-Vázquez, David J. López-Cortés, Leyberth J. Fernández-Herrera, Carlos A. Poot-Delgado and Manuel Moreno-Legorreta
Toxins 2022, 14(7), 501; https://doi.org/10.3390/toxins14070501 - 18 Jul 2022
Cited by 4 | Viewed by 2452
Abstract
The harmful microalgae Gymnodinium catenatum is a unique naked dinoflagellate that produces paralytic shellfish poisoning toxins (PSTs). This species is common along the coasts of the Mexican Pacific and is responsible for paralytic shellfish poisoning, which has resulted in notable financial losses in [...] Read more.
The harmful microalgae Gymnodinium catenatum is a unique naked dinoflagellate that produces paralytic shellfish poisoning toxins (PSTs). This species is common along the coasts of the Mexican Pacific and is responsible for paralytic shellfish poisoning, which has resulted in notable financial losses in both fisheries and aquaculture. In the Gulf of California, G. catenatum has been related to mass mortality events in fish, shrimp, seabirds, and marine mammals. In this study, the growth, toxin profiles, and toxin content of four G. catenatum strains isolated from Bahía de La Paz (BAPAZ) and Bahía de Mazatlán (BAMAZ) were evaluated with different N:P ratios, keeping the phosphorus concentration constant. All strains were cultivated in semi-continuous cultures (200 mL, 21.0 °C, 120 µmol photon m−2s−1, and a 12:12 h light-dark cycle) with f/2 + Se medium using N:P ratios of: 4:1, 8:1, 16:1, 32:1, and 64:1. Paralytic toxins were analyzed by HPLC with fluorescence detection. Maximum cellular abundance and growth were obtained at an N:P ratio of 64:1 (3188 cells mL−1 and 0.34 div day−1) with the BAMAZ and BAPAZ strains. A total of ten saxitoxin analogs dominated by N-sulfocarbamoyl (60–90 mol%), decarbamoyl (10–20 mol%), and carbamoyl (5–10 mol%) toxins were detected. The different N:P ratios did not cause significant changes in the PST content or toxin profiles of the strains from both bays, although they did affect cell abundance. Full article
(This article belongs to the Special Issue Effects of Harmful Algal Blooms on Aquatic Organisms)
Show Figures

Graphical abstract

13 pages, 3208 KiB  
Article
Cytotoxic and Hemolytic Activities of Extracts of the Fish Parasite Dinoflagellate Amyloodinium ocellatum
by Márcio Moreira, Lucía Soliño, Cátia L. Marques, Vincent Laizé, Pedro Pousão-Ferreira, Pedro Reis Costa and Florbela Soares
Toxins 2022, 14(7), 467; https://doi.org/10.3390/toxins14070467 - 08 Jul 2022
Cited by 5 | Viewed by 2838
Abstract
The dinoflagellate Amyloodinium ocellatum is the etiological agent of a parasitic disease named amyloodiniosis. Mortalities of diseased fish are usually attributed to anoxia, osmoregulatory impairment, or opportunistic bacterial infections. Nevertheless, the phylogenetic proximity of A. ocellatum to a group of toxin-producing dinoflagellates from [...] Read more.
The dinoflagellate Amyloodinium ocellatum is the etiological agent of a parasitic disease named amyloodiniosis. Mortalities of diseased fish are usually attributed to anoxia, osmoregulatory impairment, or opportunistic bacterial infections. Nevertheless, the phylogenetic proximity of A. ocellatum to a group of toxin-producing dinoflagellates from Pfiesteria, Parvodinium and Paulsenella genera suggests that it may produce toxin-like compounds, adding a new dimension to the possible cause of mortalities in A. ocellatum outbreaks. To address this question, extracts prepared from different life stages of the parasite were tested in vitro for cytotoxic effects using two cell lines derived from branchial arches (ABSa15) and the caudal fin (CFSa1) of the gilthead seabream (Sparus aurata), and for hemolytic effects using erythrocytes purified from the blood of gilthead seabream juveniles. Cytotoxicity and a strong hemolytic effect, similar to those observed for Karlodinium toxins, were observed for the less polar extracts of the parasitic stage (trophont). A similar trend was observed for the less polar extracts of the infective stage (dinospores), although cell viability was only affected in the ABSa15 line. These results suggest that A. ocellatum produces tissue-specific toxic compounds that may have a role in the attachment of the dinospores’ and trophonts’ feeding process. Full article
(This article belongs to the Special Issue Effects of Harmful Algal Blooms on Aquatic Organisms)
Show Figures

Figure 1

13 pages, 1704 KiB  
Article
The Effects of the Harmful Algal Bloom Species Karenia brevis on Survival of Red Porgy (Pagrus pagrus) Larvae
by Richard Wayne Litaker, Alex K. Bogdanoff, Donnie Ransom Hardison, William C. Holland, Andrew Ostrowski and James A. Morris
Toxins 2022, 14(7), 439; https://doi.org/10.3390/toxins14070439 - 28 Jun 2022
Cited by 3 | Viewed by 1867
Abstract
The harmful algal bloom species, Karenia brevis, forms annual, often intense blooms in the Gulf of Mexico, particularly along the west Florida shelf. Though the ability of K. brevis blooms to cause mass mortalities in juvenile fish are well documented, the direct [...] Read more.
The harmful algal bloom species, Karenia brevis, forms annual, often intense blooms in the Gulf of Mexico, particularly along the west Florida shelf. Though the ability of K. brevis blooms to cause mass mortalities in juvenile fish are well documented, the direct effect of bloom concentrations on larval fish has not been studied extensively. To better understand the potential effect of K. brevis on larval fish survival, laboratory spawned red porgy (Pagrus pagrus) larvae from 4–26 days post-hatch were exposed to concentrations of K. brevis observed in the field for either 24 or 48 h. This species is representative of fish which spawn in regions of the Gulf of Mexico and whose larvae are epipelagic and may encounter K. brevis blooms. In this study, three different K. brevis strains varying in the amount of brevetoxin produced were tested. Larval survivorship was found to be inversely proportional to the amount of brevetoxin produced by each strain. The EC50 value from the combined 24 h experiments was ~163,000 K. brevis cells L1, which corresponds to cell concentrations found in moderately dense blooms. Larval mortality also increased substantially in the 48 h versus 24 h exposure treatments. These findings indicate K. brevis blooms have the potential to contribute to natural mortality of fish larvae and further reduce inter-annual recruitment of fishery species whose stocks in the Gulf of Mexico may already be depleted. Full article
(This article belongs to the Special Issue Effects of Harmful Algal Blooms on Aquatic Organisms)
Show Figures

Figure 1

17 pages, 3418 KiB  
Article
Liza ramada Juveniles after Exposure to the Toxic Dinoflagellate Vulcanodinium rugosum: Effects on Fish Viability, Tissue Contamination and Microalgae Survival after Gut Passage
by Aurélien Bouquet, Marie Anaïs Perdrau, Mohamed Laabir, Elodie Foucault, Nicolas Chomérat, Jean Luc Rolland and Eric Abadie
Toxins 2022, 14(6), 401; https://doi.org/10.3390/toxins14060401 - 10 Jun 2022
Cited by 3 | Viewed by 2149
Abstract
Pinnatoxins (PnTX) and Portimines (Prtn), two toxins produced by the benthic dinoflagellate Vulcanodinium rugosum, are known to be lethal to mice after intraperitoneal or oral administration. They are also known to accumulate in shellfish such as mussels and clams, but their effect [...] Read more.
Pinnatoxins (PnTX) and Portimines (Prtn), two toxins produced by the benthic dinoflagellate Vulcanodinium rugosum, are known to be lethal to mice after intraperitoneal or oral administration. They are also known to accumulate in shellfish such as mussels and clams, but their effect on fish and the upper food chain remains unknown. In this work, juveniles of the fish Liza ramada (Mullet) were exposed to a strain of V. rugosum producing PnTX G and Prtn A. The fishes’ viability and contamination were recorded at times interval. Results showed that L. ramada juveniles were able to feed on V. rugosum and that their tissues could be contaminated by PnTX G and Prtn A without impact on fish viability. Furthermore, the microalgae temporary cysts survived and germinated after fish gut passage. This study showed the potential of L. ramada to transfer PnTX and Prtn toxins to the upper food chain and to disseminate V. rugosum in environment. Full article
(This article belongs to the Special Issue Effects of Harmful Algal Blooms on Aquatic Organisms)
Show Figures

Figure 1

16 pages, 995 KiB  
Article
Effects of Two Toxin-Producing Harmful Algae, Alexandrium catenella and Dinophysis acuminata (Dinophyceae), on Activity and Mortality of Larval Shellfish
by Sarah K. D. Pease, Michael L. Brosnahan, Marta P. Sanderson and Juliette L. Smith
Toxins 2022, 14(5), 335; https://doi.org/10.3390/toxins14050335 - 10 May 2022
Cited by 12 | Viewed by 2905
Abstract
Harmful algal bloom (HAB) species Alexandrium catenella and Dinophysis acuminata are associated with paralytic shellfish poisoning (PSP) and diarrhetic shellfish poisoning (DSP) in humans, respectively. While PSP and DSP have been studied extensively, less is known about the effects of these HAB species [...] Read more.
Harmful algal bloom (HAB) species Alexandrium catenella and Dinophysis acuminata are associated with paralytic shellfish poisoning (PSP) and diarrhetic shellfish poisoning (DSP) in humans, respectively. While PSP and DSP have been studied extensively, less is known about the effects of these HAB species or their associated toxins on shellfish. This study investigated A. catenella and D. acuminata toxicity in a larval oyster (Crassostrea virginica) bioassay. Larval activity and mortality were examined through 96-h laboratory exposures to live HAB cells (10–1000 cells/mL), cell lysates (1000 cells/mL equivalents), and purified toxins (10,000 cells/mL equivalents). Exposure to 1000 cells/mL live or lysed D. acuminata caused larval mortality (21.9 ± 7.0%, 10.2 ± 4.0%, respectively) while exposure to any tested cell concentration of live A. catenella, but not lysate, caused swimming arrest and/or mortality in >50% of larvae. Exposure to high concentrations of saxitoxin (STX) or okadaic acid (OA), toxins traditionally associated with PSP and DSP, respectively, had no effect on larval activity or mortality. In contrast, pectenotoxin-2 (PTX2) caused rapid larval mortality (49.6 ± 5.8% by 48 h) and completely immobilized larval oysters. The results indicate that the toxic effects of A. catenella and D. acuminata on shellfish are not linked to the primary toxins associated with PSP and DSP in humans, and that PTX2 is acutely toxic to larval oysters. Full article
(This article belongs to the Special Issue Effects of Harmful Algal Blooms on Aquatic Organisms)
Show Figures

Figure 1

15 pages, 5479 KiB  
Article
Detection and Quantification of the Harmful Dinoflagellate Margalefidinium polykrikoides (East Asian Ribotype) in the Coastal Waters of China
by Jiarong Hu, Ruoyu Guo, Douding Lu, Xinfeng Dai, Yuanli Zhu, Bum Soo Park and Pengbin Wang
Toxins 2022, 14(2), 95; https://doi.org/10.3390/toxins14020095 - 25 Jan 2022
Cited by 6 | Viewed by 3015
Abstract
As a marine ichthyotoxic dinoflagellate, Margalefidinium polykrikoides, previously named Cochlodinium polykrikoides, have caused mass mortalities of fish worldwide during blooms. Rapid detection of target species is a prerequisite for the timely monitoring and early warning of harmful algal blooms (HABs). However, [...] Read more.
As a marine ichthyotoxic dinoflagellate, Margalefidinium polykrikoides, previously named Cochlodinium polykrikoides, have caused mass mortalities of fish worldwide during blooms. Rapid detection of target species is a prerequisite for the timely monitoring and early warning of harmful algal blooms (HABs). However, it is difficult to achieve rapid identification with traditional methods. The technology of using quantitative real-time PCR (qPCR) to detect and quantify microalgae is relatively mature. Based on the accuracy, rapidity, and sensitivity of qPCR technology, it can be used in the monitoring and development of early warning systems for HABs. From 2017 to 2020, samples were collected from 15 locations off the Chinese coast or from local sea areas. Based on the qPCR detection and analysis, the target species, M. polykrikoides (East Asian ribotype, EAr), was found in samples from Tianjin, Yangtze River estuary, and offshore Fujian (East China Sea). This is the first time that M. polykrikoides (EAr) was detected in the coastal waters of Tianjin. The results reveal a distributive pattern of M. polykrikoides (EAr) along Chinese coastal waters. It is helpful to predict the future diffusion trend of M. polykrikoides (EAr) in the China Sea and provides a practical case for the future construction of monitoring and warning systems for M. polykrikoides and HABs. Full article
(This article belongs to the Special Issue Effects of Harmful Algal Blooms on Aquatic Organisms)
Show Figures

Figure 1

10 pages, 962 KiB  
Article
Yeast Cell as a Bio-Model for Measuring the Toxicity of Fish-Killing Flagellates
by Malihe Mehdizadeh Allaf and Charles G. Trick
Toxins 2021, 13(11), 821; https://doi.org/10.3390/toxins13110821 - 21 Nov 2021
Cited by 5 | Viewed by 1870
Abstract
Harmful algal blooms are a significant environmental problem. Cells that bloom are often associated with intercellular or dissolved toxins that are a grave concern to humans. However, cells may also excrete compounds that are beneficial to their competition, allowing the cells to establish [...] Read more.
Harmful algal blooms are a significant environmental problem. Cells that bloom are often associated with intercellular or dissolved toxins that are a grave concern to humans. However, cells may also excrete compounds that are beneficial to their competition, allowing the cells to establish or maintain cells in bloom conditions. Here, we develop a yeast cell assay to assess whether the bloom-forming species can change the toxicity of the water environment. The current methods of assessing toxicity involve whole organisms. Here, yeast cells are used as a bioassay model to evaluate eukaryotic cell toxicity. Yeast is a commonly used, easy to maintain bioassay species that is free from ethical concerns, yet is sensitive to a wide array of metabolic and membrane-modulating agents. Compared to methods in which the whole organism is used, this method offers rapid and convenient cytotoxicity measurements using a lower volume of samples. The flow cytometer was employed in this toxicology assessment to measure the number of dead cells using alive/dead stain analysis. The results show that yeast cells were metabolically damaged after 1 h of exposure to our model toxin-producing euryhaline flagellates (Heterosigma akashiwo and Prymnesium parvum) cells or extracts. This amount was increased by extending the incubation time. Full article
(This article belongs to the Special Issue Effects of Harmful Algal Blooms on Aquatic Organisms)
Show Figures

Figure 1

19 pages, 2757 KiB  
Article
Cyanobacteria Microcystis aeruginosa Contributes to the Severity of Fish Diseases: A Study on Spring Viraemia of Carp
by Miroslava Palikova, Radovan Kopp, Jiri Kohoutek, Ludek Blaha, Jan Mares, Petra Ondrackova, Ivana Papezikova, Hana Minarova, Lubomir Pojezdal and Ondrej Adamovsky
Toxins 2021, 13(9), 601; https://doi.org/10.3390/toxins13090601 - 28 Aug 2021
Cited by 3 | Viewed by 3237
Abstract
Fish are exposed to numerous stressors in the environment including pollution, bacterial and viral agents, and toxic substances. Our study with common carps leveraged an integrated approach (i.e., histology, biochemical and hematological measurements, and analytical chemistry) to understand how cyanobacteria interfere with the [...] Read more.
Fish are exposed to numerous stressors in the environment including pollution, bacterial and viral agents, and toxic substances. Our study with common carps leveraged an integrated approach (i.e., histology, biochemical and hematological measurements, and analytical chemistry) to understand how cyanobacteria interfere with the impact of a model viral agent, Carp sprivivirus (SVCV), on fish. In addition to the specific effects of a single stressor (SVCV or cyanobacteria), the combination of both stressors worsens markers related to the immune system and liver health. Solely combined exposure resulted in the rise in the production of immunoglobulins, changes in glucose and cholesterol levels, and an elevated marker of impaired liver, alanine aminotransferase (ALT). Analytical determination of the cyanobacterial toxin microcystin-LR (MC-LR) and its structurally similar congener MC-RR and their conjugates showed that SVCV affects neither the levels of MC in the liver nor the detoxification capacity of the liver. MC-LR and MC-RR were depurated from liver mostly in the form of cysteine conjugates (MC-LR-Cys, MC-RR-Cys) in comparison to glutathione conjugates (LR-GSH, RR-GSH). Our study brought new evidence that cyanobacteria worsen the effect of viral agents. Such inclusion of multiple stressor concept helps us to understand how and to what extent the relevant environmental stressors co-influence the health of the fish population. Full article
(This article belongs to the Special Issue Effects of Harmful Algal Blooms on Aquatic Organisms)
Show Figures

Graphical abstract

Review

Jump to: Editorial, Research

32 pages, 3454 KiB  
Review
Effects of Harmful Algal Blooms on Fish and Shellfish Species: A Case Study of New Zealand in a Changing Environment
by Anne Rolton, Lesley Rhodes, Kate S. Hutson, Laura Biessy, Tony Bui, Lincoln MacKenzie, Jane E. Symonds and Kirsty F. Smith
Toxins 2022, 14(5), 341; https://doi.org/10.3390/toxins14050341 - 14 May 2022
Cited by 20 | Viewed by 10579
Abstract
Harmful algal blooms (HABs) have wide-ranging environmental impacts, including on aquatic species of social and commercial importance. In New Zealand (NZ), strategic growth of the aquaculture industry could be adversely affected by the occurrence of HABs. This review examines HAB species which are [...] Read more.
Harmful algal blooms (HABs) have wide-ranging environmental impacts, including on aquatic species of social and commercial importance. In New Zealand (NZ), strategic growth of the aquaculture industry could be adversely affected by the occurrence of HABs. This review examines HAB species which are known to bloom both globally and in NZ and their effects on commercially important shellfish and fish species. Blooms of Karenia spp. have frequently been associated with mortalities of both fish and shellfish in NZ and the sub-lethal effects of other genera, notably Alexandrium spp., on shellfish (which includes paralysis, a lack of byssus production, and reduced growth) are also of concern. Climate change and anthropogenic impacts may alter HAB population structure and dynamics, as well as the physiological responses of fish and shellfish, potentially further compromising aquatic species. Those HAB species which have been detected in NZ and have the potential to bloom and harm marine life in the future are also discussed. The use of environmental DNA (eDNA) and relevant bioassays are practical tools which enable early detection of novel, problem HAB species and rapid toxin/HAB screening, and new data from HAB monitoring of aquaculture production sites using eDNA are presented. As aquaculture grows to supply a sizable proportion of the world’s protein, the effects of HABs in reducing productivity is of increasing significance. Research into the multiple stressor effects of climate change and HABs on cultured species and using local, recent, HAB strains is needed to accurately assess effects and inform stock management strategies. Full article
(This article belongs to the Special Issue Effects of Harmful Algal Blooms on Aquatic Organisms)
Show Figures

Figure 1

Back to TopTop