Topic Editors

Department of Electrical and Computer Engineering, University of Coimbra, 3004-531 Coimbra, Portugal
Prof. Dr. Luís Pires Neves
Departamento de Engenharia Electrotécnica, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
Institute for Systems and Computer Engineering of Coimbra (INESCC), Polytechnic Institute of Setúbal, 2910-761 Setúbal, Portugal

Electricity Demand-Side Management, 2nd Volume

Abstract submission deadline
31 December 2024
Manuscript submission deadline
31 March 2025
Viewed by
5134

Topic Information

Dear Colleagues,

We would like to invite submissions to this Topic on the subject of Electricity Demand-Side Management, which is a continuation of the previous successful Topic. Demand-side management (DSM) is a critical instrument to deal with contemporary utility business risks. At the same time, it is also part of the portfolio of options of energy and environmental policies in the context of climate change. The electricity industry is disorganized in many parts of the world, while in many others, it is vertically integrated. DSM plays similar roles in both cases. Consolidated management instruments may be used in the case of vertically integrated utilities, where the impacts of acting on the demand side are perceptible across the value chain. In the case of liberalized markets of electricity, new approaches have to be used, as there is a much larger number of relevant economic agents whose interests are not coincidental. New insights and methods have to be used for assessing the economic and societal interest of DSM programs and measures.

Together with distributed energy resources, DSM is a part of a larger picture where demand flexibility is key to a sustainable energy future and where renewable electricity, energy storage, demand response, electric mobility and smart grids are all inextricably connected.

We look forward to your submissions with new insights into the contemporary and future roles of DSM.

Prof. Dr. António Gomes Martins
Prof. Dr. Luís Pires Neves
Prof. Dr. José Luís Sousa
Topic Editors

Keywords

  • demand-side management
  • demand response
  • energy efficiency
  • cost–benefit analysis
  • distributed energy resources
  • flexibility management
  • flexible demand in smart buildings
  • behind-the-meter storage control
  • consumer behavior

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.5 5.3 2011 17.8 Days CHF 2400 Submit
Energies
energies
3.0 6.2 2008 17.5 Days CHF 2600 Submit
Processes
processes
2.8 5.1 2013 14.4 Days CHF 2400 Submit
Clean Technologies
cleantechnol
4.0 6.1 2019 30 Days CHF 1600 Submit
Electricity
electricity
- 4.8 2020 27.2 Days CHF 1000 Submit

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (4 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
39 pages, 9820 KiB  
Article
Ownership, Patterns of Use and Electricity Consumption of Domestic Appliances in Urban Households of the West African Monetary and Economic Union: A Case Study of Ouagadougou in Burkina Faso
by Komlan Hector Seth Tete, Yrébégnan Moussa Soro, Djerambete Aristide Nadjingar and Rory Victor Jones
Energies 2024, 17(15), 3656; https://doi.org/10.3390/en17153656 - 25 Jul 2024
Viewed by 598
Abstract
In the West African Monetary and Economic Union (UEMOA), information on the characteristics of the users and patterns of electricity end-uses remains hard to find. This study aims to contribute to reducing the gap in research on domestic electricity consumption in the region [...] Read more.
In the West African Monetary and Economic Union (UEMOA), information on the characteristics of the users and patterns of electricity end-uses remains hard to find. This study aims to contribute to reducing the gap in research on domestic electricity consumption in the region by unveiling the ownership rates, patterns of use and electricity consumption of domestic appliances in urban households through a city-wide survey. Three categories of urban users were investigated including high, medium and low consumers. Findings demonstrated various ownership rates for appliances, ranging from 100% for lighting fixtures to 0% for washing machines depending on user category. Domestic electricity demonstrated patterns consisting of three peak demand periods, with the main ones occurring in the evening (19:00 to 20:00) and the night (22:00). Other demand characteristics include an average daily electricity use ranging from 0.50 to 6.42 kWh per household, a maximum power demand of between 0.19 and 0.70 kW and a daily load factor between 35 and 58%. Finally, the appliances contributing the most to domestic electricity use include air-conditioners, fans, fridges and freezers, televisions and lighting fixtures, with contributions differing from one category of user to another. Policy implications including review of the appliances’ importations framework and policies, and incentives for purchasing efficient appliances, design of more tailored policies, considering the different backgrounds of the users, education enhancement on energy behaviours for increasing energy efficiency/conservation, and implementation of DSM programs including load levelling, load shifting and load reducing depending on the type of appliance for energy conservation in the domestic buildings were derived. Overall, a large range of stakeholders of the electricity sector, not only in the West African Economic and Monetary Union (UEMOA), but also in other regions and countries sharing common characteristics should be interested in the results of this study. Full article
(This article belongs to the Topic Electricity Demand-Side Management, 2nd Volume)
Show Figures

Figure 1

16 pages, 2002 KiB  
Article
Optimized Decision-Making for Multi-Market Green Power Transactions of Electricity Retailers under Demand-Side Response: The Chinese Market Case Study
by Hui Wang and Yao Xu
Energies 2024, 17(11), 2543; https://doi.org/10.3390/en17112543 - 24 May 2024
Viewed by 733
Abstract
With the energy structure transition and the development of the green power market, the role of electricity retailers in multi-market green power trading has become more and more important. Particularly in China, where aggressive green energy policies and rapid market transformations provide a [...] Read more.
With the energy structure transition and the development of the green power market, the role of electricity retailers in multi-market green power trading has become more and more important. Particularly in China, where aggressive green energy policies and rapid market transformations provide a distinct context for such studies, the challenges are pronounced. Under demand-side response, electricity retailers face the uncertainty of users’ electricity consumption and incentives, which complicates decision-making processes. The purpose of this paper is to explore the optimization decision-making problem of multi-market green power trading for electricity retailers under demand-side response, with a special focus on the Chinese market due to its leadership in implementing substantial green energy initiatives and its potential to set precedents for global practices. We first construct a two-party benefit optimization model, which comprehensively considers the profit objectives for electricity retailers and utility maximization for users. Then, the model is solved by the Lagrange multiplier method and distributed subgradient algorithm to obtain the optimal solution. Finally, the effectiveness of the incentive optimization strategy under the multi-market to promote green power consumption and improve the profit of electricity retailers is verified by arithmetic simulation. The results of this study show that the incentive optimization strategy under multi-market, particularly within the Chinese context, is expected to provide a reference for electricity retailers to develop more flexible and effective trading strategies in the green power market and to contribute to the process of promoting green power consumption globally. Full article
(This article belongs to the Topic Electricity Demand-Side Management, 2nd Volume)
Show Figures

Figure 1

24 pages, 2533 KiB  
Article
Evaluating Preparedness and Overcoming Challenges in Electricity Trading: An In-Depth Analysis Using the Analytic Hierarchy Process and a Case Study Exploration
by Suraj Regmi, Abhinav Rayamajhi, Ramhari Poudyal and Sanjeev Adhikari
Electricity 2024, 5(2), 271-294; https://doi.org/10.3390/electricity5020014 - 11 May 2024
Cited by 2 | Viewed by 2219
Abstract
The economy of South Asia is experiencing growth, yet it faces constraints due to heavy reliance on fossil fuels and frequent power outages. Access to diverse energy sources, particularly electricity, is crucial for sustaining this growth. One feasible solution involves neighbouring countries engaging [...] Read more.
The economy of South Asia is experiencing growth, yet it faces constraints due to heavy reliance on fossil fuels and frequent power outages. Access to diverse energy sources, particularly electricity, is crucial for sustaining this growth. One feasible solution involves neighbouring countries engaging in the trade of renewable electrical energy. Hydropower stands as one of the many energy sources available in South Asia. However, sectorial constraints pose significant challenges to energy trade initiatives. This study utilises the Analytic Hierarchy Process (AHP) to evaluate Nepal’s readiness and identify obstacles to its cross-border energy trade with India and Bangladesh. A comprehensive analysis of these obstacles is imperative for formulating effective strategies and policies. Additionally, this study offers recommendations for enhancing preparedness and resolving issues related to energy trading, which may apply to similar cross-border situations. This study ranks energy trading obstacles with neighbouring nations using the AHP, offering key insights for stakeholders and policymakers. Using a non-probabilistic purposeful sampling technique, 25 expert respondents from the energy sector and prominent academicians were selected as part of the data collection procedure. At every level of the interview process, their perspectives were invaluable in guaranteeing a thorough and rigorous investigation. Full article
(This article belongs to the Topic Electricity Demand-Side Management, 2nd Volume)
Show Figures

Figure 1

24 pages, 3458 KiB  
Article
A Transmission and Distribution Cooperative Congestion Scheduling Strategy Based on Flexible Load Dynamic Compensation Prices
by Hui Sun, Tian Jin, Zhengnan Gao, Shubo Hu, Yanan Dou and Xueli Lu
Energies 2024, 17(5), 1232; https://doi.org/10.3390/en17051232 - 4 Mar 2024
Cited by 1 | Viewed by 747
Abstract
With the demand response and the massive access of distributed energy to the distribution network, it is possible to solve the transmission congestion problem by coordinating the controllable resources in a transmission network and distribution network. Aiming at resolving the problems of scattered [...] Read more.
With the demand response and the massive access of distributed energy to the distribution network, it is possible to solve the transmission congestion problem by coordinating the controllable resources in a transmission network and distribution network. Aiming at resolving the problems of scattered side response resources and difficult-to-negotiate compensation prices, a bi-level optimal congestion scheduling strategy based on flexible load dynamic compensation prices is proposed. Under this strategy, the transmission network layer aims at minimizing the congestion cost and optimizes the adjustment scheme of the generator set and the node price. The active distribution network layer obtains the dynamic compensation price of the flexible load of the distribution network through the load characteristics and the node price. Through the interaction and coordination between the two layers, an optimal congestion scheduling scheme is obtained, and the transmission and distribution jointly solve the congestion problem. Based on the modified IEEE-39 experimental system, the effectiveness of the proposed strategy is verified via a simulation. Full article
(This article belongs to the Topic Electricity Demand-Side Management, 2nd Volume)
Show Figures

Figure 1

Back to TopTop