Consumers’ Preferences for Digital Corporate Content on Company Websites: A Best–Worst Scaling Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Gratifying Characteristics of Digital Corporate Content
- Information value refers to digital corporate content that is perceived to be interesting, relevant, up-to-date, and of high quality.
- Entertainment value refers to digital corporate content that is entertaining, surprising, and relaxing and puts consumers in a good mood.
- Value in use refers to digital corporate content that offers functional, utilitarian performance in terms of inspiration, ideas, advice, tips, or help in everyday life or purchasing decisions.
- Social value stems from interacting with others about specific content, sharing content, or content that serves to better present or understand oneself.
- Process value stems from a gratifying process of using digital corporate content and may be related to, e.g., multimedia experiences, ease of use, or specific technologies that users perceive as pleasurable to use.
2.2. Best–Worst Scaling
3. Materials and Methods
3.1. Construction of Choice Sets
3.2. Survey Structure and Implementation
3.3. Participants
3.4. Study Size
3.5. Statistical Analyses
3.5.1. Processing of the Sample
3.5.2. Counting Analysis
3.5.3. Modeling Analysis
3.5.4. Subgroup Analyses
4. Results
4.1. Participants’ Data
4.2. Counting Analysis
4.3. Conditional Logit Analysis
4.4. Subgroup Analyses
5. Discussion
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Limitations and Paths for Future Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beard, F.; Petrotta, B.; Dischner, L. A History of Content Marketing. J. Hist. Res. Mark. 2021, 13, 139–158. [Google Scholar] [CrossRef]
- Hollebeek, L.D.; Macky, K. Digital Content Marketing’s Role in Fostering Consumer Engagement, Trust, and Value: Framework, Fundamental Propositions, and Implications. J. Interact. Mark. 2019, 45, 27–41. [Google Scholar] [CrossRef]
- Wang, W.-L.; Malthouse, E.C.; Calder, B.; Uzunoglu, E. B2B Content Marketing for Professional Services: In-Person versus Digital Contacts. Ind. Mark. Manag. 2019, 81, 160–168. [Google Scholar] [CrossRef]
- Koob, C. Determinants of Content Marketing Effectiveness: Conceptual Framework and Empirical Findings from a Managerial Perspective. PLoS ONE 2021, 16, e0249457. [Google Scholar] [CrossRef]
- Dahlen, M.; Rosengren, S. If Advertising Won’t Die, What Will It Be? Toward a Working Definition of Advertising. J. Advert. 2016, 45, 334–345. [Google Scholar] [CrossRef]
- Lou, C.; Xie, Q. Something Social, Something Entertaining? How Digital Content Marketing Augments Consumer Experience and Brand Loyalty. Int. J. Advert. 2021, 40, 376–402. [Google Scholar] [CrossRef]
- Mathew, V.; Soliman, M. Does Digital Content Marketing Affect Tourism Consumer Behavior? An Extension of Technology Acceptance Model. J. Consum. Behav. 2021, 20, 61–75. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Wang, M.; Wen, D. How to Catch Customers’ Attention? A Study on the Effectiveness of Brand Social Media Strategies in Digital Customer Engagement. Front. Psychol. 2021, 12, 800766. [Google Scholar] [CrossRef]
- du Plessis, C. A Scoping Review of the Effect of Content Marketing on Online Consumer Behavior. SAGE Open 2022, 12, 21582440221093042. [Google Scholar] [CrossRef]
- Cyr, D.; Head, M.; Lim, E.; Stibe, A. Using the Elaboration Likelihood Model to Examine Online Persuasion through Website Design. Inf. Manag. 2018, 55, 807–821. [Google Scholar] [CrossRef]
- Jongmans, E.; Jeannot, F.; Liang, L.; Damperat, M. Impact of Website Visual Design on User Experience and Website Evaluation: The Sequential Mediating Roles of Usability and Pleasure. J. Mark. Manag. 2022, 38, 1–36. [Google Scholar] [CrossRef]
- Karimov, F.; Brengman, M.; Van Hove, L. The Effect of Website Design Dimensions on Initial Trust: A Synthesis of the Empirical Literature. J. Electron. Commer. Res. 2011, 12, 272–301. [Google Scholar]
- Voorveld, H.A.M.; Neijens, P.C.; Smit, E.G. Consumers’ Responses to Brand Websites: An Interdisciplinary Review. Internet Res. 2009, 19, 535–565. [Google Scholar] [CrossRef]
- Content Marketing Forum. Content Marketing Baseline Study 2022. Available online: https://content-marketing-forum.com/cmf-studie/ (accessed on 2 February 2023).
- Pelletier, M.J.; Krallman, A.; Adams, F.G.; Hancock, T. One Size Doesn’t Fit All: A Uses and Gratifications Analysis of Social Media Platforms. J. Res. Interact. Mark. 2020, 14, 269–284. [Google Scholar] [CrossRef]
- Bowden, J.; Mirzaei, A. Consumer Engagement within Retail Communication Channels: An Examination of Online Brand Communities and Digital Content Marketing Initiatives. Eur. J. Mark. 2021, 55, 1411–1439. [Google Scholar] [CrossRef]
- Louviere, J.; Lings, I.; Islam, T.; Gudergan, S.; Flynn, T. An Introduction to the Application of (Case 1) Best–Worst Scaling in Marketing Research. Int. J. Res. Mark. 2013, 30, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Hollis, G.; Westbury, C. When Is Best-Worst Best? A Comparison of Best-Worst Scaling, Numeric Estimation, and Rating Scales for Collection of Semantic Norms. Behav. Res. Methods 2018, 50, 115–133. [Google Scholar] [CrossRef]
- Heo, C.Y.; Kim, B.; Park, K.; Back, R.M. A Comparison of Best-Worst Scaling and Likert Scale Methods on Peer-to-Peer Accommodation Attributes. J. Bus. Res. 2022, 148, 368–377. [Google Scholar] [CrossRef]
- Katz, E.; Blumler, J.G.; Gurevitch, M. Uses and Gratifications Research. Public Opin. Q. 1973, 37, 509–523. [Google Scholar] [CrossRef]
- Rubin, A.M. Uses-and-Gratifications Perspective on Media Effects. In Media Effects; Routledge: Oxfordshire, UK, 2009; pp. 181–200. ISBN 0-203-87711-X. [Google Scholar]
- Ruggiero, T.E. Uses and Gratifications Theory in the 21st Century. Mass Commun. Soc. 2000, 3, 3–37. [Google Scholar] [CrossRef] [Green Version]
- Avant, J.A.; Kim, K.; Hayes, J.L. Thirty Years of Advertising Research in Leading Communication and Marketing Journals: Learning from the Parent Disciplines. J. Curr. Issues Res. Advert. 2017, 38, 44–64. [Google Scholar] [CrossRef]
- Sundar, S.S.; Limperos, A.M. Uses and Grats 2.0: New Gratifications for New Media. J. Broadcast. Electron. Media 2013, 57, 504–525. [Google Scholar] [CrossRef]
- Haridakis, P.; Humphries, Z. Uses and Gratifications. In An Integrated Approach to Communication Theory and Research; Routledge: Oxfordshire, UK, 2019; pp. 139–154. [Google Scholar]
- Valkenburg, P.M.; Peter, J.; Walther, J.B. Media Effects: Theory and Research. Annu. Rev. Psychol. 2016, 67, 315–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss, K.E.; Spangenberg, E.R.; Grohmann, B. Measuring the Hedonic and Utilitarian Dimensions of Consumer Attitude. J. Mark. Res. 2003, 40, 310–320. [Google Scholar] [CrossRef]
- Holbrook, M.B.; Hirschman, E.C. The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun. J. Consum. Res. 1982, 9, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Morhart, F.; Malär, L.; Guèvremont, A.; Girardin, F.; Grohmann, B. Brand Authenticity: An Integrative Framework and Measurement Scale. J. Consum. Psychol. 2015, 25, 200–218. [Google Scholar] [CrossRef]
- Chen, X.; Shen, X.; Huang, X.; Li, Y. Research on Social Media Content Marketing: An Empirical Analysis Based on China’s 10 Metropolis for Korean Brands. SAGE Open 2021, 11, 21582440211052951. [Google Scholar] [CrossRef]
- Izogo, E.E.; Mpinganjira, M. Behavioral Consequences of Customer Inspiration: The Role of Social Media Inspirational Content and Cultural Orientation. J. Res. Interact. Mark. 2020, 14, 431–459. [Google Scholar] [CrossRef]
- Lou, C.; Xie, Q.; Feng, Y.; Kim, W. Does Non-Hard-Sell Content Really Work? Leveraging the Value of Branded Content Marketing in Brand Building. J. Prod. Brand Manag. 2019, 28, 773–786. [Google Scholar] [CrossRef]
- Sheldon, P.; Antony, M.G.; Ware, L.J. Baby Boomers’ Use of Facebook and Instagram: Uses and Gratifications Theory and Contextual Age Indicators. Heliyon 2021, 7, e06670. [Google Scholar] [CrossRef]
- Zhou, Y.; Calder, B.J.; Malthouse, E.C.; Hessary, Y.K. Not All Clicks Are Equal: Detecting Engagement with Digital Content. J. Media Bus. Stud. 2021, 19, 90–107. [Google Scholar] [CrossRef]
- Ducoffe, R.H. Advertising Value and Advertising on the Web. J. Advert. Res. 1996, 36, 21–35. [Google Scholar]
- Sheth, J.N.; Newman, B.I.; Gross, B.L. Why We Buy What We Buy: A Theory of Consumption Values. J. Bus. Res. 1991, 22, 159–170. [Google Scholar] [CrossRef]
- Muhammad, H.S.; Ezlika, G.; Mozard, M. A Systematic Literature Review and Future Research Agenda for the Gratification Discrepancies Approach. CMR 2022, 18, 1–33. [Google Scholar] [CrossRef]
- Raney, A.A.; Bryant, J. Entertainment and Enjoyment as Media Effect. In Media Effects; Routledge: Oxfordshire, UK, 2019; pp. 324–341. ISBN 0-429-49114-X. [Google Scholar]
- Louviere, J.J.; Flynn, T.N.; Marley, A.A.J. Best-Worst Scaling: Theory, Methods and Applications; Cambridge University Press: Cambridge, UK, 2015; ISBN 1-107-04315-8. [Google Scholar]
- Donohew, L.; Palmgreen, P.; Rayburn, J.D. Social and Psychological Origins of Media Use: A Lifestyle Analysis. J. Broadcast. Electron. Media 1987, 31, 255–278. [Google Scholar] [CrossRef]
- Hall, A.E. Big Five Personality Traits and Media Use. In The International Encyclopedia of Media Psychology; John Wiley: Hoboken, NJ, USA, 2020; pp. 1–9. ISBN 978-1-119-01107-1. [Google Scholar]
- Leung, L.; Chen, C. Extending the Theory of Planned Behavior: A Study of Lifestyles, Contextual Factors, Mobile Viewing Habits, TV Content Interest, and Intention to Adopt Mobile TV. Telemat. Inform. 2017, 34, 1638–1649. [Google Scholar] [CrossRef]
- Li, S.-C.S. Lifestyles and Gratifications Obtained from News: Comparing Science News with Health News and Political News. Public Underst. Sci. 2019, 28, 572–589. [Google Scholar] [CrossRef]
- Lehdonvirta, V.; Oksanen, A.; Räsänen, P.; Blank, G. Social Media, Web, and Panel Surveys: Using Non-Probability Samples in Social and Policy Research. Policy Internet 2021, 13, 134–155. [Google Scholar] [CrossRef]
- Porter, C.O.L.H.; Outlaw, R.; Gale, J.P.; Cho, T.S. The Use of Online Panel Data in Management Research: A Review and Recommendations. J. Manag. 2019, 45, 319–344. [Google Scholar] [CrossRef] [Green Version]
- Albaum, G.; Roster, C.A.; Wiley, J.; Rossiter, J.; Smith, S.M. Designing Web Surveys in Marketing Research: Does Use of Forced Answering Affect Completion Rates? J. Mark. Theory Pract. 2010, 18, 285–294. [Google Scholar] [CrossRef]
- Hollin, I.L.; Paskett, J.; Schuster, A.L.R.; Crossnohere, N.L.; Bridges, J.F.P. Best–Worst Scaling and the Prioritization of Objects in Health: A Systematic Review. PharmacoEconomics 2022, 40, 883–899. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.K. Sample Size for Estimating Multinomial Proportions. Am. Stat. 1987, 41, 42–46. [Google Scholar] [CrossRef]
- Aizaki, H.; Fogarty, J. R Packages and Tutorial for Case 1 Best–Worst Scaling. J. Choice Model. 2023, 46, 100394. [Google Scholar] [CrossRef]
- Cheung, K.L.; Mayer, S.; Simon, J.; de Vries, H.; Evers, S.M.A.A.; Kremer, I.E.H.; Hiligsmann, M. Comparison of Statistical Analysis Methods for Object Case Best–Worst Scaling. J. Med. Econ. 2019, 22, 509–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aizaki, H.; Fogarty, J. An Illustrative Example of Case 1 Best–Worst Scaling. Non-Market Valuation with R. Available online: http://lab.agr.hokudai.ac.jp/nmvr/ (accessed on 16 February 2023).
- Wittenberg, E.; Bharel, M.; Bridges, J.F.P.; Ward, Z.; Weinreb, L. Using Best-Worst Scaling to Understand Patient Priorities: A Case Example of Papanicolaou Tests for Homeless Women. Ann. Fam. Med. 2016, 14, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aizaki, H.; Onimaru, T.; Katayama, C.; Ishida, K. Non-Farmers’ Preference for Assisting with Farm Tasks as a Method of Health Promotion. Jpn. Agric. Res. Q. 2016, 50, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Lusk, J.L.; Briggeman, B.C. Food Values. Am. J. Agric. Econ. 2009, 91, 184–196. [Google Scholar] [CrossRef]
- Louviere, J.J.; Hensher, D.A.; Swait, J.D. Stated Choice Methods: Analysis and Applications; Cambridge University Press: Cambridge, UK, 2000; ISBN 0-521-78830-7. [Google Scholar]
- Uy, E.J.B.; Bautista, D.C.; Xin, X.; Cheung, Y.B.; Thio, S.-T.; Thumboo, J. Using Best-Worst Scaling Choice Experiments to Elicit the Most Important Domains of Health for Health-Related Quality of Life in Singapore. PLoS ONE 2018, 13, e0189687. [Google Scholar] [CrossRef] [Green Version]
- Rammstedt, B.; Kemper, C.J.; Klein, M.C.; Beierlein, C.; Kovaleva, A. Big Five Inventory (BFI-10). Zs. Soz. Items und Skalen (ZIS) 2014, 10. [Google Scholar] [CrossRef]
- Asendorpf, J.B.; Borkenau, P.; Ostendorf, F.; Van Aken, M.A.G. Carving Personality Description at Its Joints: Confirmation of Three Replicable Personality Prototypes for Both Children and Adults. Eur. J. Pers. 2001, 15, 169–198. [Google Scholar] [CrossRef]
- Kerber, A.; Roth, M.; Herzberg, P.Y. Personality Types Revisited–a Literature-Informed and Data-Driven Approach to an Integration of Prototypical and Dimensional Constructs of Personality Description. PLoS ONE 2021, 16, e0244849. [Google Scholar] [CrossRef] [PubMed]
- Haindorfer, R.; Dorner, J.; Liedl, B. Lebensqualität in einer wachsenden Stadt: Bildung, Diversität und Integration: Teilbericht an die Stadt Wien; Stadt Wien: Wien, Austria, 2020. [Google Scholar]
- Otte, G. Entwicklung und Test einer integrativen Typologie der Lebensführung für die Bundesrepublik Deutschland/Construction and Test of an Integrative Lifestyle-Typology for Germany. Z. Für Soziologie 2005, 34, 442–467. [Google Scholar] [CrossRef]
- Stelzer, M.; Heyse, M. Die Lebensführungstypologie: Milieudiagnose (V2) 2016. Available online: https://www.researchgate.net/publication/304023362_Die_Lebensfuhrungstypologie_Milieudiagnose_v2 (accessed on 16 February 2023).
- Otte, G. Sozialstrukturanalysen mit Lebensstilen. Eine Studie zur theoretischen und methodischen Neuorientierung der Lebensstilforschung; Springer: Wiesbaden, Germany, 2008; ISBN 978-3-531-16256-0. [Google Scholar]
- Eurostat. Employment and Activity by Sex and Age—Annual Data. Available online: https://ec.europa.eu/eurostat/databrowser/view/lfsi_emp_a/default/table?lang=en (accessed on 18 February 2022).
- Eurostat. Population by Educational Attainment Level, Sex and Age (%). Available online: https://ec.europa.eu/eurostat/databrowser/view/EDAT_LFS_9903__custom_2120662/default/table?lang=en (accessed on 18 February 2022).
- Eurostat. Population on 1st January by Age, Sex and Type of Projection. Available online: https://ec.europa.eu/eurostat/databrowser/view/PROJ_19NP/default/table?lang=en&category=proj.proj_19n (accessed on 18 February 2022).
- Pollach, I. The Readership of Corporate Websites: A Cross-Cultural Study. J. Bus. Commun. 2011, 48, 27–53. [Google Scholar] [CrossRef] [Green Version]
- Ageeva, E.; Melewar, T.C.; Foroudi, P.; Dennis, C. Cues Adopted by Consumers in Examining Corporate Website Favorability: An Empirical Study of Financial Institutions in the UK and Russia. J. Bus. Res. 2019, 98, 15–32. [Google Scholar] [CrossRef]
- Litman, J.A. Interest and Deprivation Factors of Epistemic Curiosity. Personal. Individ. Differ. 2008, 44, 1585–1595. [Google Scholar] [CrossRef]
- Daume, J.; Hüttl-Maack, V. Consumers’ Situational Curiosity: A Review of Research on Antecedents and Consequences of Curiosity in Marketing-Relevant Situations. Mark. Z. Forsch. Prax. 2022, 44, 37–55. [Google Scholar] [CrossRef]
- Taiminen, K.; Ranaweera, C. Fostering Brand Engagement and Value-Laden Trusted B2B Relationships through Digital Content Marketing. Eur. J. Mark. 2019, 53, 1759–1781. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior: Frequently Asked Questions. Hum. Behav. Emerg. Technol. 2020, 2, 314–324. [Google Scholar] [CrossRef]
- Luo, M.; Hancock, J.T. Self-Disclosure and Social Media: Motivations, Mechanisms and Psychological Well-Being. Curr. Opin. Psychol. 2020, 31, 110–115. [Google Scholar] [CrossRef]
- Vladimirou, D.; House, J.; Kádár, D.Z. Aggressive Complaining on Social Media: The Case of #MuckyMerton. J. Pragmat. 2021, 177, 51–64. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Ismagilova, E.; Hughes, D.L.; Carlson, J.; Filieri, R.; Jacobson, J.; Jain, V.; Karjaluoto, H.; Kefi, H.; Krishen, A.S.; et al. Setting the Future of Digital and Social Media Marketing Research: Perspectives and Research Propositions. Int. J. Inf. Manag. 2021, 59, 102168. [Google Scholar] [CrossRef]
- Meese, J.; Hurcombe, E. Facebook, News Media and Platform Dependency: The Institutional Impacts of News Distribution on Social Platforms. New Media Soc. 2021, 23, 2367–2384. [Google Scholar] [CrossRef]
- Optimizely. Available online: https://www.optimizely.com (accessed on 8 May 2023).
- Scompler. Available online: https://scompler.com (accessed on 8 May 2023).
- Greene, N.; Cohen, J.L.; Boyes, A.; Mitchell, I. Magic Quadrant for Content Marketing Platforms; Gartner Report; Gartner, Inc.: Stamford, CT, USA, 2023; ID G00768406. [Google Scholar]
- Paul, J.; Ueno, A.; Dennis, C. ChatGPT and Consumers: Benefits, Pitfalls and Future Research Agenda. Int. J. Consum. Stud. 2023, 47, 1213–1225. [Google Scholar] [CrossRef]
- Pavlik, J.V. Collaborating With ChatGPT: Considering the Implications of Generative Artificial Intelligence for Journalism and Media Education. J. Mass Commun. Educ. 2023, 78, 84–93. [Google Scholar] [CrossRef]
- Rivas, P.; Zhao, L. Marketing with ChatGPT: Navigating the Ethical Terrain of GPT-Based Chatbot Technology. AI 2023, 4, 375–384. [Google Scholar] [CrossRef]
- Wolff, O. Die Nächste Revolution: AI und Content Marketing 2023. Available online: https://content-marketing-forum.com/die-naechste-revolution-ai-und-content-marketing/ (accessed on 10 May 2023).
- Rose, R.; Content Marketing Institute. AI Can’t Imagine Distinctive Content (But It Can Help You Create It). 2023. Available online: https://contentmarketinginstitute.com/articles/create-distinctive-content-ai (accessed on 26 May 2023).
- Zimmerman, A. A Ghostwriter for the Masses: ChatGPT and the Future of Writing. Ann. Surg. Oncol. 2023, 30, 3170–3173. [Google Scholar] [CrossRef] [PubMed]
- From, U.; Nørgaard Kristensen, N. Rethinking Constructive Journalism by Means of Service Journalism. J. Pract. 2018, 12, 714–729. [Google Scholar] [CrossRef] [Green Version]
- Hanusch, F. Journalistic Roles and Everyday Life. J. Stud. 2019, 20, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Hömberg, W. Ratlose Ratgeber? Prämissen, Probleme und Perspektiven journalistischer Lebenshilfe. Commun. Soc. 2009, 42, 3–20. [Google Scholar] [CrossRef]
- McIntyre, K.; Gyldensted, C. Constructive Journalism: An Introduction and Practical Guide for Applying Positive Psychology Techniques to News Production. J. Media Innov. 2018, 4, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrebi, M. The Internet User Relational Orientation: Towards a Better Understanding of Online Browsing Behaviour. J. Mark. Manag. 2021, 37, 1374–1408. [Google Scholar] [CrossRef]
- Gong, W.; Stump, R.; Li, Z. Global Use and Access of Social Networking Web Sites: A National Culture Perspective. J. Res. Interact. Mark. 2014, 8, 37–55. [Google Scholar] [CrossRef]
- Goodrich, K.; de Mooij, M. How ‘Social’ Are Social Media? A Cross-Cultural Comparison of Online and Offline Purchase Decision Influences. J. Mark. Commun. 2014, 20, 103–116. [Google Scholar] [CrossRef]
- Kitirattarkarn, G.P.; Araujo, T.; Neijens, P. Challenging Traditional Culture? How Personal and National Collectivism-Individualism Moderates the Effects of Content Characteristics and Social Relationships on Consumer Engagement with Brand-Related User-Generated Content. J. Advert. 2019, 48, 197–214. [Google Scholar] [CrossRef] [Green Version]
Sample | Target Population | ||
---|---|---|---|
n | % | % | |
Gender | |||
Female | 736 | 48.2 | 49.4 |
Male | 791 | 51.8 | 50.6 |
Age (years) | |||
16–29 | 369 | 24.2 | 23.7 |
30–39 | 338 | 22.1 | 20.1 |
40–49 | 324 | 21.2 | 19.0 |
50–65 | 496 | 32.5 | 37.2 |
Level of education | |||
Low | 334 | 21.9 | 25.7 |
Medium | 572 | 37.5 | 35.3 |
High | 621 | 40.7 | 39.0 |
Employment status | |||
Employed (incl. actively seeking work) | 1189 | 77.9 | 76.9 |
Education/training | 127 | 8.3 | 10.3 |
Pension | 104 | 6.8 | 5.5 |
Housemen/-wives | 107 | 7.0 | 7.3 |
Content Characteristics | B | W | BW | Mean Standardized BW | SD | BCa 95% CI | Sqrt BW | Standardized Sqrt BW | Rank | |
---|---|---|---|---|---|---|---|---|---|---|
LL | UL | |||||||||
Information value | 2972 | 484 | 2488 | 0.407 | 0.438 | 0.386 | 0.430 | 2.478 | 100.0 | 1 |
Value in use | 1920 | 791 | 1129 | 0.185 | 0.409 | 0.165 | 0.205 | 1.558 | 62.9 | 2 |
Entertainment value | 1217 | 1433 | −216 | −0.035 | 0.449 | −0.058 | −0.012 | 0.922 | 37.2 | 3 |
Process value | 797 | 1691 | −894 | −0.146 | 0.420 | −0.168 | −0.124 | 0.687 | 27.7 | 4 |
Social value | 729 | 3236 | −2507 | −0.410 | 0.540 | −0.438 | −0.383 | 0.475 | 19.2 | 5 |
Content Characteristics | β | SE | p | SP | Rank |
---|---|---|---|---|---|
Information value | 1.480 | 0.027 | <0.001 | 36.9 | 1 |
Value in use | 1.082 | 0.026 | <0.001 | 24.8 | 2 |
Entertainment value | 0.677 | 0.025 | <0.001 | 16.5 | 3 |
Process value | 0.473 | 0.025 | <0.001 | 13.5 | 4 |
Social value | reference | 8.4 | 5 |
Information Value | Value in Use | Entertainment Value | Process Value | Social Value | N | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | M | SD | |||
Gender | female | 0.373 | 0.413 | 0.233 | 0.427 | −0.010 | 0.458 | −0.191 | 0.442 | −0.405 | 0.538 | 736 |
male | 0.440 | 0.458 | 0.140 | 0.386 | −0.059 | 0.439 | −0.105 | 0.393 | −0.416 | 0.543 | 791 | |
t-value, p, d | −3.00, <0.01, −0.153 | 4.42, <0.001, 0.227 | 2.15, <0.05, 0.110 | −3.97, <0.001, −0.204 | 0.39, 0.699 | |||||||
Age (years) | 16–29 | 0.341 a | 0.445 | 0.124 1 | 0.406 | −0.018 1 | 0.442 | −0.152 | 0.450 | −0.295 a | 0.552 | 369 |
30–39 | 0.345 a | 0.467 | 0.106 1 | 0.395 | 0.008 1 | 0.461 | −0.150 | 0.416 | −0.309 a | 0.552 | 338 | |
40–49 | 0.418 a,b | 0.429 | 0.184 1 | 0.411 | 0.009 1 | 0.438 | −0.172 | 0.421 | −0.440 b | 0.528 | 324 | |
50–65 | 0.491 b | 0.405 | 0.284 2 | 0.400 | −0.107 2 | 0.445 | −0.122 | 0.398 | −0.546 c | 0.498 | 496 | |
F-value, p, | 11.74, <0.001, 0.022 | 17.25, <0.001, 0.033 | 6.64, <0.001, 0.013 | 1.02, 0.381 | 21.47, <0.001, 0.040 | |||||||
Personality type | Resilient | 0.449 1 | 0.437 | 0.248 a | 0.391 | −0.041 1,2 | 0.481 | −0.202 1 | 0.424 | −0.453 1 | 0.537 | 308 |
Overcontroller | 0.427 1 | 0.449 | 0.211 a | 0.415 | −0.004 1,2 | 0.440 | −0.106 1,2 | 0.402 | −0.528 1 | 0.524 | 186 | |
Undercontroller | 0.304 2 | 0.435 | 0.088 b | 0.388 | 0.004 1 | 0.433 | −0.132 1,2 | 0.423 | −0.263 2 | 0.536 | 489 | |
Reserved | 0.498 1 | 0.426 | 0.250 a | 0.383 | −0.105 2 | 0.424 | −0.107 2 | 0.423 | −0.537 1 | 0.523 | 287 | |
Vul.-resilient | 0.439 1 | 0.417 | 0.202 a | 0.458 | −0.048 1,2 | 0.464 | −0.180 1,2 | 0.410 | −0.413 1 | 0.522 | 257 | |
F-value, p, | 11.33, <0.001, 0.029 | 11.93, <0.001, 0.028 | 2.93, <0.05, 0.008 | 2.98, <0.05, 0.008 | 16.29, <0.001, 0.041 | |||||||
Lifestyle | Social Elite | 0.388 1 | 0.447 | 0.138 1 | 0.402 | −0.047 1,2 | 0.429 | −0.135 | 0.408 | −0.344 a | 0.536 | 529 |
Traditionalists | 0.498 2 | 0.412 | 0.336 2 | 0.390 | −0.097 1 | 0.458 | −0.094 | 0.364 | −0.643 b | 0.451 | 152 | |
Middle Class | 0.431 1,2 | 0.430 | 0.202 1 | 0.418 | −0.048 1,2 | 0.472 | −0.155 | 0.442 | −0.429 a | 0.537 | 475 | |
Avantgarde | 0.377 1,2 | 0.426 | 0.167 1 | 0.412 | −0.002 1,2 | 0.438 | −0.168 | 0.425 | −0.373 a | 0.554 | 241 | |
Und.-Modernized | 0.350 1 | 0.468 | 0.173 1 | 0.378 | 0.069 2 | 0.436 | −0.181 | 0.435 | −0.412 a | 0.570 | 130 | |
F-value, p, | 3.11, <0.05, 0.008 | 7.39, <0.001, 0.019 | 3.02, <0.05, 0.008 | 1.12, 0.343 | 12.41, <0.001, 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koob, C. Consumers’ Preferences for Digital Corporate Content on Company Websites: A Best–Worst Scaling Analysis. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 1301-1319. https://doi.org/10.3390/jtaer18030066
Koob C. Consumers’ Preferences for Digital Corporate Content on Company Websites: A Best–Worst Scaling Analysis. Journal of Theoretical and Applied Electronic Commerce Research. 2023; 18(3):1301-1319. https://doi.org/10.3390/jtaer18030066
Chicago/Turabian StyleKoob, Clemens. 2023. "Consumers’ Preferences for Digital Corporate Content on Company Websites: A Best–Worst Scaling Analysis" Journal of Theoretical and Applied Electronic Commerce Research 18, no. 3: 1301-1319. https://doi.org/10.3390/jtaer18030066
APA StyleKoob, C. (2023). Consumers’ Preferences for Digital Corporate Content on Company Websites: A Best–Worst Scaling Analysis. Journal of Theoretical and Applied Electronic Commerce Research, 18(3), 1301-1319. https://doi.org/10.3390/jtaer18030066