Modeling Dynamics of Diffusion Across Heterogeneous Social Networks: News Diffusion in Social Media
Abstract
:1. Introduction
2. Related Work
3. Conceptual Design for Diffusion across Heterogeneous Social Networks
4. Proposed Model
4.1. Fundamental Framework: Bass Model
4.2. Dynamic Influence Model
4.2.1. Problem Statement
4.2.2. Model Formulation
4.2.3. Comparison of Influence Assumptions
5. Preparation and Analysis of the Spinn3r Data Set
5.1. Target Data Selection
Field | Description | Main Usage |
---|---|---|
Time | Publication time | To validate the direction of links from source to destination documents |
Link | Document URL | To obtain document identity and extract domain name and/or user identity from regular patterns |
Desc | Full HTML | To extract hyperlinks and written URLs in main text |
Lang | Written language | To target English documents only |
Type | Publisher type | To target documents of three media types (News, SNS, Blog) |
Media Type | Domain | User Count |
---|---|---|
News | Second level domains (largest strongly connected network) | 9,225 |
SNS | facebook.com | 4,560,800 |
myspace.com | 822,998 | |
flickr.com | 25,613 | |
twitter.com | 6,169 | |
posterous.com | 1,876 | |
Blog | blogspot.com | 691,175 |
livejournal.com | 158,361 | |
wordpress.com | 90,803 | |
tumblr.com | 23,967 | |
typepad.com | 7,603 | |
Total | 6,398,590 |
5.2. Document Labeling with Real-world News
Category | Real-world News Stories (January, 2011) |
---|---|
Politics (15) | Protests in Tunisia, Egypt, Sudan and Yemen; Internet shutdown in Egypt; Hosni Mubarak resignation; Tucson shooting; Julian Assange; US Healthcare law, etc. |
Business and Economy (8) | US bank crisis; Apple profit record; Borders bankruptcy; New Google CEO; Swiss bank account revealed by Wikileaks; Food crisis, etc. |
Technology and Science (13) | Apple iPad2 release; iPads for education; 10 billion downloads on the App Store; Wikipedia 10th Anniversary; Google technology news; Mammoth revive; Zodiac sign change; Betelgeuse, etc. |
Disasters (4) | Floods in Australia, Sri Lanka and Brazil; Massive winter storm in US |
Arts and Culture (17) | Academy Movie Awards; Golden Globe Awards; Screen Actors Guild Awards; Film release; Celebrities; Multiculturalism failure; Conflicts between Muslims and Christian; Cultural change of female education by Taliban; Chinese education, etc. |
Sports (6) | NFL (National Football League) playoffs; BCS (Bowl Championship Series) Championship; AFC (Asian Football Confederation) Asian Cup; Australian Open; Ashes series winner; Sky Sport sexism scandal |
5.3. Global Spread of News in Social Media
6. Experiments
6.1. Experiments on Synthetic Data
BM | DM | |
---|---|---|
Mean | 2.19e-3 | 3.74e-4 |
STD | 8.77e-4 | 1.29e-4 |
Train:Test = 60:40 | Train:Test = 80:20 | |||
---|---|---|---|---|
BM | DM | BM | DM | |
Mean | 2.41e-3 | 1.83e-4 | 5.99e-4 | 4.2e-5 |
STD | 2.16e-3 | 1.72e-4 | 6.06e-4 | 4.2e-5 |
Meta-population 1 | Meta-population 2 | Meta-population 3 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Par. | |||||||||||||||
Avg. | 3.1e-4 | 1.6e-2 | 2.8e-2 | 1.4e-2 | 2.0e-1 | 2.7e-4 | 2.0e-2 | 3.6e-2 | 1.6e-2 | 2.2e-1 | 3.6e-4 | 1.3e-2 | 2.4e-2 | 1.4e-2 | 4.1e-1 |
Std. | 2.8e-4 | 1.9e-2 | 3.0e-2 | 1.4e-2 | 1.9e-1 | 2.6e-4 | 1.9e-2 | 3.4e-2 | 1.6e-2 | 2.3e-1 | 2.7e-4 | 1.2e-2 | 2.1e-2 | 1.4e-2 | 3.3e-1 |
6.2. Experiments on Real Data
Model Fitting Error | Prediction Error | |||
---|---|---|---|---|
BM | DM | BM | DM | |
Mean | 2.866e-2 | 2.259e-2 | 3.207e-2 | 2.481e-2 |
STD | 1.902e-2 | 1.027e-2 | 3.698e-2 | 1.018e-2 |
7. Discussions
8. Conclusions
Conflicts of Interest
References
- Cha, M.; Pérez, J.; Haddadi, H. Flash Floods and Ripples: The Spread of Media Content through the Blogosphere. In Proceedings of the International AAAI Conference on Weblogs and Social Media, San Jose, CA, USA, 17–20 May 2009.
- Gomez-Rodriguez, M.; Leskovec, J.; Krause, A. Inferring networks of diffusion and influence. ACM Trans. Knowl. Discov. Data (TKDD) 2012, 5, 21. [Google Scholar] [CrossRef]
- Kim, M.; Xie, L.; Christen, P. Event Diffusion Patterns in Social Media. In Proceedings of the International AAAI Conference on Weblogs and Social Media, Trinity College, Dublin, Ireland, 4–7 June 2012.
- Leskovec, J.; McGlohon, M.; Faloutsos, C.; Glance, N.; Hurst, M. Cascading Behavior in Large Blog Graphs. In Proceedings of the Seventh SIAM International Conference on Data Mining, Minneapolis, MN, USA, 26–28 April 2007.
- Leskovec, J.; Backstrom, L.; Kleinberg, J. Meme-Tracking and the Dynamics of the News Cycle. In Proceeding of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; ACM: New York, NY, USA, 2009; pp. 497–506. [Google Scholar]
- Adar, E.; Adamic, L. Tracking Information Epidemics in Blogspace. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, Compiegne, France, 19–22 September 2005; pp. 207–214.
- Gruhl, D.; Guha, R.; Liben-Nowell, D.; Tomkins, A. Information Diffusion through Blogspace. In Proceedings of the International Conference on World Wide Web, New York, NY, USA, 17–22 May 2004; ACM: New York, NY, USA, 2004; pp. 491–501. [Google Scholar]
- Kamath, K.Y.; Caverlee, J.; Cheng, Z.; Sui, D.Z. Spatial Influence vs. Community Influence: Modeling the Global Spread of Social Media. In Proceedings of the International Conference on Information and Knowledge Management, Kuala Lumpur, Malaysia, 24–26 July 2012; ACM: New York, NY, USA, 2012; pp. 962–971. [Google Scholar]
- Kwak, H.; Lee, C.; Park, H.; Moon, S. What is Twitter, a social network or a news media? In Proceedings of the International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; ACM: New York, NY, USA, 2010; pp. 591–600. [Google Scholar]
- Myers, S.; Zhu, C.; Leskovec, J. Information Diffusion and External Influence in Networks. In Proceeding of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; ACM: New York, NY, USA, 2012; pp. 33–41. [Google Scholar]
- Romero, D.; Meeder, B.; Kleinberg, J. Differences in the Mechanics of Information Diffusion Across Topics: Idioms, Political Hashtags, and Complex Contagion on Twitter. In Proceedings of the International Conference on World Wide Web, Hyderabad, India, 28 March–1 April 2011; ACM: New York, NY, USA, 2011; pp. 695–704. [Google Scholar]
- Bass, F. Comments on “A New Product Growth for Model Consumer Durables”: The Bass model. Manag. Sci. 2004, 50, 1833–1840. [Google Scholar] [CrossRef]
- Guimera, R.; Uzzi, B.; Spiro, J.; Amaral, L. Team assembly mechanisms determine collaboration network structure and team performance. Science 2005, 308, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Krishnan, T. Multinational diffusion models: An alternative framework. Market. Sci. 2002, 21, 318–330. [Google Scholar]
- Luu, M.; Lim, E.; Hoang, T.; Chua, F. Modeling Diffusion in Social Networks Using Network Properties. In Proceedings of the International AAAI Conferenceon Weblogs and Social Media, Dublin, Ireland, 4–7 June 2012.
- Barrat, A.; Barthlemy, M.; Vespignani, A. Dynamical Processes on Complex Networks; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Anagnostopoulos, A.; Kumar, R.; Mahdian, M. Influence and Correlation in Social Networks. In Proceeding of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008; ACM: New York, NY, USA, 2008; pp. 7–15. [Google Scholar]
- Bass, F. A new product growth for model consumer durables. Manag. Sci. 1969, 15, 215–227. [Google Scholar] [CrossRef]
- Wikipedia Current Events Portal from January, 2011. Available online: http://en.wikipedia.org/wiki/January_2011 (accessed on 29 August 2011).
- Spinn3r Dataset. In Proceedings of International AAAI Conference on Weblogs and Social Media (ICWSM’11), Barcelona, Spain, 17–21 July 2011; Available online: http://www.icwsm.org/data/ (accessed on 29 August 2011).
- Katz, E. The two-step flow of communication: An up-to-date report on an hypothesis. Public Opin. Q. 1957, 21, 61–78. [Google Scholar] [CrossRef]
- Rogers, E. Diffusion of Innovations; The Free Press of Glencoe: New York, 1962. [Google Scholar]
- Mahajan, V.; Muller, E.; Bass, F. Diffusion of new products: Empirical generalizations and managerial uses. Market. Sci. 1995, 14, G79–G88. [Google Scholar] [CrossRef]
- Niu, S.C. A stochastic formulation of the Bass Model of new-product diffusion. Math. Probl. Eng. 2002, 8, 249–263. [Google Scholar] [CrossRef]
- Young, H.P. Innovation diffusion in heterogeneous populations: Contagion, social influence, and social learning. Am. Econ. Rev. 2009, 99, 1899–1924. [Google Scholar] [CrossRef]
- Bailey, N. The Mathematical Theory of Infectious Diseases and Its Applications, 2nd ed.; Hafner Press/MacMillian Pub. Co.: New York, USA, 1975; Volume 413. [Google Scholar]
- Newman, M. Networks: An Introduction; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Putsis, W., Jr.; Balasubramanian, S.; Kaplan, E.; Sen, S. Mixing behavior in cross-country diffusion. Market. Sci. 1997, 16, 354–369. [Google Scholar] [CrossRef]
- Pan, W.; Aharony, N.; Pentland, A. Composite Social Network for Predicting Mobile Apps Installation. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011.
- Kuperman, M.; Abramson, G. Small world effect in an epidemiological model. Phys. Rev. Lett. 2001, 86, 2909–2912. [Google Scholar] [CrossRef] [PubMed]
- Schilling, M.; Phelps, C. Interfirm collaboration networks: The impact of large-scale network structure on firm innovation. Manag. Sci. 2007, 53, 1113–1126. [Google Scholar] [CrossRef]
- Sobkowicz, P.; Kaschesky, M.; Bouchard, G. Opinion Formation in the Social Web: Agent-Based Simulations of Opinion Convergence and Divergence. In Agents and Data Mining Interaction; Springer: Berlin, Heidelberg, Germany, 2012; pp. 288–303. [Google Scholar]
- Clauset, A.; Shalizi, C.R.; Newman, M.E. Power-law distributions in empirical data. SIAM Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef]
- Christen, P. Data Matching. In Data-Centric Systems and Applications; Springer: Berlin, Germany, 2012. [Google Scholar]
- Manning, C.; Raghavan, P.; Schutze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008; Volume 1. [Google Scholar]
- OpenCalais API. Available online: http://www.opencalais.com/calaisAPI (accessed on 29 August 2011).
- Salton, G.; Wong, A.; Yang, C.S. A vector space model for automatic indexing. Commun. ACM 1975, 18, 613–620. [Google Scholar] [CrossRef]
- Kelley, C.T. Iterative Methods for Optimization; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1999. [Google Scholar]
- Multiculturalism Has Failed in Britain. Available online: http://uk.reuters.com/article/2011/02/05/uk-britain-radicalisation-idUKTRE71401G20110205 (accessed on 29 August 2011).
Appendices
A. Proof of Equation (13)
B. Proof of Equation (15)
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kim, M.; Newth, D.; Christen, P. Modeling Dynamics of Diffusion Across Heterogeneous Social Networks: News Diffusion in Social Media. Entropy 2013, 15, 4215-4242. https://doi.org/10.3390/e15104215
Kim M, Newth D, Christen P. Modeling Dynamics of Diffusion Across Heterogeneous Social Networks: News Diffusion in Social Media. Entropy. 2013; 15(10):4215-4242. https://doi.org/10.3390/e15104215
Chicago/Turabian StyleKim, Minkyoung, David Newth, and Peter Christen. 2013. "Modeling Dynamics of Diffusion Across Heterogeneous Social Networks: News Diffusion in Social Media" Entropy 15, no. 10: 4215-4242. https://doi.org/10.3390/e15104215
APA StyleKim, M., Newth, D., & Christen, P. (2013). Modeling Dynamics of Diffusion Across Heterogeneous Social Networks: News Diffusion in Social Media. Entropy, 15(10), 4215-4242. https://doi.org/10.3390/e15104215