A Maximum Entropy Approach to the Realizability of Spin Correlation Matrices
Abstract
:1. Introduction
- We derive an infinite family of linear inequalities characterizing covariances of spin systems, via the solution of a maximum entropy problem. Besides its intrinsic interest, this method has the advantage of describing, in terms of certain Lagrangian multipliers, an explicit probability realizing the covariances, whenever they are realizable. The search for the Lagrange multipliers is an interesting computational problem, which will be addressed in a forthcoming paper.
- Via a computer-aided proof, we determine the facets of the polytope of covariance matrices of spin systems for . In particular, we show that for these values of n, Bell’s inequalities are actually facets of the polytope, but generate the whole polytope only for . For and 6, the remaining facets are given by suitable generalizations of Bell’s inequalities. Although the problem is computationally feasible also for some larger values of n, the number of extremal inequalities increases dramatically, and we have not been able to describe them synthetically. We mention the fact that the case is peculiar, since it is the only case in which the polytope is a simplex. A more detailed description of this case is contained in the note [45]. Our work here inevitably overlaps with some previous research on linear descriptions of polytopes in combinatorial geometry, such as [46]; see also (Section 30.6 in [41]) and, in particular, the footnote on p. 503 of the latter reference (the book [41] by M. Deza and M. Laurent is a general, comprehensive reference on discrete geometry). We remark that our arguments go through even when the covariance matrix is only partially given, a case important for applications, but typically not considered in the discrete geometry literature.
2. Spin Systems and Spin Correlation Matrices
- Under what conditions does a distribution with those correlations exist?
- If one such distribution exists, that is, if the given correlations are realizable, then how does one characterize the maximum entropy probability measure?
3. The Dual Representation for
3.1. Cases
- Bell’s inequalities imply positivity of the matrix;
- Bell’s inequalities correspond to the facets of the polytope of spin correlation matrices in dimension three and four; in particular, they provide the “minimal” description in terms of linear inequalities.
3.2. Case
3.3. Case
- We have the Bell’s inequalities.
- For with and , we consider the inequality analogous to Equation (2):
- For with and , letting be the only element of , consider the inequalities:
4. Maximum Entropy Measure for Spin Systems
4.1. Maximum Entropy Method
- Λ is a critical point for , i.e., ;
- realizes the assigned correlations, i.e.,:
- Positivity: let and set . Then, for every :
- Bell’s inequalities: let with and . We set:
- Generalizations of Bell’s inequalities: Let us consider , such that is odd. Then, let . We set:Many other variants of the Bell’s inequalities could be obtained with other choices of the . For instance, we can generalize to all even dimensions the inequalities of type (three) for the case . Let be even, and consider , such that . Then, choose:
4.2. Finding the Minimum of the Dual Functional
Acknowledgments
Conflict of Interest
References
- Stieltjes, T.J. Recherches sur les fractions continues. (in French). Annales de la Facult des Sciences de Toulouse 1894, 8, J1–J122. [Google Scholar] [CrossRef]
- Akhiezer, N.I. The Classical Moment Problem and Some Related Questions in Analysis; (Translated from Russian by N. Kemmer); Hafner Publishing Co.: New York, NY, USA, 1965. [Google Scholar]
- Krein, M.G.; Nudelman, A.A. The Markov Moment Problem and Extremal Problems; American Mathematical Society: Providence, RI, USA, 1977. [Google Scholar]
- Grenander, U.; Szegö, G. Toeplitz Forms and Their Applications; University of California Press: Berkeley, CA, USA, 1958. [Google Scholar]
- Sarason, D. Generalized interpolation in H∞. Trans. Am. Math. Soc. 1967, 127, 179–203. [Google Scholar]
- Arov, D.Z.; Dym, H. On three Krein extension problems and some generalizations. Int. Equat. Oper. Theory 1998, 31, 1–91. [Google Scholar] [CrossRef]
- Blomqvist, A.; Lindquist, A.; Nagamune, R. Matrix-valued Nevanlinna-Pick interpolation with complexity constraint: An optimization approach. IEEE Trans. Autom. Control 2003, 48, 2172–2190. [Google Scholar] [CrossRef]
- Georgiou, T. The interpolation problem with a degree constraint. IEEE Trans. Autom. Control 1999, 44, 631–635. [Google Scholar] [CrossRef]
- Georgiou, T. Realization of power spectra from partial covariance sequences. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 438–449. [Google Scholar] [CrossRef]
- Byrnes, C.; Lindquist, A.; Gusev, S.; Matveev, A.S. A complete parameterization of all positive rational extensions of a covariance sequence. IEEE Trans. Autom. Control 1995, 40, 1841–1857. [Google Scholar] [CrossRef]
- Byrnes, C.; Lindquist, A. On the partial stochastic realization problem. IEEE Trans. Autom Control 1997, 42, 1049–1070. [Google Scholar] [CrossRef]
- Byrnes, C.I.; Gusev, S.; Lindquist, A. A convex optimization approach to the rational covariance extension problem. SIAM J. Control Optim. 1999, 37, 211–229. [Google Scholar] [CrossRef]
- Byrnes, C.I.; Georgiou, T.; Lindquist, A. A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint: A convex optimization approach to certain problems in systems and control. IEEE Trans. Autom. Control 2001, 46, 822–839. [Google Scholar] [CrossRef]
- Georgiou, T. Spectral analysis based on the state covariance: The maximum entropy spectrum and linear fractional parameterization. IEEE Trans. Autom. Control 2002, 47, 1811–1823. [Google Scholar] [CrossRef]
- Georgiou, T.; Lindquist, A. Kullback-Leibler approximation of spectral density functions. IEEE Trans. Inf. Theory 2003, 49, 2910–2917. [Google Scholar] [CrossRef]
- Georgiou, T. The structure of state covariances and its relation to the power spectrum of the input. IEEE Trans. Autom. Control 2002, 47, 1056–1066. [Google Scholar] [CrossRef]
- Georgiou, T. Solution of the general moment problem via a one-parameter imbedding. IEEE Trans. Autom. Control 2005, 50, 811–826. [Google Scholar] [CrossRef]
- Byrnes, C.I.; Linquist, A. Important moments in systems and control. SIAM J. Control Opt. 2008, 47, 2458–2469. [Google Scholar] [CrossRef]
- Ferrante, A.; Pavon, M.; Ramponi, F. Hellinger vs. Kullback-Leibler multivariable spectrum approximation. IEEE Trans. Autom. Control 2008, 53, 954–967. [Google Scholar] [CrossRef]
- Ramponi, F.; Ferrante, A.; Pavon, M. A globally convergent matricial algorithm for multivariate spectral estimation. IEEE Trans. Autom. Control 2009, 54, 2376–2388. [Google Scholar] [CrossRef]
- Ferrante, A.; Pavon, M.; Zorzi, M. A maximum entropy enhancement for a family of high-resolution spectral estimators. IEEE Trans. Autom. Control 2012, 57, 318–329. [Google Scholar] [CrossRef]
- Ferrante, A.; Masiero, C.; Pavon, M. Time and spectral domain relative entropy: A new approach to multivariate spectral estimation. IEEE Trans. Autom. Control 2012, 57, 2561–2575. [Google Scholar] [CrossRef]
- Byrnes, C.I.; Enqvist, P.; Linquist, A. Identifiability and well-posedness of shaping-filter parameterizations: A global analysis approach. SIAM J. Control Optim. 2002, 41, 23–59. [Google Scholar] [CrossRef]
- Georgiou, T.; Lindquist, A. A convex optimization approach to ARMA modeling. IEEE Trans. Autom. Control 2008, AC-53, 1108–1119. [Google Scholar] [CrossRef]
- Enqvist, P.; Karlsson, J. Minimal Itakura-Saito Distance and Covariance Interpolation. In Proceedings of the 47th IEEE Conference on Decision and Control (CDC 2008), Cancun, Mexico, 9–11 December 2008; pp. 137–142.
- Byrnes, C.I.; Georgiou, T.; Lindquist, A.; Megretski, A. Generalized interpolation in H-infinity with a complexity constraint. Trans. Am. Math. Soc. 2006, 358, 965–987. [Google Scholar] [CrossRef]
- Georgiou, T.; Lindquist, A. Remarks on control design with degree constraint. IEEE Trans. Autom. Control 2006, AC-51, 1150–1156. [Google Scholar] [CrossRef]
- Nasiri Amini, A.; Ebbini, E.; Georgiou, T. Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques. IEEE Trans. Biomed. Eng. 2005, 52, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Dempster, A.P. Covariance selection. Biometric 1972, 28, 157–175. [Google Scholar] [CrossRef]
- Burg, J.; Luenberger, D.; Wenger, D. Estimation of structured covariance matrices. Proc. IEEE 1982, 70, 963–974. [Google Scholar] [CrossRef]
- Dembo, A.; Mallows, C.; Shepp, L.A. Embedding nonnegative definite Toeplitz matrices in nonnegative definite circulant matrices, with application to covariance estimation. IEEE Trans. Inf. Theory 1989, 35, 1206–1212. [Google Scholar] [CrossRef]
- Barrett, W.; Johnson, C.; Loewy, R. The real positive definite completion problem: Cycle completability. Mem. Am. Math. Soc. 1996, 122, 1–68. [Google Scholar] [CrossRef]
- Laurent, M. The real positive semidefinite completion problem for series-parallel graphs. Linear Algebra Appl. 1997, 252, 347–366. [Google Scholar] [CrossRef]
- Glunt, W.; Hayden, T.; Johnson, C.; Tarazaga, P. Positive definite completions and determinant maximization. Linear Algebra Appl. 1999, 288, 1–10. [Google Scholar] [CrossRef]
- Laurent, M. Polynomial instances of the positive semidefinite and Euclidean distance matrix completion problems. SIAM J. Matrix Anal. Appl. 2001, 22, 874–894. [Google Scholar] [CrossRef]
- Ferrante, A.; Pavon, M. Matrix completion à la Dempster by the principle of parsimony. IEEE Trans. Inf. Theory 2011, 57, 3925–3931. [Google Scholar] [CrossRef]
- Carli, F.; Ferrante, A.; Pavon, M.; Picci, G. A maximum entropy solution of the covariance extension problem for reciprocal processes. IEEE Trans. Autom. Control 2011, 56, 1999–2012. [Google Scholar] [CrossRef]
- Parthasarathy, K.R. On extremal correlations. J. Stat. Plan. Inference 2002, 102, 282–285. [Google Scholar] [CrossRef]
- Gupta, J.C. Characterisation of correlation matrices of spin variables. Sankhya Indian J. Stat. 1999, 61, 282–285. [Google Scholar]
- Pitowsky, I. Correlation polytopes: Their geometry and complexity. Math. Program. 1991, 50, 395–414. [Google Scholar] [CrossRef]
- Deza, M.M.; Laurent, M. Geometry of Cuts and Metrics; Springer: Berlin, Germany, 1997. [Google Scholar]
- Balasubramanian, K.; Gupta, J.C.; Parthasarathy, K.R. Remarks on Bell’s inequalities for spin correlations. Sankhya Indian J. Stat. 1998, 60, 29–35. [Google Scholar]
- Werner, R.F.; Wolf, M.M. Bell inequalities and entanglement. Quant. Inf. Comput. 2001, 1, 1–25. [Google Scholar]
- Kuna, T.; Lebowitz, J.L.; Speer, E.R. Necessary and sufficient conditions for realizability of point processes. Ann. Appl. Probab. 2011, 11, 1253–1281. [Google Scholar] [CrossRef]
- DaiPra, P.; Pavon, M.; Sahasrabudhe, N. A note on the geometric interpretation of Bell’s inequalities. Lett. Math. Phys. 2013. Preprint:arXiv:1301.4823v3. To appear. [Google Scholar] [CrossRef]
- McRae, W.B.; Davidson, E.R. Linear inequalities for density matrices II. J. Math. Physics 1972, 13, 1527–1538. [Google Scholar] [CrossRef]
- Bremner, D.; Fukuda, K.; Marzetta, A. Primal-dual methods for vertex and facet enumeration. Discret. Comput. Geom. 1998, 20, 333–357. [Google Scholar] [CrossRef]
- Fukuda, K.; Prodon, A. Double Description Method Revisited. In Combinatorics and Computer Science (Brest, 1995); Springer: Berlin, Germany, 1996; Volume 1120, Lecture Notes in Computer Science ; pp. 91–111. [Google Scholar]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. Ser. II 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics II. Phys. Rev. Ser. II 1957, 108, 171–190. [Google Scholar] [CrossRef]
- Jaynes, E.T. On the rationale of maximum-entropy methods. Proc. IEEE 1982, 70, 939–952. [Google Scholar] [CrossRef]
- Csiszár, I. Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 1991, 19, 2032–2066. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Dai Pra, P.; Pavon, M.; Sahasrabudhe, N. A Maximum Entropy Approach to the Realizability of Spin Correlation Matrices. Entropy 2013, 15, 2448-2463. https://doi.org/10.3390/e15062448
Dai Pra P, Pavon M, Sahasrabudhe N. A Maximum Entropy Approach to the Realizability of Spin Correlation Matrices. Entropy. 2013; 15(6):2448-2463. https://doi.org/10.3390/e15062448
Chicago/Turabian StyleDai Pra, Paolo, Michele Pavon, and Neeraja Sahasrabudhe. 2013. "A Maximum Entropy Approach to the Realizability of Spin Correlation Matrices" Entropy 15, no. 6: 2448-2463. https://doi.org/10.3390/e15062448
APA StyleDai Pra, P., Pavon, M., & Sahasrabudhe, N. (2013). A Maximum Entropy Approach to the Realizability of Spin Correlation Matrices. Entropy, 15(6), 2448-2463. https://doi.org/10.3390/e15062448