Some Comments on the Entropy-Based Criteria for Piping
Abstract
:1. Introduction
2. Elements of the Analysis
2.1. Review of the Grading Entropy Based Rules
2.1.1. Statistical Cells (Fractions and Elementary Cells)
2.1.2. Space of Possible Grading Curves
2.1.3. Grading Entropy and Entropy Coordinates
2.1.4. The Meaning of the Base Entropy Coordinates
2.1.5. Entropy Diagrams
2.1.6. Particle Migration Criterion
2.2. Sand Boils and Liquefaction Rules
2.3. Soil Liquefaction Resistance
2.4. Piping by Backward Erosion
2.5. Shear Stress and Strain at the Dike Base
2.5.1. Approximate and Elastic Approach
2.5.2. Asymmetric Loadings
2.5.3. Dike Failures Due to Base Shear Stress
2.5.4. Dynamic Effects Due to Poor Compaction
2.5.5. Dynamic Effects Due to the Friction Law
2.5.6. Summary of Significant Factors for Piping beneath Dikes
3. Data from Sites Where Piping Has Occurred
3.1. The Two-Layer System Properties
3.2. Washed Out Soil Data
4. Discussion
4.1. The Entropy Principle Applied to Soil Mechanics
4.2. The Entropy Based Internal Stability Rule
4.3. The Mechanism of Piping
5. Conclusions
5.1. The Role of the Shear Stress Level in Piping
5.2. The Properties of the Two Layer System
5.3. Piping Process
Appendix A
Year | River, bank | d10 | CU1 | Soil | |
---|---|---|---|---|---|
1 | 1998 | Tisza jp. | 0,08 | 3,25 | Fine sand |
2 | 1998 | Tisza jp. | 0,025 | 8,4 | Silty sand |
3 | 1998 | Tisza jp. | 0,036 | 4,6 | Silty sand |
4 | 2006 | Duna right bank12+150 | 0,0071 | 17,8 | Silty sand |
5 | 2006 | Duna right bank41+206 | 0,007 | 13,9 | Silty sand |
6 | 2006 | Duna right bank41+206 | 0,041 | 2,4 | Sand |
7 | 2006 | Duna right bank41+206 | 0,026 | 4,3 | Sand |
8 | 2006 | Duna right bank41+206 | 0,006 | 15,2 | Silty sand |
9 | 2006 | Duna right bank79+420 | 0,026 | 6,5 | Silty sand |
10 | 2006 | Duna right bank79+420 | 0,016 | 10,8 | Silty sand |
11 | 2006 | Tisza right bank61+075 | 0,056 | 2,1 | Fine sand |
12 | 2006 | Tisza right bank71+300 | 0,049 | 3,5 | Silty sand |
13 | 2006 | Tisza left bank13+250 | 0,106 | 2,2 | Fine sand |
14 | 2006 | Tisza left bank13+580 | 0,073 | 2,3 | Fine sand |
15 | 2006 | Tisza left bank13+580 | 0,051 | 2,6 | Fine sand |
16 | 2010 | Sajó left bank6+266 | 0,007 | 12,6 | Silty sand |
17 | 2010 | Tisza, Millér | 0,007 | 6,1 | Silty sand |
18 | 2010 | Tisza, Millér | 0,0083 | 5,9 | Silty sand |
19 | 2010 | Tisza, Tiszakürt | 0,17 | 2,2 | Sand |
20 | 2010 | Tisza, Tiszakürt | 0,13 | 2,3 | Sand |
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Nagy, L. The grading entropy of piping soils. Zbornik radova Gradevinskog fakukteta, Subotica 2011, 20, 33–46. [Google Scholar]
- Nagy, L. Buzgárból kimosott talaj szemeloszlása (in Hungarian). In Proceedings of the Mérnökgeológia Kőzetmechanika Konferencia 2011. In Mérnökgeológia-kőzetmechanika Kiskönyvtár 12; Török, Á., Vásárhelyi, B., Eds.; Magyar Mérnöki Kamara: Budapest, Hungary, 2011; ISBN 978-615-5086-04-5. pp. 105–112. [Google Scholar]
- Szepessy, J. Tunnel erosion and liquefaction of granular and plastic soils in river dikes. Vízügyi Közlemények 1983, 29, 23–35, in Hungarian. [Google Scholar]
- Imre, E.; Telekes, G. Seepage in river dikes, Proceedings of the 3rd International Conference on Unsaturated Soils, Recife, Brazil, 10–13 March 2002.
- Imre, E.; Rétháti, L. Complex Geotechnical Examination of River Dykes; 1991; FTV 86/86/XXIX OTKA Research Project. [Google Scholar]
- Imre, E. Characterization of dispersive and piping soils, Proceedings of the XI European Conference on Soil Mechanics and Foundation Engineering, Copenhagen, Denmark, 28 May–1 June 1995; pp. 49–55.
- Galli, L. Seepage phenomena along flood protection dams. Vízügyi Közlemények 1955, 37. [Google Scholar]
- Sellmeijer, H.; de la Cruz, J.L.; van Beek, V.M.; Knoeff, H. Fine-tuning of the backward erosion piping model through small-scale, medium-scale and IJkdijk experiments. Eur. J. Environ. Civil Eng. 2011, 15, 1139–1154. [Google Scholar]
- Erosion in Geomechanics Applied to Dams and Levees; Bonelli, S. (Ed.) Wiley-ISTE: London, UK, 2013.
- Van Beek, V.M.; Knoeff, H.; Sellmeijer, H. Observations on the process of backward erosion piping in small-, medium- and full-scale experiments. Eur. J. Environ. Civil Eng. 2011, 15, 1115–1137. [Google Scholar]
- Townsend, F.C.; Bloomquist, D.; Shiau, J-M.; Martinez, R.; Rubin, H. Evaluation of Filter Criteria and Thickness for Migrating Piping in Sands; Report for U.S. Bureau of Reclamation; Department of Civil Engineering, University of Florida: Gainesville, FL, USA, 1988. [Google Scholar]
- Imre, E.; Lőrincz, J.; Szendefy, J.; Trang, P.Q.; Nagy, L.; Singh, V.P.; Fityus, S. Case Studies and Benchmark Examples for the Use of Grading Entropy in Geotechnics. Entropy 2012, 14, 1079–1102. [Google Scholar]
- Lőrincz, J.; Imre, E.; Trang, P.Q.; Nagy, L.; Singh, V.P.; Fityus, S. The grading entropy-based criteria for structural stability of granular materials and filters. Entropy 2015. submitted for publication. [Google Scholar]
- Lőrincz, J. On particle migration with the help of grading entropy, Filters in Geotechnical and Hydraulic Engineering, Proceedings of the 1st International Conference “Geo-filter”, Karlsruhe, Germany, 20–22 October 1992; pp. 63–65.
- Lőrincz, J.; Imre, E.; Galos, M.; Trang, Q.P.; Rajkai, K.; Fityus, S.; Telekes, G. Grading Entropy Variation Due to Soil Crushing. Int. J. Geomechan. 2005, 5, 311–319. [Google Scholar]
- Imre, E.; Lörincz, J.; Trang, Q.P.; Fityus, S.; Pusztai, J.; Telekes, G.; Schanz, T. A general dry density law for sands. KSCE J. Civil Eng. 2009, 13, 257–272. [Google Scholar]
- Kramer, S.L.; Seed, H.B. Initiation of soil liquefaction under static loading conditions. J. Geotech. Eng. 1988, 114, 412–430. [Google Scholar]
- Kramer, S.L. Geotechnical Earthquake Engineering; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1996; p. 653. [Google Scholar]
- Bezuijen, A.; Mastbergen, D.R. Liquefaction of a sand body constructed by means of hydraulic fill, Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil, 13–18 August 1989; pp. 891–894.
- Azam, S.; Rima, U.S. Oil sand tailings characterisation for centrifuge dewatering. Environ. Geotech. 2014, 1, 189–196. [Google Scholar]
- Tsuchida, H. Prediction and Countermeasure Against the Liquefaetion in Sand Deposits; Abstract of the Seminar in the Port and Harbor Research Institute: Yokohama, Japan, 1970; pp. 3.1–3.33, in Japanese. [Google Scholar]
- Smoltczyk, U. Geotechnical Engineering Handbook; Wiley-VCH: Weinheim, Germany, 2003; p. 650. [Google Scholar]
- Numata, A.; Mori, S. Limits in the gradation curves of liquefiable soils, Proceedings of the 3th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, 1–6 August 2004.
- Brandl, H. Geosynthetis Applications for the Mitigation of Natural Disasters, Proceedings of the 9th International Conference on Geosynthetics (IGS), Guaruja, Brazil, 23–27 May 2010.
- Brandl, H. Geosynthetics applications for the mitigation of natural disasters and for environmental protection. Geosynth. Int. 2011, 18, 340–390. [Google Scholar]
- Rendulic, L. Der Erddruck im Straßen-und Brückenbau. In Forschungsarbeiten aus dem Straßenwesen, Band 10; Volks-und Reichsverlag: Berlin, Germany, 1938; in German. [Google Scholar]
- Kézdi, Á. Earth Works; Tankönyvkiadó: Budapest, Hungary, 1975; in Hungarian. [Google Scholar]
- Perloff, W.H.; Baladi, G.Y.; Harr, M.E. Stress Distribution within and under Long Elastic Embankments: Research Report; Purdue University: West Lafayette, IN, USA, 1967. [Google Scholar]
- Thorburn, S.; Beevers, C. Lateral displacements of low embankments on alluvium containing thin peat layers. ICE Proc 1981, 70, 277–292. [Google Scholar]
- Mitsui, N.; Van, P. Thermodynamic aspects of rock friction. Acta Geodaetica et Geophysica 2014, 49, 135–146. [Google Scholar]
- Hungarian Standard MSZ 14045/4-69. Geotechnical tests, classification and description of the group of rocks in soil mechanical point of view. Withdrawn in 1979
- Martinás, K. Entropy and information. World Futures 1997, 50, 483–493. [Google Scholar]
- Kézdi, Á. Phase Movements in Granular Soils; Notes of Budapest University of Technology and Economics, Graduate Courses: Budapest, Hungary, 1975; in Hungarian. [Google Scholar]
- Terzaghi, K.; Peck, R.B. Soil Mechanics in Engineering Practice, 1st ed.; Wiley: New York, NY, USA, 1948. [Google Scholar]
- Alonso, E.E.; Gens, A. Aznalcóllar dam failure. Part 1: Field observations and material properties. Géotechnique 2006, 56, 165–183. [Google Scholar] [Green Version]
- Gens, A.; Alonso, E.E. Aznalcóllar dam failure. Part 2: Stability conditions and failure mechanism. Géotechnique 2006, 56, 185–201. [Google Scholar] [Green Version]
- Alonso, E.E.; Gens, A. Aznalcóllar dam failure. Part 3: Dynamics of the motion. Géotechnique 2006, 56, 203–210. [Google Scholar] [Green Version]
- Zabala, F.; Alonso, E.E. Progressive failure of Aznalcóllar dam using the material point method. Géotechnique 2011, 61, 795–808. [Google Scholar]
Fraction j | 1 | … | 23 | 24 |
Limits | d0 to 2 d0 | … | 222 d0 to 223 d0 | 223 d0 to 224 d0 |
Stratification at Dunakiliti (borehole 997) | Stratification at Dunafalva (borehole 993) | ||
---|---|---|---|
Soil type | Layer boundaries [m] | Soil type | Layer boundaries [m] |
silt | 0 to 0.5 m | Mo* | 0 to 0.6 m |
Mo* | 0.5 to 1.0 m | Silt | 0.6 to 1.3 m |
sandy gravel | below 1.0 m | Mo* | 1.3 m to 2.2 m |
fine sand | 2.2 m to 3.0 m | ||
sandy gravel | below 3.0 m |
Site | Layer | Depth [m] | N [–] | A [–] | B [–] |
---|---|---|---|---|---|
Dunakiliti | Cover–Mo | 0.5 | 9 | 0.50 | 1.19 |
Dunakiliti | Cover–silt | 1.0 | 15 | 0.45 | 0.92 |
Dunakiliti | Permeable Base | 1.5 | 10 | 0.71 > 2/3 | 1.22 |
Dunafalva | Cover–Mo | 0.5 | 8 | 0.46 | 1.01 |
Dunafalva | Cover–silt | 1.0 | 8 | 0.38 | 1.34 |
Dunafalva | Cover–Mo | 1.5 | 9 | 0.59 | 1.05 |
Dunafalva | Cover–fine sand | 2.5 | 10 | 0.56 | 1.01 |
Dunafalva | Permeable Base | 3.0 | 10 | 0.81 > 2/3 | 0.78 |
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imre, E.; Nagy, L.; Lőrincz, J.; Rahemi, N.; Schanz, T.; Singh, V.P.; Fityus, S. Some Comments on the Entropy-Based Criteria for Piping. Entropy 2015, 17, 2281-2303. https://doi.org/10.3390/e17042281
Imre E, Nagy L, Lőrincz J, Rahemi N, Schanz T, Singh VP, Fityus S. Some Comments on the Entropy-Based Criteria for Piping. Entropy. 2015; 17(4):2281-2303. https://doi.org/10.3390/e17042281
Chicago/Turabian StyleImre, Emöke, Laszlo Nagy, Janos Lőrincz, Negar Rahemi, Tom Schanz, Vijay P. Singh, and Stephen Fityus. 2015. "Some Comments on the Entropy-Based Criteria for Piping" Entropy 17, no. 4: 2281-2303. https://doi.org/10.3390/e17042281
APA StyleImre, E., Nagy, L., Lőrincz, J., Rahemi, N., Schanz, T., Singh, V. P., & Fityus, S. (2015). Some Comments on the Entropy-Based Criteria for Piping. Entropy, 17(4), 2281-2303. https://doi.org/10.3390/e17042281