A Bayesian Predictive Discriminant Analysis with Screened Data
Abstract
:1. Introduction
2. The SSMN Population Distributions
3. The HSSMN Model
3.1. The Hierarchical Model
3.2. Posterior Distributions
3.3. Markov Chain Monte Carlo Sampling Scheme
- Step 1: generate by using the full conditional posterior distribution in Equation (14).
- Step 2: generate by using the full conditional posterior distribution in Equation (16).
- Step 3: generate inverse-Wishart random matrix by using the full conditional posterior distribution in Equation (17).
- Step 4: generate independent q-variate truncated normal random variables by using the full conditional posterior distribution in Equation (18).
- Step 5: given the current values , we independently generate a candidate from a proposal density , as suggested by [26], which is used for a Metropolis–Hastings algorithm. Then, accept the candidate value with the acceptance rate:
- (i)
- See, e.g., [18], for the sampling method for from various mixing distributions of the SMN distributions, such as the multivariate t, multivariate , multivariate and multivariate models.
- (ii)
- Suppose the HSSMN() model involves unknown Then, as indicated by the full conditional posterior of in Equation (15), the complexity of the conditional distribution prevents us from using straightforward Gibbs sampling. Instead, we may use a simple random walk Metropolis algorithm that uses a normal proposal density to sample from the conditional distribution of ; that is, given the current point is , the candidate point is , where a diagonal matrix D should be turned, so that the acceptance rate of the candidate point is around 0.25 (see, e.g., [26]).
- (iii)
- When the HSSMN() model involves unknown : The MCMC sampling algorithm, using the full conditional posterior Equation (19) is not straightforward, because the conditional posterior density is unknown and complex. Instead, we may apply a Metropolized hit-and-run algorithm, described by [27], to sample from the conditional posterior of
- (iv)
- One can easily calculate the posterior estimate of by using that of , because the re-parameterizing relations are and
4. The Predictive Classification Rule
5. Simulation Study
5.1. A Simulation Study: Convergence of the MCMC Algorithm
Model () | Parameter | True | Mean | MC Error | s.e. | 2.5% | Median | 97.5% | p-Value | |
---|---|---|---|---|---|---|---|---|---|---|
RSN | 2.000 | 1.966 | 0.003 | 0.064 | 1.882 | 1.964 | 2.149 | 1.014 | 0.492 | |
−1.000 | −0.974 | 0.002 | 0.033 | −1.023 | −0.974 | −0.903 | 1.011 | 0.164 | ||
0.312 | 0.320 | 0.008 | 0.159 | 0.046 | 0.322 | 0.819 | 1.021 | 0.944 | ||
0.406 | 0.407 | 0.007 | 0.164 | 0.030 | 0.417 | 0.872 | 1.018 | 0.107 | ||
0.250 | 0.253 | 0.004 | 0.083 | 0.082 | 0.256 | 0.439 | 1.019 | 0.629 | ||
0.125 | 0.133 | 0.004 | 0.067 | 0.003 | 0.133 | 0.408 | 1.017 | 0.761 | ||
1.968 | 2.032 | 0.005 | 0.130 | 1.743 | 2.008 | 2.265 | 1.034 | 0.634 | ||
−0.625 | −0.627 | 0.002 | 0.098 | −0.821 | −0.617 | −0.405 | 1.022 | 0.778 | ||
0.500 | 0.566 | 0.001 | 0.039 | 0.465 | 0.557 | 0.638 | 1.018 | 0.445 | ||
RSt | 2.000 | 2.036 | 0.004 | 0.069 | 1.867 | 2.050 | 2.166 | 1.015 | 0.251 | |
−1.000 | −1.042 | 0.003 | 0.036 | −1.137 | −1.054 | −0.974 | 1.012 | 0.365 | ||
0.312 | 0.318 | 0.008 | 0.072 | 0.186 | 0.320 | 0.601 | 1.017 | 0.654 | ||
0.406 | 0.405 | 0.006 | 0.074 | 0.262 | 0.414 | 0.562 | 1.019 | 0.712 | ||
0.250 | 0.255 | 0.005 | 0.051 | 0.113 | 0.257 | 0.387 | 1.023 | 0.661 | ||
0.125 | 0.136 | 0.005 | 0.055 | 0.027 | 0.133 | 0.301 | 1.019 | 0.598 | ||
1.968 | 1.906 | 0.006 | 0.108 | 1.781 | 1.996 | 2.211 | 1.023 | 0.481 | ||
−0.625 | −0.620 | 0.003 | 0.101 | −0.818 | −0.615 | −0.422 | 1.021 | 0.541 | ||
0.500 | 0.459 | 0.002 | 0.044 | 0.366 | 0.457 | 0.578 | 1.016 | 0.412 |
5.2. A Simulation Study: Performance of the Predictive Methods
p | n | a | Method | ||||
---|---|---|---|---|---|---|---|
[Case 1] | |||||||
2 | 20 | 0.5 | 0.322(0.0025) | 0.174(0.0022) | 0.281(0.0024) | 0.106(0.0020) | |
0.335(0.0025) | 0.185(0.0023) | 0.306(0.0025) | 0.115(0.0021) | ||||
0.350(0.0025) | 0.206(0.0023) | 0.356(0.0025) | 0.205(0.0021) | ||||
0.329(0.0027) | 0.182(0.0023) | 0.301(0.0025) | 0.134(0.0021) | ||||
0.348(0.0024) | 0.193(0.0022) | 0.319(0.0024) | 0.142(0.0021) | ||||
0.349(0.0025) | 0.201(0.0023) | .349(0.0025) | 0.192(0.0020) | ||||
100 | 0.5 | 0.303(0.0016) | 0.161(0.0014) | 0.266(0.0015) | 0.097(0.0013) | ||
0.316(0.0017) | 0.165(0.0013) | 0.275(0.0015) | 0.101(0.0013) | ||||
0.351(0.0025) | 0.186(0.0023) | 0.356(0.0025) | 0.186(0.0021) | ||||
0.306(0.0015) | 0.163(0.0014) | 0.282(0.0014) | 0.116(0.0013) | ||||
0.318(0.0017) | 0.168(0.0015) | 0.291(0.0015) | 0.121(0.0013) | ||||
0.338(0.0024) | 0.172(0.0023) | 0.337(0.0026) | 0.170(0.0021) | ||||
5 | 20 | 0.5 | 0.318(0.0025) | 0.158(0.0022) | 0.240(0.0024) | 0.101(0.0020) | |
0.327(0.0026) | 0.175(0.0023) | 0.276(0.0025) | 0.114(0.0021) | ||||
0.337(0.0026) | 0.183(0.0023) | 0.332(0.0025) | 0.184(0.0020) | ||||
0.321(0.0025) | 0.165(0.0023) | 0.231(0.0025) | 0.109(0.0021) | ||||
0.330(0.0026) | 0.207(0.0023) | 0.318(0.0025) | 0.141(0.0021) | ||||
0.345(0.0026) | 0.216(0.0024) | 0.346(0.0025) | 0.218(0.0021) | ||||
100 | 0.5 | 0.280(0.0015) | 0.150(0.0014) | 0.233(0.0015) | 0.084(0.0012) | ||
0.291(0.0016) | 0.153(0.0015) | 0.249(0.0015) | 0.092(0.0013) | ||||
0.307(0.0025) | 0.186(0.0023) | 0.308(0.0025) | 0.189(0.0021) | ||||
0.291(0.0016) | 0.163(0.0014) | 0.239(0.0015) | 0.103(0.0013) | ||||
0.294(0.0016) | 0.169(0.0015) | 0.253(0.0015) | 0.117(0.0013) | ||||
0.305(0.0024) | 0.175(0.0022) | 0.301(0.0025) | 0.176(0.0021) | ||||
[Case 2] | |||||||
2 | 20 | 0.5 | 0.351(0.0025) | 0.189(0.0022) | 0.310(0.0025) | 0.114(0.0021) | |
0.320(0.0024) | 0.175(0.0023) | 0.293(0.0024) | 0.105(0.0020) | ||||
0.367(0.0026) | 0.185(0.0023) | 0.365(0.0024) | 0.191(0.0020) | ||||
0.349(0.0026) | 0.192(0.0022) | 0.317(0.0024) | 0.149(0.0022) | ||||
0.321(0.0023) | 0.183(0.0021) | 0.304(0.0023) | 0.132(0.0021) | ||||
0.356(0.0025) | 0.210(0.0023) | 0.357(0.0025) | 0.199(0.0020) | ||||
100 | 0.5 | 0.313(0.0016) | 0.164(0.0015) | 0.273(0.0015) | 0.098(0.0014) | ||
0.306(0.0015) | 0.158(0.0013) | 0.265(0.0014) | 0.091(0.0012) | ||||
0.346(0.0023) | 0.179(0.0022) | 0.341(0.0024) | 0.175(0.0022) | ||||
0.321(0.0015) | 0.170(0.0014) | 0.287(0.0015) | 0.119(0.0015) | ||||
0.310(0.0014) | 0.164(0.0013) | 0.281(0.0013) | 0.112(0.0013) | ||||
0.329(0.0025) | 0.181(0.0025) | 0.327(0.0027) | 0.176(0.0022) | ||||
5 | 20 | 0.5 | 0.329(0.0024) | 0.181(0.0024) | 0.281(0.0023) | 0.119(0.0021) | |
0.317(0.0023) | 0.164(0.0020) | 0.265(0.0021) | 0.094(0.0020) | ||||
0.340(0.0027) | 0.196(0.0024) | 0.314(0.0026) | 0.152(0.0022) | ||||
0.342(0.0025) | 0.205(0.0024) | 0.332(0.0024) | 0.194(0.0024) | ||||
0.328(0.0022) | 0.171(0.0022) | 0.275(0.0022) | 0.118(0.0021) | ||||
0.351(0.0026) | 0.224(0.0025) | 0.329(0.0025) | 0.175(0.0025) | ||||
100 | 0.5 | 0.284(0.0016) | 0.155(0.0018) | 0.283(0.0016) | 0.154(0.0013) | ||
0.271(0.0014) | 0.149(0.0014) | 0.238(0.0014) | 0.086(0.0011) | ||||
0.294(0.0026) | 0.192(0.0024) | 0.274(0.0026) | 0.161(0.0024) | ||||
0.289(0.0016) | 0.177(0.0015) | 0.288(0.0016) | 0.175(0.0013) | ||||
0.278(0.0013) | 0.162(0.0013) | 0.231(0.0014) | 0.107(0.0011) | ||||
0.312(0.0025) | 0.178(0.0025) | 0.270(0.0026) | 0.141(0.0022) |
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
- (1)
- The full conditional posterior density of given and is proportional to:
- (2)
- It is obvious from the joint posterior density in Equation (13).
- (3)
- It is straightforward to see from Equation (13) that the full conditional posterior density of is given by:This is a kernel of , where and
- (4)
- We see from Equation (13) that the full conditional posterior density of is given by:This is a kernel of
- (5)
- We see, from Equation (13), that the full conditional posterior densities of ’s are independent, and each density is given by:
- (6)
- It is obvious from the joint posterior density in Equation (13).
- (7)
- It is obvious from the joint posterior density in Equation (13).
References
- Catsiapis, G.; Robinson, C. Sample selection bias with multiple selection rules: An application to student aid grants. J. Econom. 1982, 18, 351–368. [Google Scholar] [CrossRef]
- Mohanty, M.S. Determination of participation decision, hiring decision, and wages in a double selection framework: Male-female wage differentials in the U.S. labor market revisited. Contemp. Econ. Policy 2001, 19, 197–212. [Google Scholar] [CrossRef]
- Kim, H.J. A class of weighted multivariate normal distributions and its properties. J. Multivar. Anal. 2008, 99, 1758–1771. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, H.-M. A class of rectangle-screened multivariate normal distributions and its applications. Statisitcs 2015, 49, 878–899. [Google Scholar] [CrossRef]
- Lin, T.I.; Ho, H.J.; Chen, C.L. Analysis of multivariate skew normal models with incomplete data. J. Multivar. Anal. 2009, 100, 2337–2351. [Google Scholar] [CrossRef]
- Arellano-Valle, R.B.; Branco, M.D.; Genton, M.G. A unified view of skewed distributions arising from selections. J. Can. Stat. 2006, 34, 581–601. [Google Scholar]
- Kim, H.J. Classification of a screened data into one of two normal populations perturbed by a screening scheme. J. Multivar. Anal. 2011, 102, 1361–1373. [Google Scholar] [CrossRef]
- Kim, H.J. A best linear threshold classification with scale mixture of skew normal populations. Comput. Stat. 2015, 30, 1–28. [Google Scholar] [CrossRef]
- Marchenko, Y.V.; Genton, M.G. A Heckman selection-t model. J. Am. Stat. Assoc. 2012, 107, 304–315. [Google Scholar] [CrossRef]
- Sahu, S.K.; Dey, D.K.; Branco, M.D. A new class of multivariate skew distributions with applications to Bayesian regession models. Can. J. Stat. 2003, 31, 129–150. [Google Scholar] [CrossRef]
- Geisser, S. Posterior odds for multivariate normal classifications. J. R. Stat. Soc. B 1964, 26, 69–76. [Google Scholar]
- Lachenbruch, P.A.; Sneeringer, C.; Revo, L.T. Robustness of the linear and quadratic discriminant function to certain types of non-normality. Commun. Stat. 1973, 1, 39–57. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Zeng, D.; Mauro, C.; Duan, N.; Shear, M.K. Auxiliary marke-assited classification in the absence of class identifiers. J. Am. Stat. Assoc. 2013, 108, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Webb, A. Statistical Pattern Recognition; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Aitchison, J.; Habbema, J.D.F.; Key, J.W. A critical comparison of two methods of statistical discrimination. Appl. Stat. 1977, 26, 15–25. [Google Scholar] [CrossRef]
- Azzalini, A.; Capitanio, A. Statistical application of the multivariate skew-normal distribution. J. R. Stat. Soc. B 1999, 65, 367–389. [Google Scholar] [CrossRef]
- Branco, M.D. A general class of multivariate skew-elliptical distributions. J. Multivar. Anal. 2001, 79, 99–113. [Google Scholar]
- Chen, M-H.; Dey, D.K. Bayesian modeling of correlated binary responses via scale mixture of multivariate normal link functions. Indian J. Stat. 1998, 60, 322–343. [Google Scholar]
- Press, S.J. Applied Multivariate Analysis, 2nd ed.; Dover: New York, NY, USA, 2005. [Google Scholar]
- Reza-Zadkarami, M.; Rowhani, M. Application of skew-normal in classification of satellite image. J. Data Sci. 2010, 8, 597–606. [Google Scholar]
- Wang, W.L.; Fan, T.H. Bayesian analysis of multivariate t linear mixed models using a combination of IBF and Gibbs samplers. J. Multivar. Anal. 2012, 105, 300–310. [Google Scholar] [CrossRef]
- Wang, W.L.; Lin, T.I. Bayesian analysis of multivariate t linear mixed models with missing responses at random. J. Stat. Comput. Simul. 2015, 85. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S. Distribution in Statistics: Continuous Multivariate Distributions; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Wilhelm, S.; Manjunath, B.G. tmvtnorm: Truncated multivariate normal distribution and student t distribution. R J. 2010, 1, 25–29. [Google Scholar]
- Genz, A.; Bretz, F. Computation of Multivariate Normal and t Probabilities; Springer: New York, NY, USA, 2009. [Google Scholar]
- Chib, S.; Greenberg, E. Understanding the Metropolis-Hastings algorithm. Am. Stat. 1995, 49, 327–335. [Google Scholar]
- Chen, H.-M.; Schmeiser, R.W. Performance of the Gibbs, hit-and-run, and metropolis samplers. J. Comput. Gr. Stat. 1993, 2, 251–272. [Google Scholar] [CrossRef]
- Anderson, T.W. Introduction to Multivariate Statistical Analysis, 3rd ed.; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Adwards, W.H.; Lindman, H.; Savage, L.J. Bayesian statistical inference for psychological research. Psycol. Rev. 1963, 70, 192–242. [Google Scholar] [CrossRef]
- Ntzoufras, I. Bayesian Modeling Using WinBUGS; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Brooks, S.; Gelman, A. Alternative methods for monitoring convergence of iterative simulations. J. Comput. Gr. Stat. 1998, 7, 434–455. [Google Scholar]
- Heidelberger, P.; Welch, P. Simulation run length control in the presence of an initial transient. Oper. Res. 1992, 31, 1109–1144. [Google Scholar] [CrossRef]
- Lin, T.I. Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition. Comput. Stat. Data Anal. 2014, 71, 183–195. [Google Scholar] [CrossRef]
- Lin, T.I.; Ho, H.J.; Chen, C.L. Analysis of multivariate skew normal models with incomplete data. J. Multivar. Anal. 2009, 100, 2337–2351. [Google Scholar] [CrossRef]
© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-J. A Bayesian Predictive Discriminant Analysis with Screened Data. Entropy 2015, 17, 6481-6502. https://doi.org/10.3390/e17096481
Kim H-J. A Bayesian Predictive Discriminant Analysis with Screened Data. Entropy. 2015; 17(9):6481-6502. https://doi.org/10.3390/e17096481
Chicago/Turabian StyleKim, Hea-Jung. 2015. "A Bayesian Predictive Discriminant Analysis with Screened Data" Entropy 17, no. 9: 6481-6502. https://doi.org/10.3390/e17096481
APA StyleKim, H. -J. (2015). A Bayesian Predictive Discriminant Analysis with Screened Data. Entropy, 17(9), 6481-6502. https://doi.org/10.3390/e17096481