Entropy of Fuzzy Partitions and Entropy of Fuzzy Dynamical Systems
Abstract
:1. Introduction
2. Fuzzy Partitions
- (i)
- (ii)
- if then
- (iii)
- if then
- (i)
- (ii)
- implies
- (iii)
- implies
- (i)
- ,
- (ii)
- if , then ,
- (iii)
- if then .
- (i)
- (ii)
- if F, then
- (iii)
- if F then
3. Kolmogorov–Sinai Entropy
4. The Entropy of Fuzzy Dynamical Systems
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Gray, R.M. Entropy and Information Theory; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–358. [Google Scholar] [CrossRef]
- Zadeh, L.A. Probability measures of fuzzy events. J. Math. Anal. Appl. 1968, 23, 421–427. [Google Scholar] [CrossRef]
- Mesiar, R.; Rybárik, J. Entropy of Fuzzy Partitions: A General Model. Fuzzy Sets Syst. 1998, 99, 73–79. [Google Scholar] [CrossRef]
- Dumitrescu, D. Fuzzy measures and the entropy of fuzzy partitions. J. Math. Anal. Appl. 1993, 176, 359–373. [Google Scholar] [CrossRef]
- Rahimi, M.; Riazi, A. On local entropy of fuzzy partitions. Fuzzy Sets Syst. 2014, 234, 97–108. [Google Scholar] [CrossRef]
- De Baets, B.; Mesiar, R. T-Partitions. Fuzzy Sets Syst. 1998, 97, 211–223. [Google Scholar] [CrossRef]
- Mesiar, R.; Reusch, B.; Thiele, H. Fuzzy equivalence relations and fuzzy partition. J. Mult. Valued Log. Soft Comput. 2006, 12, 167–181. [Google Scholar]
- Jayaram, B.; Mesiar, R. I-fuzzy equivalence relations and I-fuzzy partitions. Inf. Sci. 2009, 179, 1278–1297. [Google Scholar] [CrossRef]
- Sinai, Y.G. On the notion of the entropy of dynamical systems. Dokl. Russ. Acad. Sci. 1959, 124, 768–771. [Google Scholar]
- Riečan, B.; Neubrunn, T. Integral, Measure and Ordering; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Mesiar, R. The Bayes principle and the entropy on fuzzy probability spaces. Int. J. Gen. Syst. 1991, 20, 67–72. [Google Scholar] [CrossRef]
- Dumitrescu, D. Entropy of fuzzy process. Fuzzy Sets Syst. 1993, 55, 169–177. [Google Scholar] [CrossRef]
- Dumitrescu, D. Fuzzy conditional logic. Fuzzy Sets Syst. 1994, 68, 171–179. [Google Scholar] [CrossRef]
- Dumitrescu, D. Entropy of a fuzzy dynamical system. Fuzzy Sets Syst. 1995, 70, 45–57. [Google Scholar] [CrossRef]
- Riečan, B. An entropy construction inspired by fuzzy sets. Soft Comput. 2003, 7, 486–488. [Google Scholar]
- Khare, M. Fuzzy σ-algebras and conditional entropy. Fuzzy Sets Syst. 1999, 102, 287–292. [Google Scholar] [CrossRef]
- Srivastava, P.; Khare, M.; Srivastava, Y.K. m-Equivalence, entropy and F-dynamical systems. Fuzzy Sets Syst. 2001, 121, 275–283. [Google Scholar] [CrossRef]
- Khare, M.; Roy, S. Entropy of quantum dynamical systems and sufficient families in orthomodular lattices with Bayessian state. Commun. Theor. Phys. 2008, 50, 551–556. [Google Scholar] [CrossRef]
- Khare, M.; Roy, S. Conditional entropy and the Rokhlin metric on an orthomodular lattice with Bayessian state. Int. J. Theor. Phys. 2008, 47, 1386–1396. [Google Scholar] [CrossRef]
- Rahimi, M.; Assari, A.; Ramezani, F. A Local Approach to Yager Entropy of Dynamical Systems. Int. J. Fuzzy Syst. 2015, 1. [Google Scholar] [CrossRef]
- Riečan, B. On a type of entropy of dynamical systems. Tatra Mt. Math. Publ. 1992, 1, 135–140. [Google Scholar]
- Riečan, B. On some modifications of the entropy of dynamical systems. Atti del Seminario Matematico e Fisico dell Universita di Modena 1994, 42, 157–166. [Google Scholar]
- Riečan, B. On the entropy and generators of dynamical systems. Appl. Math. 1996, 41, 161–168. [Google Scholar]
- Markechová, D. The entropy of fuzzy dynamical systems and generators. Fuzzy Sets Syst. 1992, 48, 351–363. [Google Scholar] [CrossRef]
- Markechová, D. A note to the Kolmogorov–Sinai entropy of fuzzy dynamical systems. Fuzzy Sets Syst. 1994, 64, 87–90. [Google Scholar] [CrossRef]
- Riečan, B.; Markechová, D. The Kolmogorov–Sinai theorem on generators for fuzzy dynamical systems. Demonstr. Math. 1997, 30, 429–436. [Google Scholar]
- Markechová, D. Entropy and mutual information of experiments in the fuzzy case. Neural Netw. World 2013, 23, 339–349. [Google Scholar] [CrossRef]
- Hu, Q.; Yu, D.; Xie, Z.; Liu, J. Fuzzy probabilistic approximation spaces and their information measures. IEEE Trans. Fuzzy Syst. 2006, 14, 191–201. [Google Scholar]
- Yu, D.; Hu, Q.; Wu, C. Uncertainty measures for fuzzy relations and their applications. Appl. Soft Comput. 2007, 7, 1135–1143. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Foundations of the Theory of Probability; Chelsea Publishing Company: New York, NY, USA, 1950. [Google Scholar]
- Butnariu, D.; Klement, E.P. Triangular Norm-Based Measures and Games with Fuzzy Coalitions; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Riečan, B. Analysis of Fuzzy Logic Models. In Intelligent Systems; Koleshko, V.M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 219–244. [Google Scholar]
- Maličký, P.; Riečan, B. On the entropy of dynamical systems. In Proceedings of the Conference Ergodic Theory and Related Topics II, Georgenthal, Germany, 20–25 April 1986.
- Hudetz, T. Space-time dynamical entropy for quantum systems. Lett. Math. Phys. 1988, 16, 151–161. [Google Scholar] [CrossRef]
- Hudetz, T. Algebraic topological entropy. In Nonlinear Dynamics and Quantum Dynamical Systems; Akademie Verlag: Berlin, Germany, 1990; pp. 27–41. [Google Scholar]
- Hudetz, T. Quantum Topological Entropy: First Step of a “Pedestrian“ Approach. In Quantum Probability and Related Topics; World Scientific Publishing Company: Singapore, Singapore, 1993; pp. 237–261. [Google Scholar]
- Atanassov, K.T. Intuitionistic Fuzzy Sets: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Atanassov, K.; Riečan, B. On two operations over intuitionistic fuzzy sets. J. Appl. Math. Stat. Inform. 2006, 2, 145–148. [Google Scholar] [CrossRef]
- Riečan, B. Probability Theory on IF Events. In Algebraic and Proof-Theoretic Aspects of Non-Classical Logics; Aguzzoli, S., Ciabattoni, A., Gerla, B., Manara, C., Marra, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 290–308. [Google Scholar]
- Ďurica, M. Entropy on IF-events. Notes on Intuitionistic Fuzzy Sets 2007, 13, 30–40. [Google Scholar]
- Di Nola, A.; Dvurečenskij, A. Product MV-algebras. Multiple-Valued Log. 2001, 6, 193–215. [Google Scholar]
- Riečan, B.; Mundici, D. Probability on MV-algebras. In Handbook of Measure Theory; Pap, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 869–910. [Google Scholar]
- Riečan, B. Kolmogorov–Sinaj entropy on MV-algebras. Int. J. Theor. Phys. 2005, 44, 1041–1052. [Google Scholar] [CrossRef]
- Kôpka, F.; Chovanec, F. D-posets. Math. Slovaca 1994, 44, 21–34. [Google Scholar]
- Foulis, D.J.; Bennet, M.K. Effect algebras and unsharp quantum logics. Found. Phys. 1994, 24, 1331–1352. [Google Scholar] [CrossRef]
- Frič, R.; Papčo, M. Probability domains. Int. J. Theor. Phys. 2010, 49, 3092–3100. [Google Scholar] [CrossRef]
- Skřivánek, V.; Frič, R. Generalized random events. Int. J. Theor. Phys. 2015, 54, 4386–4396. [Google Scholar] [CrossRef]
- Kluvancová, D. A-posets with product. Intell. Syst. 2015, in press. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markechová, D.; Riečan, B. Entropy of Fuzzy Partitions and Entropy of Fuzzy Dynamical Systems. Entropy 2016, 18, 19. https://doi.org/10.3390/e18010019
Markechová D, Riečan B. Entropy of Fuzzy Partitions and Entropy of Fuzzy Dynamical Systems. Entropy. 2016; 18(1):19. https://doi.org/10.3390/e18010019
Chicago/Turabian StyleMarkechová, Dagmar, and Beloslav Riečan. 2016. "Entropy of Fuzzy Partitions and Entropy of Fuzzy Dynamical Systems" Entropy 18, no. 1: 19. https://doi.org/10.3390/e18010019
APA StyleMarkechová, D., & Riečan, B. (2016). Entropy of Fuzzy Partitions and Entropy of Fuzzy Dynamical Systems. Entropy, 18(1), 19. https://doi.org/10.3390/e18010019