Coherence and Entanglement Dynamics in Training Variational Quantum Perceptron
Abstract
1. Introduction
2. Mathematical Tools for Coherence Distribution
- (C1)
- The necessary and sufficient condition for is .
- (C2)
- Suppose that ICPTPM
- (C2-1)
- ICPTPM does not increase coherence, which implies that .
- (C2-2)
- A selective operation does not increase coherence, which implies that . Here, , .
- (C3)
- State mixing does not increase coherence, which implies that the convexity holds.
3. Coherence Processing in VQP Training
3.1. Coherence Distribution Process
3.2. Coherence Depletion Process
4. Simulation Examples of Training
4.1. Example 1
4.2. Example 2
4.3. Investigation of Entanglement in Two Examples
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ITPCPM | Incoherent completely positive and trace-preserving map |
DQC1 | Deterministic quantum computation with one-qubit |
VQP | Variational quantum Perceptron |
MPQC | Multi-layer parametric quantum circuit |
References
- Diosi, L. A Shor Couse in Quantum Information Theory: An Approach from Theoretical Physics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Shor, P. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994. [Google Scholar]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, USA, 1 July 1996. [Google Scholar]
- Bae, J.; Kwon, Y. Generalized quantum search Hamiltonian. Phys. Rev. A 2002, 66, 012314. [Google Scholar] [CrossRef]
- Bae, J.; Kwon, Y. Perturbation Can Enhance Quantum Search. Int. J. Theor. Phys. 2003, 42, 2075. [Google Scholar] [CrossRef]
- Bae, J.; Kwon, Y. Maximum Speedup in Quantum Search: O(1) Running Time. Int. J. Theor. Phys. 2003, 42, 2069. [Google Scholar] [CrossRef]
- Park, S.; Bae, J.; Kwon, Y. Wavelet quantum search algorithm with partial information Chaos. Solitons Fractals 2007, 32, 1371. [Google Scholar] [CrossRef][Green Version]
- Kok, P.; Munro, W.J.; Nemoto, K.; Ralph, T.C.; Dowling, J.P.; Milburn, G.J. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 2007, 79, 135. [Google Scholar] [CrossRef]
- Ralph, T.C.; Pryde, G.J. Optical Quantum Computation. Prog. Opt. 2010, 54, 209. [Google Scholar]
- Cirac, J.I.; Zoller, P. Quantum Computation with Cold Trapped Ions. Phys. Rev. Lett. 1995, 74, 4091. [Google Scholar] [CrossRef]
- Milburn, G. Quantum-dot computing. Phys. World 2003, 16, 10. [Google Scholar] [CrossRef]
- Zagoskin, A.M. Quantum Engineering: Theory and Design of Quantum Coherent Structures; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Bruss, D. Characterizing entanglement. J. Math. Phys. 2002, 43, 4237. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef]
- Gottesman, D.; Chuang, I.L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 1999, 402, 390. [Google Scholar] [CrossRef]
- Knill, E.; Laflamme, R. On the Power of One Bit of Quantum Information. Phys. Rev. Lett. 1998, 81, 5672. [Google Scholar] [CrossRef]
- Datta, A.; Shaji, A.; Caves, C.M. Quantum discord and the power of one qubit. Phys. Rev. Lett. 2008, 100, 050502. [Google Scholar] [CrossRef] [PubMed]
- Ollivier, H.; Zurek, W.H. Quantum Discord: A Measure of the Quantumness of Correlations. Phys. Rev. Lett. 2001, 88, 017901. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y. Quantum discord for two-qubit X states: Analytical formula with very small worst-case error. Phys. Rev. A 2013, 88, 014302. [Google Scholar] [CrossRef]
- Namkung, M.; Chang, J.; Shin, J.; Kwon, Y. Revisiting quantum discord for two-qubit X states: The error bound to an analytical formula. Int. J. Theor. Phys. 2015, 54, 3340–3349. [Google Scholar] [CrossRef]
- Datta, A.; Shaji, A. Quantum Discord and Quantum Computing—An Appraisal. Int. J. Quant. Inf. 2011, 9, 1787. [Google Scholar] [CrossRef]
- Li, X.-Y.; Zhu, Q.-S.; Zhu, M.-Z.; Huang, Y.-M.; Wu, H.; Wu, S.-Y. Machine learning study of the relationship between the geometric and entropy discord. EPL 2018, 127, 20009. [Google Scholar] [CrossRef]
- Madhok, V.; Datta, A. Interpreting quantum discord through quantum state merging. Phys. Rev. A 2011, 83, 032323. [Google Scholar] [CrossRef]
- Dakic, B.; Lipp, Y.O.; Ma, X.; Ringbauer, M.; Kropatschek, S.; Barz, S.; Paterek, T.; Vedral, V.; Zeilinger, A.; Brukner, C.; et al. Quantum discord as resource for remote state preparation. Nat. Phys. 2012, 8, 666. [Google Scholar] [CrossRef]
- Roa, L.; Retamal, J.C.; Alid-Vaccarezza, M. Dissonance is Required for Assisted Optimal State Discrimination. Phys. Rev. Lett. 2011, 107, 080401. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Fei, S.-M.; Wang, Z.-X.; Fan, H. Assisted state discrimination without entanglement. Phys. Rev. A 2012, 85, 022328. [Google Scholar] [CrossRef]
- Zhang, F.-L.; Chen, J.-L.; Kwek, L.C.; Vedral, V. Requirement of Dissonance in Assisted Optimal State Discrimination. Sci. Rep. 2013, 3, 2134. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.-F.; Zhang, F.-L.; Liang, M.-L.; Chen, J.-L. Assisted optimal state discrimination without entanglement. EPL 2014, 106, 50004. [Google Scholar] [CrossRef]
- Deutsch, D. Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proc. R. Soc. Lond. A 1985, 400, 97. [Google Scholar]
- Bergou, J.A.; Hillery, M. Introduction to the Theory of Quantum Information Processing; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Shi, H.-L.; Liu, S.-Y.; Wang, X.-H.; Yang, W.-L.; Yang, Z.-Y.; Fan, H. Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A 2017, 95, 032307. [Google Scholar] [CrossRef]
- Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying Coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef]
- Streltsov, A.; Adesso, G.; Plenio, M.B. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 2017, 89, 041003. [Google Scholar] [CrossRef]
- Hu, M.-L.; Hu, X.; Wang, J.; Peng, Y.; Zhang, Y.-R.; Fan, H. Quantum coherence and geometric quantum discord. Phys. Rep. 2018, 762. [Google Scholar] [CrossRef]
- Bagan, E.; Bergou, J.A.; Cottrell, S.S.; Hillery, M. Relation between Coherence and Path Information. Phys. Rev. Lett. 2016, 116, 160406. [Google Scholar] [CrossRef]
- Bagan, E.; Calsamiglia, J.; Bergou, J.A.; Hillery, M. Duality games and operational duality relations. Phys. Rev. Lett. 2018, 120, 050402. [Google Scholar] [CrossRef] [PubMed]
- Bagan, E.; Calsamiglia, J.; Bergou, J.A.; Hillery, M. A generalized wave-particle duality relation for finite groups. J. Phys. A: Math. Theor. 2018, 51, 414015. [Google Scholar] [CrossRef]
- Bera, M.N.; Qureshi, T.; Siddiqui, M.A.; Pati, A.K. Duality of Quantum Coherence and Path Distinguishability. Phys. Rev. A 2015, 92, 012118. [Google Scholar] [CrossRef]
- Hu, M.-L.; Fan, H. Relative quantum coherence, incompatibility, and quantum correlations of states. Phys. Rev. A 2017, 95, 052106. [Google Scholar] [CrossRef]
- Ma, J.; Yadin, B.; Girolami, D.; Vedral, V.; Gu, M. Converting Coherence to Quantum Correlations. Phys. Rev. Lett. 2016, 116, 160407. [Google Scholar] [CrossRef]
- Hillery, M. Coherence as a resource in decision problems: The Deutsch-Josza algorithm and a variation. Phys. Rev. A 2016, 93, 012111. [Google Scholar] [CrossRef]
- Deutsch, D.; Jozsa, R. Rapid solutions of problems by quantum computation. Proc. R. Soc. Lond. A 1992, 439, 553. [Google Scholar]
- Biham, E.; Biham, O.; Biron, D.; Grassl, M.; Lidar, D.A. Analysis of Generalized Grover’s Quantum Search Algorithms Using Recursion Equations. Phys. Rev. A 1999, 60, 2742. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Shang, J.; Zhang, X. Coherence Depletion in Quantum Algorithms. Entropy 2019, 21, 260. [Google Scholar] [CrossRef]
- Kapoor, A.; Wiebe, N.; Svore, K. Adcances in Neural Information Processing Systems. In Proceedings of the 30th Annual Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Du, Y.; Hsieh, M.-H.; Liu, T.; Tao, D. Implementable Quantum Classifier for Nonlinear Data. arXiv 2018, arXiv:1809.06056. [Google Scholar]
- Ma, T.; Zhao, M.-J.; Zhang, H.-J.; Fei, S.-M.; Long, G.-L. Accessible Coherence and Coherence Distribution. Phys. Rev. A 2017, 95, 042328. [Google Scholar] [CrossRef]
- Xi, Z. Coherence distribution in multipartite systems. J. Phys. A Math. Theor. 2018, 51, 414016. [Google Scholar] [CrossRef]
- Chandrashekar, R.; Manikandan, P.; Segar, J.; Byrnes, T. Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 2016, 116, 150504. [Google Scholar]
- Rungta, P.; Buzek, V.; Caves, C.M.; Hillery, M.; Milburn, G.J. Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 2001, 64, 042315. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245. [Google Scholar] [CrossRef]
- Carvalho, A.R.R.; Mintert, F.; Buchleitner, A. Decoherence and multipartite entanglement. Phys. Rev. Lett. 2004, 93, 230501. [Google Scholar] [CrossRef]
- Scarani, V. Quantum Physics—A First Encounter: Interference, Entanglement, and Reality; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Rosenblatt, P. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386. [Google Scholar] [CrossRef]
- Berlinet, A.; Thomas-Agnan, C. Reproducing Kernel Hilbert Spaces in Probability and Statistics; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Mitarai, K.; Negoro, M.; Kitagawa, M.; Fujii, K. Quantum Circuit Learning. Phys. Rev. A 2019, 98, 032309. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namkung, M.; Kwon, Y. Coherence and Entanglement Dynamics in Training Variational Quantum Perceptron. Entropy 2020, 22, 1277. https://doi.org/10.3390/e22111277
Namkung M, Kwon Y. Coherence and Entanglement Dynamics in Training Variational Quantum Perceptron. Entropy. 2020; 22(11):1277. https://doi.org/10.3390/e22111277
Chicago/Turabian StyleNamkung, Min, and Younghun Kwon. 2020. "Coherence and Entanglement Dynamics in Training Variational Quantum Perceptron" Entropy 22, no. 11: 1277. https://doi.org/10.3390/e22111277
APA StyleNamkung, M., & Kwon, Y. (2020). Coherence and Entanglement Dynamics in Training Variational Quantum Perceptron. Entropy, 22(11), 1277. https://doi.org/10.3390/e22111277