Evolution of Classical and Quantum States in the Groupoid Picture of Quantum Mechanics
Abstract
:1. Introduction
2. Birkhoff–von Neumann’s Algebra of Propositions
- 1
- the relation ⊆ is a partial order;
- 2
- contains two special propositions: E, which always allows the passage of the system (tautology), and ∅, which never permits the passage of the system (absurd);
- 3
- the pair is a lattice, i.e., given , there exists the least upper bound of P and Q, denoted as , and the greatest lower bound, ;
- 4
- the lattice is orthocomplemented, i.e., for any , there is another proposition such that:
- (a)
- , and ;
- (b)
- , , ;
- (c)
- .
- and ;
- , if .
3. The Groupoid Formalism for Physical Systems
3.1. Schwinger’s Selective Measurements and Groupoids
- Associativity: ;
- Units: and ;
- Inverse: and .
3.2. The Algebra of Transitions and the Birkhoff–von Neumann Algebra of Propositions
- Reflexivity: ⇒;
- Transitivity: , i.e., and , ⇒, i.e., ;
- Antisymmetry: and , i.e., and , ⇒, i.e., .
- ; ;
- ⇔ (as it follows from: ).
3.3. States in the Groupoid Picture
4. Composition of Classical and Quantum Systems
4.1. Classical Systems
4.2. Composition
5. Separable States and Unitary Evolution
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Descripton of Physical Reality be Considered Complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G. Schwinger’s Picture of Quantum Mechanics IV: Composition and independence. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050058. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften 1935, 48, 807–812. [Google Scholar] [CrossRef]
- Chitambar, E.; Gour, G. Quantum resource theories. Rev. Modern Phys. 2019, 91, 025001. [Google Scholar] [CrossRef] [Green Version]
- Raggio, G.A. States and Composite Systems in W*-algebraic Quantum Mechanics. Ph.D. Thesis, ETH Zurich, No. 6824. ADAG Administration & Druck AG, Zurich, Switzerland, 1981. [Google Scholar]
- Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G. Schwinger’s Picture of Quantum Mechanics. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050054. [Google Scholar] [CrossRef] [Green Version]
- Ciaglia, F.M.; Ibort, A.; Marmo, G. A gentle introduction to Schwinger’s formulation of quantum mechanics: The groupoid picture. Mod. Phys. Lett. A 2018, 33, 1850122–1850128. [Google Scholar] [CrossRef]
- Ciaglia, F.M.; Ibort, A.; Marmo, G. Schwinger’s Picture of Quantum Mechanics I: Groupoids. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950119. [Google Scholar] [CrossRef]
- Ciaglia, F.M.; Ibort, A.; Marmo, G. Schwinger’s Picture of Quantum Mechanics II: Algebras and Observables. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950136. [Google Scholar] [CrossRef]
- Ciaglia, F.M.; Ibort, A.; Marmo, G. Schwinger’s Picture of Quantum Mechanics III: The Statistical Interpretation. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950165. [Google Scholar] [CrossRef] [Green Version]
- Birkhoff, G.; Von Neumann, J. The Logic of Quantum Mechanics. Ann. Math. 1936, 37, 823–843. [Google Scholar] [CrossRef]
- Jauch, J.M. Foundations of Quantum Mechanics; Addison-Wesley: Reading, MA, USA, 1952. [Google Scholar]
- von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- von Neumann, J. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1927, 102, 245–272. [Google Scholar]
- Schwinger, J. Quantum Kinematics and Dynamics; Westview Press: New York, NY, USA, 2000. [Google Scholar]
- Schwinger, J. The Theory of Quantized Fields I. Phys. Rev. 1951, 82, 914–927. [Google Scholar] [CrossRef]
- Schwinger, J. The Theory of Quantized Fields II. Phys. Rev. 1953, 91, 713–728. [Google Scholar] [CrossRef] [Green Version]
- Schwinger, J. The Theory of Quantized Fields III. Phys. Rev. 1953, 91, 728–740. [Google Scholar] [CrossRef]
- Schwinger, J. The Theory of Quantized Fields IV. Phys. Rev. 1953, 92, 1283–1300. [Google Scholar] [CrossRef]
- Schwinger, J. The Theory of Quantized Fields V. Phys. Rev. 1954, 93, 615–624. [Google Scholar] [CrossRef]
- Schwinger, J. The Theory of Quantized Fields VI. Phys. Rev. 1954, 94, 1362–1384. [Google Scholar] [CrossRef]
- Renault, J. A Groupoid Approach to C*-Algebras; Springer: Berlin, Germany, 1980. [Google Scholar]
- Connes, A. Noncommutative Geometry; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Marchetti, P.A.; Rubele, R. Quantum Logic and Non-Commutative Geometry. Int. J. Theor. Phys. 2007, 46, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Ibort, A.; Rodriguez, M.A. An Introduction to the Theory of Groups, Groupoids and Their Representations; CRC: Boca Raton, FL, USA, 2019. [Google Scholar]
- Sorkin, R.D. Quantum mechanics as quantum measure theory. Modern Phys. Lett. A 1994, 9, 3119–3127. [Google Scholar] [CrossRef] [Green Version]
- Lieb, E.H.; Yngvason, J. The physics and mathematics of the second law of thermodynamics. Phys. Rep. 1999, 310, 1–96. [Google Scholar] [CrossRef] [Green Version]
- Lieb, E.H.; Yngvason, J. Visions in Mathematics; Birkäuser Verlag: Basel, Switzerland, 2000; Chapter The Mathematics of the Second Law of Thermodynamics; pp. 334–358. [Google Scholar]
- Takesaki, M. Theory of Operator Algebras I; Springer: Berlin, Germany, 2002. [Google Scholar]
- Haag, R. Local Quantum Physics: Fields, Particles, Algebras; Springer: Berlin, Germany, 1996. [Google Scholar]
- Baez, J. Bell’s Inequality for C*-Algebras. Lett. Math. Phys. 1987, 13, 135–136. [Google Scholar] [CrossRef]
- Raggio, G.A. A Remark on Bell’s Inequality and Decomposable Normal States. Lett. Math. Phys. 1988, 15, 27–29. [Google Scholar] [CrossRef]
- Gurvits, L.; Barnum, H. Separable balls around the maximally mixed multipartite quantum state. Phys. Rev. A 2003, 68, 042312. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G. Evolution of Classical and Quantum States in the Groupoid Picture of Quantum Mechanics. Entropy 2020, 22, 1292. https://doi.org/10.3390/e22111292
Ciaglia FM, Di Cosmo F, Ibort A, Marmo G. Evolution of Classical and Quantum States in the Groupoid Picture of Quantum Mechanics. Entropy. 2020; 22(11):1292. https://doi.org/10.3390/e22111292
Chicago/Turabian StyleCiaglia, Florio M., Fabio Di Cosmo, Alberto Ibort, and Giuseppe Marmo. 2020. "Evolution of Classical and Quantum States in the Groupoid Picture of Quantum Mechanics" Entropy 22, no. 11: 1292. https://doi.org/10.3390/e22111292
APA StyleCiaglia, F. M., Di Cosmo, F., Ibort, A., & Marmo, G. (2020). Evolution of Classical and Quantum States in the Groupoid Picture of Quantum Mechanics. Entropy, 22(11), 1292. https://doi.org/10.3390/e22111292