Distribution of Node Characteristics in Evolving Tripartite Network
Abstract
:1. Introduction
1.1. Related Works
1.2. Contribution
1.3. Paper Structure
2. The Model
2.1. Growth of the Network
2.1.1. The Addition of a New User
2.1.2. The Addition of a New Object
2.1.3. The Addition of a New Intermediary
2.2. The Changes of Edges’ Weight
2.3. The Changes of the Strength of Nodes
2.3.1. The Decreasing of the Strength of an Object
2.3.2. The Refusal of Intermediary Service
3. Simulations and Results
3.1. Analytical Solution
3.2. Distribution Characteristics and Users’ Choice of Connection to Objects
3.3. The Effect of Canceling a Connection to Some Intermediary
3.4. Effect of Decreasing the Strength of An Intermediary
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. The Distribution of Strength of Objects
Appendix B. The Distribution of Strength of Intermediaries
Appendix C. Data for the Model Validation
Parameter | Assigned Value |
---|---|
The probabilities of an entity formation | p1 = 0.020 the probability of new user formation p2 = 0.010 the probability of new object formation p3 = 0.001 the probability of a new intermediary formation p4 = 0.630 the probability of a creating a new edge between the existing user and an existing object p5 = 0.309 the probability that users will choose an intermediary which they use to go the object p6 = 0.005 the probability of decreasing the strength of an object p7 = 0 probability that the object will refuse to use the service of an intermediary p8 = 0 the probability of decreasing the strength of an intermediary |
The number of newly generated edges | n1 = 2 new user generates n1 edges to intermediaries n2 = 2 new object generates n2 edges to intermediaries n3 = 5 new intermediary generates n3 edges from intermediary to object n4 = 1 n4 existing users will join existing objects n5 = 1 user choose n5 intermediariesm = number of objects that the user will contact after he the chooses them on this intermediary n6 = 2 the reduction in the strength of n6 objects n7 = 1 the number of edges removed after an object will not want further to use services of intermediaries n8 = 1 the reduction in the strength of n8 intermediaries |
The weights of new edges | ω0 = 0.3 the weight of a new edge from user to object μ0 = 0.2 the weight of a new edge from intermediary to object ε0 = 0.3 the weight of a new edge strength from a user to an intermediary |
Local shifts of weight of edges | δ1 = 0.0020 parameter of increasing of weight of relevant existing edges influenced by creation of a new edge from a new user to an intermediary δ2 = 0.0020 parameter of increasing of weight of relevant existing edges influenced by creation of a new edge from a new object to an intermediary δ3 = 0.0010 parameter of increasing of weight of relevant existing edges influenced by creation of a new edge from intermediary to object δ4 = 0.0010 parameter of increasing of weight of relevant existing edges influenced by creation of a new edge from a user to an intermediary δ = 0.0001 parameter of increasing of weight of relevant existing edges influenced by creation of a new edge from the intermediary to the object |
Parameter of relevant node strength decreasing | γ1 = 0.01 parameter of object strength decreasing γ2 = 0.01 parameter of intermediary strength decreasing |
Initial values for simulations | U0 = 50, V0 = 5, E0 = 10 |
References
- Otsuka, M.; Tsugawa, S. Robustness of network attack strategies against node sampling and link errors. PLoS ONE 2019, 14, e0221885. [Google Scholar] [CrossRef] [PubMed]
- Naylor, L.; Brady, U.; Quinn, T.; Brown, K.; Anderies, J.M. A multiscale analysis of social-ecological system robustness and vulnerability in Cornwall, UK. Reg. Environ. Chang. 2019, 19, 1835–1848. [Google Scholar] [CrossRef] [Green Version]
- Šiljak, D.D. Dynamic graphs. Nonlinear Anal. Hybrid Syst. 2008, 2, 544–567. [Google Scholar] [CrossRef]
- De Lellis, P.; DiMeglio, A.; Garofalo, F.; Iudice, F.L. The evolving cobweb of relations among partially rational investors. PLoS ONE 2017, 12, e0171891. [Google Scholar]
- Zhou, C.; Kurths, J. Dynamical Weights and Enhanced Synchronization in Adaptive Complex Networks. Phys. Rev. Lett. 2006, 96, 164102. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.J. The Structure and Function of Complex Networks. SIAM Rev. 2003, 45, 167–256. [Google Scholar] [CrossRef] [Green Version]
- Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef] [Green Version]
- Dorogovtsev, S.; Mendes, J.F. Evolution of networks. Adv. Phys. 2002, 51, 1079–1187. [Google Scholar] [CrossRef] [Green Version]
- Souza, P.J.P.; Comin, C.H.; Costa, L.D.F. Topology and dynamics in complex networks: The role of edge reciprocity. EPL (Europhys. Lett.) 2018, 122, 12001. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.-L.; Small, M.; Lao, S. Dynamical Systems Induced on Networks Constructed from Time Series. Entropy 2015, 17, 6433–6446. [Google Scholar] [CrossRef] [Green Version]
- Zufiria, P.J.; Barriales-Valbuena, I. Analysis of Basic Features in Dynamic Network Models. Entropy 2018, 20, 681. [Google Scholar] [CrossRef] [Green Version]
- Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 2009, 81, 591–646. [Google Scholar] [CrossRef] [Green Version]
- Strogatz, S. Exploring complex networks. Nature 2001, 410, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, M.; Yang, H.; Feng, J.; Guo, W.; Le, Z.; Lande, D.; Manko, D. Preferential information dynamics model for online social networks. Phys. A Stat. Mech. Its Appl. 2018, 506, 993–1005. [Google Scholar] [CrossRef]
- Dorogovtsev, S.; Mendes, J. Evolution of Networks; Oxford University Press (OUP): New York, NY, USA, 2003. [Google Scholar]
- Hou, R.; Wu, J.; Du, H.S. Customer social network affects marketing strategy: A simulation analysis based on competitive diffusion model. Phys. A Stat. Mech. Its Appl. 2017, 469, 644–653. [Google Scholar] [CrossRef] [Green Version]
- Nikakhtar, N.; Jianzheng, Y. Impact of network on E-commerce economy, Analysis on a price competition model. Life Sci. J. 2013, 10, 2801–2808. [Google Scholar]
- Wan, C.; Li, T.; Guan, Z.-H.; Wang, Y.; Liu, X. Spreading dynamics of an e-commerce preferential information model on scale-free networks. Phys. A Stat. Mech. Its Appl. 2017, 467, 192–200. [Google Scholar] [CrossRef]
- Pongnumkul, S.; Motohashi, K. A bipartite fitness model for online music streaming services. Phys. A Stat. Mech. Its Appl. 2018, 490, 1125–1137. [Google Scholar] [CrossRef]
- De Silva, E.; Stumpf, M.P.H. Complex networks and simple models in biology. J. R. Soc. Interface 2005, 2, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.D.F.; Rodrigues, F.; Cristino, A.S. Complex networks: The key to systems biology. Genet. Mol. Boil. 2008, 31, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Mall, R.; Cerulo, L.; Bensmail, H.; Iavarone, A.; Ceccarelli, M. Detection of statistically significant network changes in complex biological networks. BMC Syst. Boil. 2017, 11, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barabási, A.-L.; Gulbahce, N.; Loscalzo, J. Network medicine: A network-based approach to human disease. Nat. Rev. Genet. 2011, 12, 56–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, S.Y.; Loscalzo, J. The emerging paradigm of network medicine in the study of human disease. Circ. Res. 2012, 111, 359–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Liu, Q.; Wang, L.; Wang, X. Prediction of competitive diffusion on complex networks. Phys. A Stat. Mech. Its Appl. 2018, 507, 12–21. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Small, M.; Moore, J.M. Review mechanism promotes knowledge transmission in complex networks. Appl. Math. Comput. 2019, 340, 113–125. [Google Scholar] [CrossRef]
- Spadon, G.; Brandoli, B.; Eler, D.M.; Rodrigues-Jr, J.F. Detecting multi-scale distance-based inconsistencies in cities through complex-networks. J. Comput. Sci. 2019, 30, 209–222. [Google Scholar] [CrossRef]
- Liu, W.; Liu, C.; Yang, Z.; Liu, X.; Zhang, Y.; Wei, Z. Modeling the propagation of mobile malware on complex networks. Commun. Nonlinear Sci. Numer. Simul. 2016, 37, 249–264. [Google Scholar] [CrossRef]
- Li, W.; Cai, X. Statistical analysis of airport network of China. Phys. Rev. E 2004, 69, 046106. [Google Scholar] [CrossRef] [Green Version]
- Drlik, M.; Beranek, L. The role of an online social network in informal learning. In Proceedings of the 12th International Conference on Efficiency and Responsibility in Education (ERIE), Prague, Czech Republic, 5–6 June 2015; pp. 81–88. [Google Scholar]
- Saavedra, S.; Reed-Tsochas, F.; Uzzi, B. A simple model of bipartite cooperation for ecological and organizational networks. Nature 2008, 457, 463–466. [Google Scholar] [CrossRef]
- Chandra, A.; Garg, H.; Maiti, A. A general growth model for online emerging user–object bipartite networks. Phys. A Stat. Mech. Its Appl. 2019, 517, 370–384. [Google Scholar] [CrossRef]
- Li-Xin, T.; He, Y.; Liu, H.; Du, R. A general evolving model for growing bipartite networks. Phys. Lett. A 2012, 376, 1827–1832. [Google Scholar]
- Koskinen, J.; Edling, C. Modelling the evolution of a bi-partite network Peer referral in interlocking directorates*. Soc. Networks 2012, 34, 309–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medo, M.; Mariani, M.S.; Lü, L. Link Prediction in Bipartite Nested Networks. Entropy 2018, 20, 777. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.-X.; Zhang, Z.-K.; Liu, C. An evolving model of online bipartite networks. Phys. A Stat. Mech. Its Appl. 2013, 392, 6100–6106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Dai, M.; Li, L.; Zhang, C. Distribution characteristics of weighted bipartite evolving networks. Phys. A Stat. Mech. Its Appl. 2015, 428, 340–350. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Halgin, D.S. On Network Theory. Organiz. Sci. 2011, 22, 1168–1181. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Liu, Y.; Liu, J.; Cai, Y.; Su, H.; Zheng, H. From the Periphery to the Core: Information Brokerage in an Evolving Network. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}, International Joint Conferences on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3912–3918. [Google Scholar]
- Moraga-Gonzalez, J.L.; Wildenbeest, M.R. Comparison Sites, IESE Business School Working Paper No. 933. 1 July 2011. Available online: https://ssrn.com/abstract=1947292 (accessed on 22 January 2020).
- Barabasi, A.-L.; Albert, R.; Jeong, H. Mean-field theory for scale-free random networks. Phys. A Stat. Mech. Its Appl. 1999, 272, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Ikematsu, K.; Murata, T. A Fast Method for Detecting Communities from Tripartite Networks. In Formal Aspects of Component Software; Springer Science and Business Media LLC: New York, NY, USA, 2013; Volume 8238, pp. 192–205. [Google Scholar]
- Liang Liang Feng Tsinghua University; Qianchuan Qianchuan Zhao Tsinghua University; Cangqi Cangqi Zhou Nanjing University of Science and Technology. An efficient method to find communities in K -partite networks. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, BC, Canada, 27–30 August 2019; p. 534. [Google Scholar]
- Altiparmakis, A.; Hutter, S.; Kriesi, H. Greece—Punctuated Equilibrium: The Restructuring of Greek Politics. In European Party Politics in Times of Crisis; Cambridge University Press (CUP): Cambridge, UK, 2019; pp. 95–117. [Google Scholar]
- Barrat, A.; Barthelemy, M.; Vespignani, A. Modeling the evolution of weighted networks. Phys. Rev. E 2004, 70, 066149. [Google Scholar] [CrossRef] [Green Version]
- Yook, S.H.; Jeong, H.; Barabási, A.-L.; Tu, Y. Weighted Evolving Networks. Phys. Rev. Lett. 2001, 86, 5835–5838. [Google Scholar] [CrossRef] [Green Version]
- Barrat, A.; Barthelemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 2004, 101, 3747–3752. [Google Scholar] [CrossRef] [Green Version]
- DALL’ASTA, L. Phenomenes Dynamiques Sur Des Reseaux Complexes. Ph.D. Thesis, University of Paris, Paris, France, June 2006. [Google Scholar]
- CERNY, Ales. E-shop War: Alza the Biggest e-shop Leaves the Biggest Price Comparator Heureka: (in Czech). iDnes [online]. 2016. 5-19-2016. Available online: https://www.idnes.cz/ekonomika/domaci/alza-opousti-heureku-a-vyzyva-k-tomu-i-ostatni.A160519_153822_ekonomika_rny (accessed on 14 September 2019).
- Ravi, S.; Ruth, C.K. Revisit the Debate on Intermediation, Disintermediation and Reintermediation due to E-commerce. Electron. Markets 2003, 13, 153–162. [Google Scholar]
- Burt, R. The Network Entrepreneur. In Entrepreneurship; Swedberg, R., Ed.; Oxford Management Readers: Oxford, UK, 2000; pp. 281–307. [Google Scholar]
- Cardoso, F.M.; Gracia-Lazaro, C.; Moisan, F.; Goyal, S.; Sanchez, A.; Moreno, Y. Trading in Complex Networks. Economics Physics 2019. [Google Scholar] [CrossRef]
- Jung, K.; Cho, Y.C.; Lee, S. Online shoppers’ response to price comparison sites. J. Bus. Res. 2014, 67, 2079–2087. [Google Scholar] [CrossRef]
- Hase, R.; Shinomiya, N. A mathematical modeling technique with network flows for social welfare maximization in deregulated electricity markets. Oper. Res. Perspect. 2016, 3, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Lemionet, A.; Venugopa, V. Link Prediction in the Pinterest Network, 2011, Stanford, Project Proposals. Available online: http://snap.stanford.edu/cs224w-17-data/best-proposals-16/cs224w-project-proposal-poorna-amelia-viswa.pdf (accessed on 22 January 2020).
- Masayasu, K. Bank-Insurer-Firm Tripartite Interconnectedness of Credit Risk Exposures in a Cross-Shareholding Network 2018. Risk Manage. 2018, 20, 273–303. [Google Scholar]
- Neubauer, N.; Obermayer, K. Tripartite community structure in social bookmarking data. New Rev. Hypermedia Multimedia 2011, 17, 267–294. [Google Scholar] [CrossRef]
- Manlove, K.; Aiello, C.; Sah, P.; Cummins, B.; Hudson, P.J.; Cross, P.C. The ecology of movement and behaviour: A saturated tripartite network for describing animal contacts. Proc. R. Soc. B-Biol. Sci. 2018, 285, 20180670. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Jia, C.; Wang, X.; Liu, J.; Xu, S.; Liu, Y.; Yang, C. Exploring all-author tripartite citation networks: A case study of gene editing. J. Inf. 2019, 13, 856–873. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, Q.; Lu, L.; Mariania, M.S. Recommending investors for new startups by integrating network diffusion and investors’ domain preference. Inf. Sci. 2020, 515, 103–1157. [Google Scholar] [CrossRef] [Green Version]
- Anaconda. 2019. Available online: https://www.anaconda.com/distribution/ (accessed on 22 January 2020).
- Beranek, L.; Remes, R. E-commerce network with price comparator sites. In Proceedings of the 2019 9th International Conference on Advanced Computer Information Technologies (ACIT), Ceske Budejovice, Czechia, 5–7 June 2019; Institute of Electrical and Electronics Engineers (IEEE): Los Alamitos, CA, USA, 2019; pp. 401–404. [Google Scholar]
- Beranek, L.; Hanzal, P. Price comparison sites and their influence on e-commerce processes. In Proceedings of the 35th International Conference Mathematical Methods in Economics (MME), Hradec Kralove, Czech Republic, 13–15 September 2017; pp. 48–53. [Google Scholar]
- Michal, P.; Klimek, P.; Jurickova, E.; Palka, P. Comparison shopping agents and Czech online customers’ shopping behavior. Int. J. Entrep. Knowl. 2016, 4, 62–69. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beranek, L.; Remes, R. Distribution of Node Characteristics in Evolving Tripartite Network. Entropy 2020, 22, 263. https://doi.org/10.3390/e22030263
Beranek L, Remes R. Distribution of Node Characteristics in Evolving Tripartite Network. Entropy. 2020; 22(3):263. https://doi.org/10.3390/e22030263
Chicago/Turabian StyleBeranek, Ladislav, and Radim Remes. 2020. "Distribution of Node Characteristics in Evolving Tripartite Network" Entropy 22, no. 3: 263. https://doi.org/10.3390/e22030263