Role of Waste Cost in Thermoeconomic Analysis
Abstract
:1. Introduction
2. Thermoeconomic Methodologies
2.1. General Cost-Balance Equation for an Equipment in Power Plant
2.2. Specific Exergy Costing (SPECO)
2.3. Modified Productive Structure Analysis (MOPSA)
3. Case Studies
3.1. Plants Description
3.2. Overall Cost-Balance Equation of Coal-Fired Power Plant and CGAM System by SPECO and MOPSA
4. Calculation Results
4.1. Unit Costs of Products Calculated by the SPECO and MOPSA
4.2. A Remedy for the Thermoeconomic Method
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chang, H. Exergy analysis and exergoeconomic analysis of an ethylene process. J. Sci. Eng. 2001, 4, 94–104. [Google Scholar]
- Lazzaretto, A.; Tsatsaronis, G. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy 2006, 31, 1257–1289. [Google Scholar] [CrossRef]
- von Spakovsky, M.R.; Evans, R.B. Engineering functional analysis—Part I. ASME J. Energy Resour. Technol. 1993, 155, 86–92. [Google Scholar] [CrossRef]
- Tsatsaronis, G.; Lin, L. On exergy costing in exergoeconomics. In Computer-Aided Energy Systems Analysis; ASME: New York, NY, USA, 1990; pp. 1–11. [Google Scholar]
- Lozano, M.A.; Valero, A. Theory of exergetic cost. Energy 1993, 18, 939–960. [Google Scholar] [CrossRef]
- Frangopoulos, C.A. Thermoeconomic functional analysis and optimization. Energy 1987, 12, 563–571. [Google Scholar] [CrossRef]
- Kim, S.M.; Oh, S.D.; Kwon, Y.H.; Kwak, H.Y. Exergoeconomic analysis of thermal systems. Energy 1998, 23, 393–406. [Google Scholar] [CrossRef]
- Rosen, M.A.; Dincer, I. Exergy-cost-energy-mass analysis of thermal systems and processes. Energy Convers. Manag. 2003, 44, 1633–1651. [Google Scholar] [CrossRef]
- Uysal, C.; Kurt, H.; Kwak, H.Y. Exergetic and thermoeconomic analyses of a coal-fired power plant. Int. J. Therm. Sci. 2017, 117, 106–120. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Kwak, H.Y.; Oh, S.D. Exergoeconomic analysis of gas turbine cogeneration systems. Exergy Int. J. 2001, 1, 31–40. [Google Scholar] [CrossRef]
- Haydargil, D.; Abusoglu, A. A comparative thermoeconomic cost accounting analysis and evaluation of biogas engine-powered cogeneration. Energy 2018, 159, 97–114. [Google Scholar] [CrossRef]
- Dos Santos, R.G.; De Faria, P.R.; Santos, J.J.C.S.; Da Silva, J.A.M.; Donatelli, J.L.M. The Effect of the Thermodynamic Models on the Thermoeconomic Results for Cost Allocation in a Gas Turbine Cogeneration System. Eng. Térmica (Therm. Eng.) 2015, 14, 47–52. [Google Scholar] [CrossRef]
- Valero, A.; Serra, L.; Uche, J. Fundamentals of exergy cost accounting and thermoeconomics. Part. 1: theory. J. Energy Resour. Technol. 2006, 128, 1–8. [Google Scholar] [CrossRef]
- Da Silva, J.A.M.; Santos, J.J.C.S.; Carvalho, M.; De Oliveira, S. On the thermoeconomic and LCA methods for waste and fuel allocation in multiproduct systems. Energy 2017, 127, 775–785. [Google Scholar] [CrossRef]
- Fortes, A.F.C.; Carvalho, M.; da Silva, J.A.M. Environmental impact and cost allocations for a dual product heat pump. Energy Convers. Manag. 2018, 173, 763–772. [Google Scholar] [CrossRef]
- Uysal, C.; Ozen, D.; Kurt, H.; Kwak, H. A comparative assessment of SPECO and MOPSA on costing of exergy destruction. Int. J. Exergy 2020. (In press) [Google Scholar]
- Torres, C.; Valero, A.; Rangel, V.; Zaleta, A. On the cost formation process of residues. Energy 2008, 33, 144–152. [Google Scholar] [CrossRef]
- Agudelo, A.; Valero, A.; Torres, C. Allocation of waste cost in thermoeconomic analysis. Energy 2012, 45, 634–643. [Google Scholar] [CrossRef]
- Dobrovicescu, A.; Tsatsaronis, G.; Stanciu, D.; Apostol, V. Consideration upon exergy destruction and exergoeconomic analysis of a refrigeration system. Rev. Chim. 2011, 62, 1168–1174. [Google Scholar]
- Seyyedi, S.M.; Ajam, H.; Farahat, S. A new criterion for the allocation of residues cost in exergoeconomic analysis of energy systems. Energy 2010, 35, 3474–3482. [Google Scholar] [CrossRef]
- Moran, J. Availability Analysis: A Guide to Efficient Use; Prentice Hall: Englewood Cliffs, NJ, USA, 1982. [Google Scholar]
- Valero, A. On the exergy costs of present day society. In Proceedings of the ASME Advanced Energy Systems Division; American Society of Mechanical Engineers: New York, NY, USA, 1995; Volume 35, pp. 1–7. [Google Scholar]
- Kwak, H.Y.; Byun, G.T.; Kwon, Y.H.; Yang, H. Cost structure of CGAM cogeneration system. Int. J. Energy Res. 2004, 28, 1145–1158. [Google Scholar] [CrossRef]
- Kwak, H.; Kim, D.J.; Jeon, J.S. Exergetic and thermoeconomic analyses of power plants. Energy 2003, 28, 343–360. [Google Scholar] [CrossRef]
- Lozano, M.A.; Valero, A. Thermoeconomic analysis of gas turbine cogeneration systems. In Proceedings of the ASME Advanced Energy Systems Division; American Society of Mechanical Engineers: New York, NY, USA, 1993; Volume 30, pp. 311–320. [Google Scholar]
- Oh, H.-S.; Lee, Y.; Kwak, H. Diagnosis of combined cycle power plant based on thermoeconomic analysys: A computer simulation study. Entropy 2017, 19, 643. [Google Scholar] [CrossRef] [Green Version]
- Valero, A.; Lozano, M.A.; Serra, L.; Tsatsaronis, G.; Pisa, J.; Frangopoulous, C.; Von Spakovsky, M.R. CGAM problem: Definition and conventional solution. Energy 1994, 19, 279–286. [Google Scholar] [CrossRef]
- Lazzaretto, A.; Tsatsaronis, G. On the quest for objective equations in exergy costing. In Proceedings of the ASME Advanced Energy Systems Division, Dalas, TX, USA, 16–21 November; American Society of Mechanical Engineers: New York, NY, USA, 1997; Volume 37, pp. 197–210. [Google Scholar]
Equipment | ||||||
---|---|---|---|---|---|---|
FAN1 | 0 | 0 | 0 | −2.14 | −2.98 | −3.6 |
FAN2 | 0 | 0 | 0 | −1.39 | −1.91 | −3.6 |
AP | 0 | 0 | 0 | −9.11 | −12.7 | −7.21 |
SB | 0 | −5554.67 | 0 | −710.59 | −988.74 | −83 |
CYC | 0 | 0 | 0 | −8.37 | −11.58 | −10.38 |
RH | 0 | 0 | 0 | −15.15 | −21.14 | −17.32 |
SH1 | 0 | 0 | 0 | −6.41 | −8.94 | −7.21 |
SH2 | 0 | 0 | 0 | −27.70 | −38.59 | −10.82 |
SH3 | 0 | 0 | 0 | −28.81 | −40.12 | −7.21 |
ECO1 | 0 | 0 | 0 | −6.51 | −9.03 | −6.85 |
ECO2 | 0 | 0 | 0 | −3.16 | −4.4 | −6.85 |
PUMP1 | 0 | 0 | 0 | −1.86 | −2.64 | −5.05 |
PUMP2 | 0 | 0 | 0 | −1.95 | −2.71 | −5.05 |
HPH1 | 0 | 0 | 0 | −4.09 | −5.72 | −6.49 |
HPH2 | 0 | 0 | 0 | −21.94 | −30.46 | −6.49 |
DPH | 0 | 0 | 0 | −1.12 | −1.6 | −5.77 |
HPT | 2236.4 | 0 | 0 | −6.23 | −8.72 | −288.71 |
LPT | 4806.73 | 0 | 0 | −10.87 | −15.16 | −245.4 |
COND | 0 | 0 | 851.17 | −49.54 | −68.94 | −61.35 |
CT | 0 | 0 | 0 | −0.07 | −0.09 | −2.88 |
CP | 0 | 0 | 0 | −1.77 | −2.47 | −2.16 |
LPH1 | 0 | 0 | 0 | −4.74 | −6.54 | −8.66 |
LPH2 | 0 | 0 | 0 | −3.53 | −4.89 | −8.66 |
FWT | 0 | 0 | 0 | −1.30 | −1.87 | -3.6 |
G | −7043.13 | 0 | 0 | −0.93 | −1.27 | −198.48 |
Boundary | 0 | 0 | −851.17 | 929.48 | 1293.29 | −310.36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uysal, C.; Kwak, H.-Y. Role of Waste Cost in Thermoeconomic Analysis. Entropy 2020, 22, 289. https://doi.org/10.3390/e22030289
Uysal C, Kwak H-Y. Role of Waste Cost in Thermoeconomic Analysis. Entropy. 2020; 22(3):289. https://doi.org/10.3390/e22030289
Chicago/Turabian StyleUysal, Cuneyt, and Ho-Young Kwak. 2020. "Role of Waste Cost in Thermoeconomic Analysis" Entropy 22, no. 3: 289. https://doi.org/10.3390/e22030289
APA StyleUysal, C., & Kwak, H. -Y. (2020). Role of Waste Cost in Thermoeconomic Analysis. Entropy, 22(3), 289. https://doi.org/10.3390/e22030289