In Praise of Quantum Uncertainty
Abstract
:1. Introduction
2. Immediate Observations
3. Additional Observations
4. Uncertainty and Nonlocality: A Quantum Intimacy
4.1. Nonlocality and Uncertainty in General
4.2. Uncertainty as an Axiom
4.3. Uncertainty, Randomness, and Nonlocality
5. Discussion
- Does any local uncertainty relation (including, e.g., entropic uncertainty relations) correspond to a meaningful bound on nonlocal correlations?
- Is there a finite pathway for deriving tight bounds on quantum correlations?
- How would dynamical nonlocality seem in theories beyond quantum mechanics?
- Are there quantum phenomena which cannot be traced back to quantum uncertainty?
- Are uncertainty and causality the fundamental axioms to begin with (similarly to our analysis in Ref. [1]), or is there a conceptually superior set of axioms?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carmi, A.; Cohen, E. Relativistic independence bounds nonlocality. Sci. Adv. 2019, 5, eaav8370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pati, A.K.; Sahu, P.K. Sum uncertainty relation in quantum theory. Phys. Lett. A 2007, 367, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Maccone, L.; Pati, A.K. Stronger uncertainty relations for all incompatible observables. Phys. Rev. Lett. 2014, 113, 260401. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Fei, S.M. Sum uncertainty relations for arbitrary N incompatible observables. Sci. Rep. 2015, 5, 14238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirschman, I. A note on entropy. Am. J. Math. 1957, 79, 152–156. [Google Scholar] [CrossRef]
- Beckner, W. Inequalities in Fourier analysis. Ann. Math. 1975, 159–182. [Google Scholar] [CrossRef]
- Białynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975, 44, 129–132. [Google Scholar] [CrossRef]
- Deutsch, D. Uncertainty in quantum measurements. Phys. Rev. Lett. 1983, 50, 631. [Google Scholar] [CrossRef]
- Maassen, H.; Uffink, J. Generalized entropic uncertainty relations. Phys. Rev. Lett. 1988, 60, 1103. [Google Scholar] [CrossRef]
- Wang, D.; Ming, F.; Hu, M.L.; Ye, L. Quantum-Memory-Assisted Entropic Uncertainty Relations. Ann. Phys. (Berl.) 2019, 531, 1900124. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.N.; Wang, D.; Ye, L. Characterization of dynamical measurement’s uncertainty in a two-qubit system coupled with bosonic reservoirs. Phys. Lett. A 2019, 383, 977–984. [Google Scholar] [CrossRef]
- Sponar, S.; Hasegawa, Y. Measurements of Entropic Uncertainty Relations in Neutron Optics. Appl. Sci. 2020, 10, 1087. [Google Scholar]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef] [Green Version]
- Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S. Bell nonlocality. Rev. Mod. Phys. 2014, 86, 419–478. [Google Scholar] [CrossRef] [Green Version]
- Genovese, M.; Gramegna, M. Quantum Correlations and Quantum Non-locality: A review and a few new ideas. Appl. Sci. 2019, 9, 5406. [Google Scholar] [CrossRef] [Green Version]
- Paneru, D.; Cohen, E.; Fickler, R.; Boyd, R.W.; Karimi, E. Entanglement: Quantum or Classical? arXiv 2019, arXiv:1911.02201. [Google Scholar]
- De Broglie, L. Onde et quanta. Comptes Rendus 1923, 177, 507. [Google Scholar]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems & Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179. [Google Scholar]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661. [Google Scholar] [CrossRef] [Green Version]
- Feynman, R. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Deutsch, D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 1985, 400, 97–117. [Google Scholar] [CrossRef]
- Wheeler, J.A.; Zurek, W.H. Quantum Theory and Measurement; Princeton University Press: Princeton, NJ, USA, 1984. [Google Scholar]
- Scully, M.; Drühl, K. Quantum eraser: A proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Phys. Rev. A 1982, 25, 2208. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yu, R.; Kulik, S.P.; Shih, Y.; Scully, M.O. Delayed “choice” quantum eraser. Phys. Rev. Lett. 2000, 84, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elitzur, A.C.; Cohen, E.; Shushi, T. The Too-Late-Choice Experiment: Bell’s Proof within a Setting where the Nonlocal Effect’s Target is an Earlier Event. Int. J. Quantum Found. 2016, 2, 32–46. [Google Scholar]
- Aharonov, Y.; Pendleton, H.; Petersen, A. Modular variables in quantum theory. Int. J. Theor. Phys. 1969, 2, 213–230. [Google Scholar] [CrossRef]
- Aharonov, Y.; Pendleton, H.; Petersen, A. Deterministic quantum interference experiments. Int. J. Theor. Phys. 1970, 3, 443–448. [Google Scholar] [CrossRef]
- Aharonov, Y.; Cohen, E.; Colombo, F.; Landsberger, T.; Sabadini, I.; Struppa, D.C.; Tollaksen, J. Finally making sense of the double-slit experiment. Proc. Natl. Acad. Sci. USA 2017, 114, 6480–6485. [Google Scholar] [CrossRef] [Green Version]
- De Gosson, M. Phase space quantization and the uncertainty principle. Phys. Lett. A 2003, 317, 365–369. [Google Scholar] [CrossRef]
- Moldoveanu, F. Derivation of Quantum Mechanics algebraic structure from invariance of the laws of Nature under system composition and Leibniz identity. arXiv 2015, arXiv:1505.05577. [Google Scholar]
- Elitzur, A.C.; Cohen, E. Quantum oblivion: A master key for many quantum riddles. Int. J. Quant. Inf. 2015, 12, 1560024. [Google Scholar] [CrossRef] [Green Version]
- Elitzur, A.; Cohen, E. 1-1=Counterfactual: On the potency and significance of quantum non-events. Philos. Trans. Roy. Soc. A 2016, 374, 20150242. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Albert, D.Z.; Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 1988, 60, 1351–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diosi, L. Weak measurements in quantum mechanics. arXiv 2005, arXiv:quant-ph/0505075. [Google Scholar]
- Berry, M.V.; Shukla, P. Typical weak and superweak values. J. Phys. A 2010, 43, 354024. [Google Scholar] [CrossRef]
- Hosoya, A.; Shikano, Y. Strange weak values. J. Phys. A 2010, 43, 385307. [Google Scholar] [CrossRef]
- Pati, A.K.; Wu, J. Conditions for Anomalous Weak Value. arXiv 2014, arXiv:1410.5221. [Google Scholar]
- Pusey, M.F. Anomalous weak values are proofs of contextuality. Phys. Rev. Lett. 2014, 113, 200401. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Cohen, E.; Carmi, A.; Elitzur, A.C. Extraordinary interactions between light and matter determined by anomalous weak values. Proc. R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20180030. [Google Scholar] [CrossRef]
- Elitzur, A.C.; Vaidman, L. Quantum mechanical interaction-free measurements. Found. Phys. 1993, 23, 987–997. [Google Scholar] [CrossRef] [Green Version]
- Misra, B.; Sudarshan, E.C.G. The Zeno’s paradox in quantum theory. J. Math. Phys. 1977, 18, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 1959, 115, 485. [Google Scholar] [CrossRef]
- Carmi, A.; Cohen, E.; Maccone, L.; Nikolic, H. Knowledge of Quantum Hidden Variables Enables Backwards-In-Time Signaling. arXiv 2019, arXiv:1903.01349. [Google Scholar]
- Elitzur, A.C.; Dolev, S. Quantum phenomena within a new theory of time. In Quo Vadis Quantum Mechanics? Springer: Berlin, Germany, 2005; pp. 325–349. [Google Scholar]
- Duck, I.; Sudarshan, E.C.G. Toward an understanding of the spin-statistics theorem. Am. J. Phys. 1998, 66, 284–303. [Google Scholar] [CrossRef]
- Shimony, A. Controllable and uncontrollable non-locality. In Proceedings of the International Symposium Foundations of Quantum Mechanics in the Light of New Technology: Central Research Laboratory, Tokyo, Japan, 29–31 August 1983; pp. 225–230. [Google Scholar]
- Shimony, A. Events and processes in the quantum world. In Quantum Concepts in Space and Time; Penrose, R., Isham, C.J., Eds.; Oxford University Press: New York, NY, USA, 1986; pp. 182–203. [Google Scholar]
- Aharonov, Y. Unpublished Lecture Notes; Tel Aviv University.
- Aharonov, Y. Non-local phenomena and the Aharonov-Bohm effect. In Proceedings of the International Symposium Foundations of Quantum Mechanics in the Light of New Technology, Tokyo, Japan, 29–31 August 1983. [Google Scholar]
- Aharonov, Y.; Cohen, E.; Shushi, T. Accommodating Retrocausality with Free Will. Quanta 2016, 5, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Oppenheim, J.; Wehner, S. The uncertainty principle determines the nonlocality of quantum mechanics. Science 2010, 330, 1072–1074. [Google Scholar] [CrossRef] [Green Version]
- Ben-Menahem, Y. Locality and determinism: The odd couple. In Probability in Physics, 1st ed.; Springer: Berlin, Germany, 2012; pp. 149–165. [Google Scholar]
- Hofmann, H.F. Local measurement uncertainties impose a limit on nonlocal quantum correlations. Phys. Rev. A 2019, 100, 012123. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Yu, S. No disturbance without uncertainty as a physical principle. arXiv 2019, arXiv:1906.11807. [Google Scholar]
- Carmi, A.; Cohen, E. On the significance of the quantum mechanical covariance matrix. Entropy 2018, 20, 500. [Google Scholar] [CrossRef] [Green Version]
- Tsirel’son, B.S. Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Sov. Math. 1987, 36, 557–570. [Google Scholar] [CrossRef]
- Landau, L.J. Empirical two-point correlation functions. Found. Phys. 1988, 18, 449–460. [Google Scholar] [CrossRef]
- Masanes, L. Necessary and sufficient condition for quantum-generated correlations. arXiv 2003, arXiv:quant-ph/0309137. [Google Scholar]
- Te’eni, A.; Peled, B.Y.; Cohen, E.; Carmi, A. Multiplicative Bell inequalities. Phys. Rev. A 2019, 99, 040102. [Google Scholar] [CrossRef] [Green Version]
- Carmi, A.; Herasymenko, Y.; Cohen, E.; Snizhko, K. Bounds on nonlocal correlations in the presence of signaling and their application to topological zero modes. New J. Phys. 2019, 21, 073032. [Google Scholar] [CrossRef] [Green Version]
- Peled, B.Y.; Te’eni, A.; Georgiev, D.; Cohen, E.; Carmi, A. Double Slit with an Einstein–Podolsky–Rosen Pair. Appl. Sci. 2020, 10, 792. [Google Scholar] [CrossRef] [Green Version]
- Peres, A. Incompatible results of quantum measurements. Phys. Lett. A 1990, 151, 107–108. [Google Scholar] [CrossRef]
- Mermin, N.D. Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 1990, 65, 3373. [Google Scholar] [CrossRef]
- Popescu, S.; Rohrlich, D. Quantum nonlocality as an axiom. Found. Phys. 1994, 24, 379–385. [Google Scholar] [CrossRef]
- Linden, N.; Popescu, S.; Short, A.J.; Winter, A. Quantum nonlocality and beyond: Limits from nonlocal computation. Phys. Rev. Lett. 2007, 99, 180502. [Google Scholar] [CrossRef] [Green Version]
- Navascués, M.; Pironio, S.; Acín, A. A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 2008, 10, 073013. [Google Scholar] [CrossRef] [Green Version]
- Pawłowski, M.; Paterek, T.; Kaszlikowski, D.; Scarani, V.; Winter, A.; Żukowski, M. Information causality as a physical principle. Nature 2009, 461, 1101–1104. [Google Scholar] [CrossRef]
- Navascués, M.; Wunderlich, H. A glance beyond the quantum model. Proc. R. Soc. A 2010, 466, 881–890. [Google Scholar] [CrossRef] [Green Version]
- Fritz, T.; Sainz, A.B.; Augusiak, R.; Brask, J.B.; Chaves, R.; Leverrier, A.; Acín, A. Local orthogonality as a multipartite principle for quantum correlations. Nat. Commun. 2013, 4, 2263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gisin, N. Quantum measurement of spins and magnets, and the classical limit of PR-boxes. arXiv 2017, arXiv:1407.8122. [Google Scholar]
- Rohrlich, D. Stronger-than-quantum bipartite correlations violate relativistic causality in the classical limit. arXiv 2014, arXiv:1408.3125. [Google Scholar]
- Carmi, A.; Moskovich, D. Tsirelson’s bound prohibits communication through a disconnected channel. Entropy 2018, 20, 151. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Piacentini, F.; Avella, A.; Levi, M.P.; Gramegna, M.; Brida, G.; Degiovanni, I.P.; Cohen, E.; Lussana, R.; Villa, F.; Tosi, A.; et al. Measuring incompatible observables by exploiting sequential weak values. Phys. Rev. Lett. 2016, 117, 170402. [Google Scholar] [CrossRef] [Green Version]
- Zurek, W.H. Einselection and decoherence from an information theory perspective. Ann. Phys. (Berl.) 2000, 9, 855–864. [Google Scholar] [CrossRef]
- Ollivier, H.; Zurek, W.H. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 2001, 88, 017901. [Google Scholar] [CrossRef]
- Henderson, L.; Vedral, V. Classical, quantum and total correlations. J. Phys. A 2001, 34, 6899–6905. [Google Scholar] [CrossRef]
- Aslmarand, S.M.; Miller, W.A.; Alsing, P.M.; Rana, V.S. Quantum reactivity: A measure of quantum correlation. arXiv 2019, arXiv:1902.02391. [Google Scholar]
- Girolami, D.; Tufarelli, T.; Adesso, G. Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 2013, 110, 240402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bera, A.; Das, T.; Sadhukhan, D.; Roy, S.S.; De, A.S.; Sen, U. Quantum discord and its allies: A review of recent progress. Rep. Prog. Phys. 2017, 81, 024001. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen, E.; Carmi, A. In Praise of Quantum Uncertainty. Entropy 2020, 22, 302. https://doi.org/10.3390/e22030302
Cohen E, Carmi A. In Praise of Quantum Uncertainty. Entropy. 2020; 22(3):302. https://doi.org/10.3390/e22030302
Chicago/Turabian StyleCohen, Eliahu, and Avishy Carmi. 2020. "In Praise of Quantum Uncertainty" Entropy 22, no. 3: 302. https://doi.org/10.3390/e22030302
APA StyleCohen, E., & Carmi, A. (2020). In Praise of Quantum Uncertainty. Entropy, 22(3), 302. https://doi.org/10.3390/e22030302